

School of Architecture \& Landscape Architecture
University of Toronto
230 College Streel
Toronto, Ontario M5T IR2
Canada

Digitized by the Internet Archive in 2010 with funding from University of Toronto

A DICTIONARY
 (いト

ARCHITECTURE AND BLILDING

VOLUME III
R. HUGH CRAWFORD

A R \quad C H I T E C T

FACULTY OF ARCHITECTURE
LANDSCAPE AND DESIGN LIBRARY
UNIVERSITY OR TORONTO 230 COLLEGE STREET
TORONTO, ONTARIO MST 1R2

A DICTIONARY

OF

ARCHITECTURE AND BUILDING

2iograplical, tistorical, and mescriptive

BY
RUSSELL STURGIS, A.M., Ph.D.
FELLOW OF THE AMERICAN INSTITUTE OF ARCHITECTS

ANI MANY
ARCHITECTS, PANTERS, ENGINEERS, AND OTHER EXPERT WRITERS, AMERICAN AND FOHEIGN

```
IN THREE YOLUMES
    YOL. III
    O-Z
```

Nrtm 17ark
THE MACMILLAN COMPANY
hondon: macmillan \& Co., Ltd.
$1!05$

Copyright. 1901 ,
BY THE MACMILLAN COMPANY.

Set up and electrotyped Necember, ryor Reprinted July, 1902; Oこtober, 1ços.

LIS' OF CONTRIBUTORS

TO TIIE

DICTIONARY OF ARCHITECTURE

Cleveland Aibe, Pl.D., LL.D.
Meteorologist U. S. Weather Bureau, Washington, D.C.
William Martin Aifen, Fi.A.I.A.
Architect; New York. Late Supervising Architect of U. S. Treasury Department.
Edward Athinson, I'h.D., Lh. D.
Economist; President Manufacturers' Mutl. Ins. Co., Boston, Mass. Author Mill Construction: H7hat It Is and Mhat It Is Not; Right Methods of Preventiny Fires in Mills.
Charles Buncock, M.A., Mon. Mem. A.I.A., Hon. Mem, R.I.B.A.
Emeritus Professor of Architecture, Cornell University, Ithaca, N. Y.
W. J. Baldwin, Mem. Am. Soc. C.E., Mem. Am. Soc. M.E.
Expert and Consulting Engineer in Heating and Ventilation; New York.
Charles I. Berg, F.A.I.A.
Architect; New York.
C. II. Blackall, M.A., F.A.I.A.

Architect; Boston, Mass.
Edimin MI. Blaqufield, N.A., Mon. Mem. A.I.A.
Mural Painter ; New York. Joint Author Italian Cities; Joint Editor Vasari.
H. W. Brewer, Hon. Assoc. R.I.B.A.

Author many papers published in the Proceedings R.I.B.A. ; London, England.
Arnold W. Brunner, F.A.I.A.
Architect; New York. Joint Author Interior Decoration.
Caryl Coleman, A.b.
Ecclesiologist and Decorative Desiguer ; Mresident Church Glass and Decorating Co.
Walter Cook, F.A.I.A.
Architect; New York. President Soc. of Beaux Arts Architects; President N.Y. Chapter A.I.A.

Edward Cowles, A. M., M.D.
Medical Supt. McLean Iospital, Waverley, Mass. ; Clin. Instruc. Ment. Dis. Harvard University.
R. A. Cram.

Architect; Boston, Mass.
Frederic Crowninghielid.
Mural Painter and Decorative Artist ; New York. Author Mural Painting.
Frank Miles Day, F.A.I.A.
Architect; Philadelphia, Penn.; Joint Editor House and Garden.
Charles De Kay.
Writer on Fine Art; New York. Author Life and Wrorks of Barye, the Sculptor.
F. S. Dellenbaigh.

Painter; Writer and Lecturer on American Archrology and Ethnology; New York. Author The North Americans of Yesterlay.

William de Morgan.
Keramist and Designer ; London, Fngland.
Barr Ferree, Ilon, Cor. Mem. R.I.B.A., Cor. Mem. A.1.A. Writer on Art; New York.
John saffort Fiske, L. II.D.
Alassio, I'rovince of Genoa, Italy. Writer on Fine Art, especially of Italy.
Arther L. Frothenghim, Ji., I'h.D
I'rinceton, N.J. Professor Ancient History and Arclæology, Princeton liniversity; Late Editor Am. Joumal Archeology; Joint Author History of Scielpture.
Willam Pade Gerhard, C.E.
New York. Consulting Engineer for Sanitary Works; Cor. Mem. A.I.A. ; Author volume on American Plumbing in the IIandbuch der Architektur; and many works and articles, in English and German, on Sanitary Engineering.
Robert IV. Gibson, F.A.I.A.
Architect; New York.
Whllai II. Goudyear, M.A.
Archæologist ; New York. Lecturer Brooklyu Inst. of Arts and Sciences (Curator since 1899) ; Author The Grammar or the Lotus: Roman and Mcliceval Itrt; Renaissance and Nodem Sirt.
Alexanier Grabam, F.S.A., Mem. Council R.I.B.A.

London, England. Anthor Travels in Tumisia; Remains of the Itoman Occupation of Torthe Africa.
A. D. F. Hamliv, A.m.

Adjunct Professor Jepartment of Architecture, Columbia I'niversity, New York; Auhur A Text-book of the History of Architecture.
II. J. Hardenibergi, F.A.I.A.

Architect; New York.
George L. IIeins.
Architect; New York.
George Mier. M.S., C.E., Assoc. Mcm. Am. Soc. C. E., Mem. An. Soc. M.E.

Architect; New York. Author Office Ifelp for Arehitects; Modern Otfier Buildings; Test of Fireproof Floor Arches.
Fret. H. IIfomuan.
Architect; New York. Late U. S. Engineer Corps.
William Ricui Hutton. C.E., Mem. Am. Soc. C.E., Mem. Inst. C.E., Mem. Inst. C.E. of London.
Civil Engineer; New York.
John La Farge, N.A.. Ion. Mem. A.I.A.
Mural l'ainter. Artist in Mosaic and Decorative Windows; New York. Author Considerations on I'ainting; An Artist's Letters from ITapan.

LIST OF CONTRIBUTORS

W. R. Lethaby.

Londun; England. Joint Anthor Siencte Siopkie, Constontinople: Author Architreture, Mysticism, and Myth; Leadeork, Olld and Oimamontal.
 C'ambridge, Maks. Ellitur C'yclopadia of Archilecture in Itnly, freter, and the Levent; Anthor Esseys un Irchitectural History; The C'ulumn elned the 1 1r\%h.
Alla: Muetinho Ph.1). L. 11.1).
Protessor Archaulogy ant the llistury of Art, l'rinceton Lniversity, l'rincetun. N.J.; Juint Author Histary of soulpture.

Architect; New York. Author Peun. Pleasure, and ALisholics; Esthetic Principles.
George Y. Mermilt.
Head Curator Dept, of Geologr. L. S. National Museum, Wiashington, D. C.; Professor Geology and Mineralogy, Corcoran scientific schoul of Columbian L'niversity. Washiagton, 1.C. ; Author vones for Buildiag and Lermation; lacks. Ruck-zceathering, and suils; The Onyre Merbles.
W. T. Partrid.e.

Lecturer on Architectural Design. Columbia Unirersity; New York.
Charle, A. l'att.
Architect and Landscape Architect; Ner York. - Inthar Italion firatens.

Cormios T. Pirdr, C.E., Mem. Am, Soc. C.E. Ciril Engineer; New lork. Author Pamphlets and Reports on Construction and Fire-procting.
Resaell lobr, S.B.. M.A.íe.E.
Boston, Mass Author Electric Wiring for the U'se of Jrchiterts.
W. C. Sabive.

Assistant Profesenr of Plysics. Harsard Cnirersity, Cambridse. Vass. Engineer for Acoustics. Boston Insic Hall (1900).
Aletindre Siviler.
Architect: Directeur des Travanx do Art. Mamfacture Sationale, Sésres. France.
Jean Sinupfer.
Paris. France. Autinr many articles on Architecture in American and European periodicals.

Montgomery Schrtler, A. M., Cor, Mem. A.I.A. New lork. Anthur Studies in American Architecture; Joint Editur Vero York Times.
F. 1). SHEвMis, Jh.B.

Adjunct Irofessor of Architecture, Columbia Uuiversity, New York.
Ebwali, R. Smith, B.A.
Liorarian Avery Architectural Library, Columbia Cniversity. New lork.
Catablé C. Socle.
Bustun, Mass. President Boston Book Compauy; Trustee Am. Library Assuc.; Trustee Broukline. Mass.. Pub. lib.
R. Pbene Splers, F.S.A., Mem. Council R.i.b.A.

Londun, England. Fditor Fergusson's History of Ancient and Medioral Architecturr, Third Edition; Editor Pugin's Normandy, second Edition.
Danforl N. R. Sitrgis.
Architect; Nem York.
Ruhard Clibtus Stergis, F.A.I.A.
Architect ; loston. Nass.
Anhew T. Tallor. F.R.j.B.A., R.C.A.
Arclitect; Montreal. Author Torers and spires of Sir Chenstopher IIren; Zominion Drating Books.
Edwari, L. 'fílion.
Architect; New York. Late Student and Explorer. An. School of Classical studies, Athens. Greece.
T. F. Trraer, B.心.

Architect ; New York.
Henry Van Brext. F.A.l.A. and late President A.1.A.

Architect; Kansas City. Mo. Author Greek Lines and other Architectural Essays.
Whliam R. Ware. LL.J.. F.A.I.A.
Professor of Architecture Columbia L'nisersity. New York. Autbor A Treatise on Plain and Curvilinear Pewpectice.
H. Langford Wares. F.A.I.A.

Architect: Boston, Mass. Professor of Architecture. Lawrence scientific School, Ilarvard Lniversity.
Edmesi M. Wheelwhght, A.B.. F.A.I.A.
Late City Architect of Boston. Mass. Anthor Hanicimal Arrhitecture in Boston.
Peter B. Wigutr. F.A.l.A.
Architect; Chicago, Ill. Secretary Illinois State Board of Examiners of Architects.

The Author of Architect, tue, 1 Inaly records his indehtedness for special information to the Commendatore Cauillı Boito.
The Author of Aferralia. Arfahectire of. - to Mr. If. Phenf Spiers.
The Author of Law. - to Mr. Philip, Goklen Bartlett.

The Author of Sirveivas. - to Mr. Edward B. Sturgis.
C. D. = Century Dictionary.
N. E. D. $=$ New English Dictionary, now in course of publicatinn ; Oxford.
A. P. S. = Architectural Publication Society, i.e. the Dictionary of Architecture published by that society.

PREFACE TO VOLUMIE IUI.. DICTIONARY OH ARCHITECTURE

The search for accurate definitions for worls is one of the most interesting of pursuits ; and when the definitions songht are of tangible things, things interesting in themsidves and hecanse of their immortance, the search may interest the worknam as well as the etymologist. What is, exactly pleaking, an arch? In close relation to that inquiry, what is not an arel? The reader maty amse himself with reamanging or rewording the definitions given in Vol. I. What is the Doric Order in the original and in the derived or scomdary sense of the tern? The definitions given in their plare assume the preexistence of the term in the Roman sense, and only its much later apmication to the order of the P'arthenom. Or, to take a more dombtrul case, should the worl Piazza he given in the sense of Teranda? A kind comespondent semb, too late fin insertion in its phace, a history of that word in English, and refers to his own signed letters in the Jution (N.Y.), from which it appears that the term covent Garden Piazza was in use, in Londen, as early as 1634 ; that thirty years later the term was applied rather to the covered ambulatories fronting on the sulure, of which some still remain; that the American nse of it for the covered out-of-door extension of a country honse was a direct lorrowing from these areales buit ly Inigo Jones: that use of the tem has been known for two centuries and a half and in all paints of the English-speaking work. If an Englishnan were writing home ahout the strange things seen in the United States, he would mame Piazzas rather than Veramdas, kepping the later word for Inlia. Piazza nsed in this sense is a hot un om technical vocahulary, but it must le acknowlelged. How, then, concening P'orte Cochire in the sense of a covered porch for carriages? That is a tern which ought to be kept ont of the langnage, if possilse, and, therefine, pither opposel or ignored. A century hence, if it is in the daily use of English-speaking peopde, it may be necessary to admit it as we now admit Piazza ; but let every acenrate writer and speaker avoil it till then, and let every dictionary name it with reprehension.

The abuse of trale names threatens the building trades, the decorative arts, and all those human occupations which are serimsly molified loy the modern race for eommereial advantage. It would be well if the arehitects and mural painters, the trained artists who are concerned in decorative art, would refuse to help eonfound and cormpt onr English woeahlary. We of English speech have to horrow words from the languases of men more versed and more traditionally at home than we are in the things of fine art ; lnt we may at least take those foreign words in their true senses, and we may nse our own English worls aright. Let us not force Remaissance to include the Decallence as well ; let us not admit that a Wainsent ran he of marlle.

In the Preface to Vol. 1. there was mention of those contributions to the Dietionary which ly their nature conk not well be signed. Referring now to those articles which bear their authors' names, it seems alvisalle to classify, ronghly, the work represented by those articles and the character of the infomation there given. Thus, in the matter of ardhitertural eluration, Professons Ware and Shemnan and Mr. Partridge have treatel Drawing, Perspeetive, Projection, amd Shades and Shadows. Mr. Walter Cook has written mi the great Shlool of Art in Paris, and Mr. Sandier on other French sehools (see Architect in France). Messrs. Blackall, Berg, and Wight

PREFACE TO VOLUME III.

unst be mentionel in this connection as having written on suljects so nearly akin to edueation as Fedlowship, Photography, and societies of Arehitects.

The molern partice of architecure and building hax been treated experially by Messes. Gibson, samber, amel Fïske in articles on The Architect in Éngland, Franee, and Italy: By Messis. Brunner, (ribsum, and Van Brunt in a general way (see Builder, Specification, superintendent), and by Mr. Marshall, from the point of view of the suggestive refomer of molem practice, in the articles Mosedling and Truth in Art.

Immediately momected with this is the large buly of work coneerning modern construction in all its ranse, from the simple and realistic subject of Mr. Athinson (Slow-burning Construction) to the engineering problems treated ly. Mr. Hutton (Caiswon, C'entring, Efuilihrim of Arches, Exavation, Expansion, Fomdation, Hron Construction, Masonry, Steel, Strength of Materials) and the wholly molern scientitie (musiderations which are the subjects of Professor Sabine (Acoustins, Echo, Keflector, sumding Buard, Whispering Gallery, and other kindred terms). 11r. Gerlarll (Bath and cognate sulbjects, Drain, Drainage and House Drainage, Gas Piping and Plumhinge, Kitchen, Lammiry, Market, and Water Suplly) and Mr. Purly (Fireprofing).

Other deprartments amd other manifestations of this great subject of modern building appliances and Muilding practice are consed by the articles of Mr. Balhwin (Tentilation), Mr. Gibson (Bill of Quantities, Builder, Estimating, Surveyor), Mr. Hinchman (Key, Lock, etc.), Mr. Rolbs (Electrical Applianres, Elevatur [Electric], Warming by Electricity), Mr. D. A. B. Stnrgis (Beam, Bult, Brick, Stair, Step, each with many subtitles), and Mr. Wight (Shoring, which includes house moring and raising). Itaterials not alrealy mentioned are the speeial suhjects of Mr. De Morgan (Keramies) and Dr. Merrill (Marble with subtitles, Stone with subtitles).

These subjects are nften elosely interlinked, and it is ditticult to elassify such work as Mr. Caryl Coleman's, for instance (see Altar, Ambo, Chancel, Font, Rerelos, Stall, and similar articles on Eeclesiology ; also Symbology), and to say whether it belongs to the history of architecture or rather to kimpled firms of decoration. In the matter of pure decoration, its theory and practice, the articles of Mr. Blashfield on Mural Paiuting. Mr. Crowninshiełd on the practical side of the same great art (Distemper, Eucanstic, Freseo, Musaie, Oił Painting, Water Glass, Wax Painting), Mr. La Farge on the subject he has made so especially his own, the Window of decorative glass, and Mr. Lethaby on the nature of Design and the dittienlties in the way of originabity and significance in the modern industrial epoel, are to be compared with the papers on special topics, such as Robbia Work hy Professor Marquand and Keramies by Mr. De Morgan.

Buillings of the molern world, concerning which there bas been much semiscientifie thought and much discussion, have beeu treated by Messrs. Abbe (Ohservatory), Aiken (Post Otfice), Brumber (Synagogue), Cowles (Hosinital), Hardenluergh (Hotel), Hill (Alartment House, Utice, Tenement House), Soule (Library), anl Wheelwright (Schoolhonse).

Biography has been the work of Mr. Smith, as stated in Vol. I.
Finally, the rast subject of the history of architecture, ancient and modern, European and Oriental, whether treated geographieally or by subjects, has heen haudled by Professor Babcock (Vaults), Mr. Day (the Stoa, the Temple), Mr. Ferree (Church, the summary), Mr. Fiske (Chureh, the nature of the builling), Professor Frothingham (Memorial Areh, Memorial Column), Mr. Goodyear (the Leaning Tower), Mr. Longfellow (Baptistery, Pound Church), Mr. Platt (the 1illa). Again, this has been examined from another point of view by Mr. Dellenbaugh, who treats Annerican areheology in many papers, Professor Frothingham with Pelasgic and Hittite antiquity, Professor Hamlin with Byzantine Art. Mr. Longfellow who handles GreeoRoman, Latin, Nenclassic, and Romanesque art, Professor Marquand and Mr. Spiers who treat respectively Greeian and Imperial Roman art. The same great subject, treated geographically, has heen the business of Mr. Blackall (Belgium, Portugal, and Spain), Mr. Brewer (Austria, Buhemia, Germany, and Hungary), Mr. Cram (China and Japan), Mr. DeKay (Irelaud), Mr. Dellenbaugh (Mexico, Central America, and the United States as to their pre-Columbian epocb), Mr. Fiske (Italy, the northwestern prorinces), Professor Frothingham (Italy, exeept the far northwest), Mr. Graham (North Afriea), Professor Hamlin (the Balkan Peninsula, Egypt, India,
and Scotland), Mr. Schopfer (Switzelland), Mr. Śchuyler (the United States), Mr. Spiers (Asia Minor, Etruscan Architecture, Persia, Syria), Mr. I. C. Sturgis (England), Mr. Taylor (Canada), Mr. Turner (Mexico), Protessor Warren (Franee, the sulhthern provinces).

The editor camot close this synopsis of the work of several busy years without renewing his thanks to the contributers who lave secombed him so cheerfully. The scheme of the Dietionary has never been disturbed or made ditheult by any unwillinguess on their part to conform to it. To one who thinks with the present writer that there is mo evidenore of thorongh mastery of a subject more complete than a perfect willingness to present that subject in the form required ly a special occasion, - than the absence of intellectual rigility and a Hexibility of spirit such as comes only from long-eontinned mental exerise, - the evidence thus afforded of the micue merit of the Dictionary's statf of contributors is most complete and convincing.
R. S.

FULL-PAGE ILLUSTRATIONS

FACING
PLATE columns

1. Observatory at Williams Bay, Wisconsin 3,4
2. Observatory at Williams Bay, Wisconsin; View from the sonthwest 21, 22
Open Timber Roof, Niddle Temple IIall, London 21, 22
1II. P'agoda of Iloriuji, Japan 43,44
IV. I'alazzo liscardi, Florence 49,50
Y. Palladian Architecture, Palazzo Tiene, Vicenza 5.3, 54
VI. Persian Architecture ; Mosque of Teheran IO5, IOE
VII. Pimacle ; Chevet of Reims Cathedral 14%, I4
VIII. Jolychromy in External Architecture, Church of S. Pietro, l'istoja, I'uscany 178, I74
3. Porch. S. Germain l'Auxerrois, Paris 179,180
X. Portugal, Architecture of. Plate I. Nonastery at Belem 187, I88
XI. Portugal, Architecture of. Ilate ll. Monastery at Batalha 191, I92
XII. Pyramid. Those of Gizelı; that of C. Sestius, Rome 245,246
XIII. Renaissance Architecturc. S. Lorenzo, Florence 269,270
XIV. Rialto Bridge 287, 288
IV. Salute, Cliurch of the Madonna della Salute 395 , 396
XVI. Scotland, Architecture of. Plate I. Jedburgh Abbey 439,440
XVII. Scotland, Architecture of. Plate II. Kelso Abbey 443,44
XVIII. Scotland, Architecture of. Plate III. S. Andrews, Uuited Colleges 447, 448
XIX. Sicily, Architecture of. Plate I. La Cuba, I'aleruo 507,508
XX. Sicily, Architecture of. Plate II. Cathedral of Monreale 511 , 512
XXI. Spaim, Architecture of. Plate I. Cullegiate Church at 'loro 5.5.). 55 ;
NXII. Spain, Architecture of. I'late II. Cathedral of Burgos 563,564
XXIII. Spain, Architecture of. Plate III. Convent of Miraforns 571, 57\%
XXIV. Stain in Burgos Cathedral $59.5,596$
XXV. Staircase, I'alazzo Minelli, Venice 607, 608
XXVI. Street Architccture, Fronts at Rouen 661, 106:
XXVII. Temple. I'late I. At I'estum in Italy 763, 764
XXVIII. Temple. Jlate II. In Japan 771, 772
XXIX. Theseion, Athens 797, 798
XXX. Tomb. Ilate I. That of Leonardo Bruni 815,816
XXXI. Tomb. Ilate II. That of Maurice de Saxe 823,824
XXXII. Tudor Architecture. Chapel of IIenry VII., Westminster 87.7, 880
XXXIII. Turkish Architecture. Mosque of Suleiman I. 883,884
XXXIV. Vatican 937, 048
XXXV. Vera da Iozzo 985, 986
XXXVI. Westminster llall; iu London I043, 10.44

DICTIONARY OF - RRCIITECTLRE

o

OBELISK (iu Greek, a :pit, óße入írкos, or a puinterl weapon, or the like). I. A tall and slember decorative strmeture or piece of material, as a pimacle-like moment on a neoclassic builing. Alure especially, a memorial or theorrative piece, stuam in flan, or nearly so, with slightly sloping sides, and terminated at tol] by a pyramid whose silles slope more rapilly. (See Pyramidion.) The origin of these monit ments is to be found in Erybt, where they stood commonly one on either sirle uf the entrance to a temple or falace, their nearly vertical faces affurding an admirable uprortunity for hieroglyphie inseriptions, casy to rean, and of decorative effect. Obelisks are known to have been put up as early as the the dyuasty of Egyptian kings (3759-3730 в.c. - Flinelers Petrie), but none remain of so early a time. The largest obelisk existing is that at Heliopolis, of red granite, and stated to be 66 feet high ; this also is the ollest known except some rery small ones, as it belongs to the 12th dynasty ($262.2-2578$ - Flimers Petrie). It was customary to cover the pyramidion with metal, perhaps always gilded bronze, with the illea of keeping water from the grain of the stome.

Many obelisks were brought from Egypt to Rome tluring the days of the great Empire, and some have been carried from ligypt to modern cities, as the obelisk in the l'lare de la Concorile at laris (1833), that on the Embankment at London (1878), aud that in Central Park, New York (1879).
B. By extensiom, and with allusion to the sloping sides of the obelisk in its usual sense. any stele or similar upright piece, especially if a monolith. In this sense the term is apulied to those mokern tombs which have a central structure with sloping silles serving as a background to sculpture, and the like. - R. S.

OBSERVATORY. An estahlishment erected for the purpuse of recorling astronomical, meteorological, magnetical, seismological, or tillal phenomena, to be distinguished from a laboratory in which experimental work is the prominent feature. In the former matters, the experimental features are insignificant in comparisun with the observational arragements. The five classes will be consitlered in detail in the following sections.

Astromomicul Olsematories. The progress of astronomy has from time to time introduced new instruments and new problems, and corresponding new conditions must be realized in the construction and armarement of the buiklings in order to secure both the desired observations and the necessary arcurary. In general, up to the seventeenth century, the astronomer ilesireal only a clear view of the whole sky from the horizon upwill : the mhest uhservatory of this style nuw in existence is that fommed during the Yuen dynasty, abut the year 1300, in Y'ekin, China, near the louation of the present lunerial Obsevatory; the building was doubtless, in many respects, similar to those of the Aratis, Persians, Greeks, Egyptians, and Chaldeans of most ancient days. The instruments originally in use at the lmperial Ohservatory are still preservel there, but have heen replaced by others male for the Jesuit astronomers at l'ekin, between 1673 and 1700 . These are all exporsed to the heavens, on an elevated granite phatform surroumded by a heavy iron railing. Molern European observatories begin with that erected in 1576 for Tyeho Brabe, at Uranienborg, on the island of Huen, ly the king of Denmark; since then, large instrments have been established in the merilian, and the buldings have been more or lexs closerl in, to protect the astronomer and his appollatus, leaving open slits with movable slanters, or winlows, throngh which to observe the stars. At first, in orter to obtain al clear horizon, the instruments were phaced in the upjer stories of very high buidingre, but this is not clone now. The Royal Ubservatury at Greenwich, built in 1675-1676, and the Royal Ohservatory at Paris, built in 1667, even in their own day scarcely represented the rapidly arlvaneing conlition of as tronomy: Each of these buildings is still oconpiert, but has molergone many changes in order tor alapt it to modern requirements. At the present time it is generally reengnized that each astronomiral instrument must hare a lucation and surroundings appropriate to its work; thas, the instruments for observing in the meridian and in the prime vertical shomb be so lucated that fixel marks and collimating telescopes can he placed exactly north, sonth, east, and west of each instrument, and at no great distance therefrom. For all instruments, the stalnility of their piers, the permanence of their adjustments, the protection from strong wind,

OBSERVATORY

the enformity of temperature within the observing room relative to that of the free air outside, the freedom from minnte vibrations and jars of the ground, and especially a steady at mosithere, are the fundamental eonditions for goonl work. So fir as the luildings themselves are concerned, it is fomm that these conditions are best secured by giving each instrument its own isolated house; hence modern observatories constitute a chuster of huihlings containing uthices, residences, and instruments, often soattered orer in area of many acres, in order that each may he located as adrantageously as possible : it is only in the case of momatan observatories, where space is not available and where it is innossible to go out in stomy weather, that it becomes neressiary to erowd several iustrments into one buiding. A emmplete monlern observatory must provide for work both in the exact meridian and upon objects far removed from the meridian. The former is clone by meridian instruments whose use requires simply a broad slit open from the zenith down to the opposite siles of the horizon. The extrameridional work is done with instruments of either the altitude and azimuth type, or the equatorial type; buth these types require to be monnted in rooms whose walls and roofs revolve lorizontally, so that the broad slit from zenith to horizon, which serves as the ohserving winlow, may be bronght opposite to any part of the sky that is to be examined through the telescope. The equatorial telescope inrented by Framhofer has a perfectly free motion around an axis parallel to that of the earth, called the equatorial axis; this ean be moved by clockwork, so that an olject once brought into the ceutre of the field of view will remain there permanently. With such apparatus, photographs of faint stars, comets, and nebulie can be obtained by giving several hours of continuous exposure to the sensitive plate. The eye end of this telescope is near the floor of the room when the observer is looking at the zenith, but may be 20 feet above the floor when he is looking at points near the horizon. In the older onservatories, a complex ohserving chair was needed for the convenience of the observer ; but in all the newest ones the floor itself is made adjustable, rising and falling at any moment to suit the needs of the case.

Among the best illustrations of the extent and manifold character of the works undertaken by modern observatories and the consequent necessary expansion of apparatus and buildings, we quote the Observatory of Harvard University, Cambridge, Mass., which now maintains several branch observatories and employs in all about fifty astronomers, physicists, computers, and elerks. Among the great observatories built in recent years with a view to work in some special department in astronomy, we may
enmmerate the following: The Imperial Central Observatory at Poulhova, near Saint Petersburg (1836 - 1839); the new Observatory of the University of Vienna; the Observatory at Nice (185.5-1890) ; and, in the [nited States, the Lick Observatory on Momit Hamilton; the Naval Ubservatory in Washington, and the Yerkes Ohservatory belonging to the University of Chieago, but located at Williams Bay, Wisconsin.

Meteorolarical Ouservatories. The only building pertaining to meteorology that has descended to 1 s from classic times is the socalled "Tower of the Wimis" at Athens, which dates from hetwern fifty and a hundred and fifty years betore Clurist. Each side of the tower bore a sundial, that is to say, a horizontal stylus projerted from the middle of the upper edge of each face; from it radiated the hourmarks chiselled into the smooth marble, and, undonbtedly, at one time filled with red or black pigments. The interior of the tower still bears witness to the fact that it formerly contained a large water clock or clepsydra.

The modern revival of interest in meteorology dates from Galiteo and more especially from his pupil, Ferdinand 1F., Grand Duke of Tuseany, who, in 1653 , clistributed thermometers to several cloisters and organized a system of daily records, the general oversight of which was cummitted to Father Luigi Antinori. During the past two hundred and fifty years, the conditions under which satisfactory observations can be made have come to be better understood, and the observatory buildings have undergone corresponding altesations, although observations and records are still made by thousands of anateurs under more or less unsatisfactory eonditions. Meteorologieal observations are frequently combined with seismological and magnetical in one establishment, and in orler to respond to these manifold requirements a number of small buildings must be seattered over an area of several acres. If maguetic self-registration is undertaken, it is atmost necessarily done in underground or cellar rooms where the temperature can be controlled throughout the year. The first story of the observatory buikling is devoted to oftices and libaries, white the upper story is usually given up to self-recording meteorological apparatus comected with the thermometers, rain gauges, anemometers, sunshine recorders, etc., on the roof. In order to obtain the temperature and moisture of the air, it is considered necessary that the thermometers shall be exposed freely to the wind and yet be perfectly shielded from the sun's rays by day and from their own radiation to the clear sky at night; they are, therefore, enelosed in a shelter of open latticework, which is either elevated high above the roof, or located near the groum, according to the subject under investigation.

OBSERVATORY AT WHLILADA BAY, WISCONSIN (See the figure in the text and Plate II)

Interior of the revolving flome. The telescope revolves on an :cxis parallel to the earth's axis of rotation ; it is driven by clockwork so that a star is kept in the centre of the field of rision.

The observing slit is $1:$ feet wide and extends from the lomizent to a point is feet beyomd the zenith. It is closed by two shutters which work side-
wise on rollers, and which move simultaneously. Canvas curtains are monnted on tracks and can be adjusted so as in shelter the telescope from the wind. The floor sten in the figure is arranged so as to rise for a distance of $2:$; feet vertically; thus enabling the nuserver to reach the eyepriece of the telescope at all times.

Obsertatory at Willians Bay (see Next Figure); Guound Floor.

Observatory at Whlfams Bay, Wisconsin, bflonging to the Uyiversity of Chicago; Princhpal Flour: and Upier Floor uf Easters Towers.

OBSERVATORY

The Eitlll Tower in laris was originally designed by its inventor for ntilitarian as well as abrhitertural purpuses, and sinme the close of the l'aris Expusition in lsse it has heen laredy deruted to physieal and meteorohogical purpuses. The recorls of presure, temperature, and wind taken on it, in mid-air, one thousamd leet above the gromml, have givern at new axjere to certain problems in meterology: This tower is now known to the serentific world as a meteorologiond observatory. It responds precisely to a fumbamental condition that is not fultilled by any monntain mbicratory, manely, that the instruments be placel in free air high above the ocean level, so as not to be afferted by the influence of the gromme wo buiking which supports them. The recorls from the bitiel Tower are more valuable eren than those ohtained firom instruments suspromed in the free air by balloons or kites, becamse they are contimed mintermptedly.

In urder to satisty the same romlitions, the Weather Burean of the United States (amd, to a less extent, the bureaus of other countries) elevates its olserving stations to the tops of the highest accessible buildings: but in some cases, from necessity, it takes the obserrations quite near the surface of the ground.

For elimatolugical stulies bearing on regetahle and ammal life, it is, of course, necesary to keep records of rainfill and temperature near the surface of the gromd, therefore the central stations generally have an auxiliary onen field for this purpose. When these stations can be located in such fields with an auljacent grove, the whole constitutes a park, and for economy's sake other scientific institutions are established in the same park. Illustrations of this arrangement will be found in the combination of astronomy, meteorolugy, and magnetism in Greenwich Park; of magnetism amd meteorology at Parlosk; of greolesy, astronomy, meteorology, and magnetiom at Potselam, and the similar combinations at the observatories at Nice and Budapest, and at stations for the study of forestry, agriculture, etc.

In orler to explore the upper atmosphere, meteorologital ulservations are trequently established on the summits of hills and mountains. The momatain observatory is usually a very plain stmeture, and the apparatus is installed with diftienlty on the rocky summit. Observations at still higher levels are obtained by the use of balloons and kites. The first of the modern series of buidlings combining the needs of a meteorological and magnetic observatory with those of a central station where an extensive collection of recorls must be preserved and students must be providel for, was the seewarte at Hambure, now the Deutsehe Seeuarte, designed by Professor Neumayer as scientist, and G. Kirchenpaner as architect. Next in chromological orker, and rivalling it in importance, was

OBSERVATORY

the collection of buillings erected in the Imperial Pirk at P'arlosk as the techmital adjunct to the Central Physical Observatory at Saint Petershorg. The most recent structure of the kind is the magnetio and meteorological obserta tory at Potsdam, near Berlin, which is established in the park at that place, near other buildings devoted to astro-physical and gendetic research. The Putsdam observatory is the technieal ohservatory and the school of experimental research for the Central Meteorologieal Institute in Berlin, of which Professor W. von Bezohl is elirector. The meteorolugical and magnetionl observatories at Pare Saint Manr, Montsouris, Pavlosk, and Potstam respond to the imprortant condition that meteorologieal ohservations for general climatologieal purposes should not be taken in large cities, lnat in upen regions at a listance therefrom. On the other haml, there are many problems that demand special observations made within citiex or within forests, or at some other locality fur which special stations are needed. The instrments themselves and the methods of their exposmre constitnte special problems that are rather differently handled in each olsersatory. The central othice of the Weather Burean at Washington is located an suficiently high gromed to enable the apparatus on its rouf to imblicate the proper temperature and wind for a large mass of air just above the eity. The first flur is 79 feet above sea level, and the amemometer abont 60 feet above that; the observer's room, the self-registers, and the barometer are on the top flour of the central tower, but an auxiliary experimental observatory belonging to the lnstrument Division is located on an aljoining building. All Weather Bureau stations for storm sturlies are elevated high above the suil in order to obtain approximately the state of the air at the clond level.

Mugmetic Obserutories. The first magnetic olservatury, in the morlern sense of the term, was that occupied by Gallss and Weber at the University of Gotingen, 1833-1850. The difticulty of carrying on these delicate measures with sutficient frepuency led C. Brooke, in 184t, to devise the Greenwich and John Welsh, in 1857, the Kew, system of photographic apparatus for continnons registration ; the so-called Kew system is now in use at about twenty magnetic observatories. Improvements in many details were, e. 1885, made by Mascart, whose apparatus is now in use at about fifteen stations. The latest improsements are found in the three observatories designel in 1900 by Dr. L. A. Baner, and to be rected by the United States Coast amd Georletic Survey. The conditions to be finffilled in a magnetic observatory are primarily two: namely, as great a freedum as possible from local magnetic disturbances due to the building, the geological strata,

OBSERVATORY

OECHSEL
and adjacent industrial electric plants; and as uniform a temperature as possible within the buiding. This latter comblition is now seen to be so important that great efforss are being makle everywhere to attain it: self-aldjusting fumates and air driers are provided; the roons for the self-registering apmaths are placed either in the basements and cellars of large buillings, its at Potselam, or in smather alliacent lmildings that are covered over entirely with a mound of earth, ats at Pavhosk. The later methol was adhped by Wild, and his published recorls show that there is not a variation of 1° Centigrate in his olsmang rome during the year. In the observatory at Putsian the rellar and sub-cellar romis are arranged within dombe watls aml with suectial finnaces and rentiators in onter to secure dry air with a sutticiently constint temperature. At both places there is provided at some distance an alditionald light, wooken buibling in which alsolute measures may be mate as the standard for the corrention of the work done undergromid by the self-registers. The buiklings and arrangements adopted at Parlosk and at l'utsdam are recognized as, at present, the most comprohensive and the most appropriate in the work. The buildings at both places are quite plain and small as compared with those of the modern astronomical observatory.
seismolomical nbseratories. The systematic observation of earthouake phenomena is now carred on at many astronomical, meteorological, and magnetiv ubservatories thronghont the worla. As the apparatus most be closely emmectes with the solid gromm, it is often phaced in the cellars of these larger estaldishments. The most elalmate apparatus has been devisal by the Japmese students of the Seismolorical Society of Japath, and is to be foumt at Tokyo; other styles of apparatus are at Geneva, Vesuvins, Pare Saint Maur, Mount Himiltun, Califormia, Washington, D.C., ant Cleveland, ohio. The apparatus revised for Professor Miln's Observatory at Shite, on the Iste of Wight, is now being widely introduced. The whole sulbject may be said to be still in an experimental stage as regarts the instruments and the interpretation of their records. The stations of whervation have not generally required the erection of special elaborate miktings. The meteorological observatory founded hy Melloni om Monte Somma, on the north flank of Moment Vesuvius, in 1841, has of late years become so prominent in seismic studies as to be frequently walled the "Scismological Observatory of Nount Yesurius." lt belongs to the University of Naples, amd Professon Laigi I'almieri was the director from 1854 until his eleath in 1896. Palmieri early introduced his clectromagnetic seismograph amb, subsefuently, other more delicate forms of apparatus, ly means of

Which he was able to starly the shocks and tremons and to predict the eruptions of Pesurius.

Tirlal Olssequtorios. liomots of the variations in level of the moman and the great hakes are kept hy means of tidal rergisters, or marographs. The instruments must he lowater) clase to the shme so that a that may rise amd fall, within a proterted well, simultanennsly with the sulatee of the firce water. la some cases an "fern tule runs bencath the grotur ont to some print a few limedred yares from the shore into Alerp watter, su that the well reproduces the changes in the deepre water and avoids recording viokent breakers. Siuhtubss, lowever, produce a retardation ats to time, and it is proferable to buibu up a fomatation for the tidal register in the deep water itself. The superstructure for the tidal station is simple and inexpensive.

- Clevelanis Abbe

OBSIDIAN. A natual glass formed by the rapid couling of acid latias. Colous: gray, redbrown, to latatk. - (i. I'. It.

OBSTAL. (See Upstal.)
OCTASTYLE. Having eight eobums in the tront or end row ; consisting of a row or rows of eight colmmms ; stid of certain classic buiblings, and of architectural commositions derived from them. (See Colmmar Architerture.)

OCULUS (in Latin, an ere ; applied ly morlern archieologists to romd wintows, and the like, in Roman monuments). A cireular member, as a window or panel (comjare CEil de Bubuf) ; esjecially, the round opening in the summit of the empula at the Pantheon, Rome ; or, by extonsun, any opening having a similat character.

ODEION. Name as Odemm.
ODEUM (in (ireek, 'S $\Omega \varepsilon i o v$, or ' ' $\Omega \delta \varepsilon$ eiov' ; used by Roman writers for a music hall; Vitrurius, V., 9). A. A (íreco-Lioman hilking in Athens sain to have been of a rery early epoch, and adorned at a later time by Pericles: destroyed by fire during Sulla's siege of Athens, and rebuilt at the expense of King Ariolarzanes of Cappatocia. Herodes Atticus, in the reign of Marens Auredius, built an orleum at Athens, the ruins of whieh still remain at the fuot of the Acropolis, and west of the theatre of Dionysos. There is no doubt that this bulding is nearly, if not exactly, on the site of the ohler velemm. Such buildings existed in other eities of Greere. They were distinguished from the great theatres in heing roofed.
13. In modern times, a music hall or blace of intellectual entertaimment, rather is forming part of the name of a sperial building than as a general term.

OECHSEL, JORG; arehitect.
He was arrhitert of the eathedral of S. Stephen, in Vicoma, at the heginning of the sixteenth century, am? built the organ oser the Peter and Paul altar.

Perger, s. Stepham in Wien.
©ECUS. In Latin, a hall or large room in a dwelling house ; rare in ancient authors, and applial by modern archavolorists to a room with columns, or otherwise decorative, as in some Pompeian homes. The room so callen was sometimes a dining room.

GEIL DE BGEUF. In French, a comparatively small romul or wal wimlow : as adopted in English nsage, such a window especially when treated decoratively, as in a frieze. (See Eye; Oculus.)

Salle de l'GEil de Bœuf. The antechamber of the king's apartment in the palace of Versailles; so called on accomt of the oral wiodow in one of the walls.

OFFICE. A. A room in which work is done, especially work of a professional or intellectual sort, as distinguished from a workshop. Thus, in the house of a physician, the room in which patients are recelved is the otfice. In a hotel, a factory, or other establishment where many persons are employed, the rom especially reserved for interviews between the proprietor or his representative and persons having business with the concem ; in is shop or store, the compartment, whether forming a separate room or not, in which the clerks and bookkeepers do their work, as distinguished from the salesmen.

In motem cities, the places of business, even of professional men, are so often separated from their residences that ontices have come to be rooms or suites of rooms in large builangs, perhaps erected esuecially for the purpose. (See Oftice Building.)
B (in this sense, much more common in the plural, as, the otices). The kitchens, storerooms, serrice rooms, laundries, etc., taken together, as in a hotel or large dwelling honse.

- R. s.

OFFICE BUILDING. One intended for renting to tenants for the purpose of trausacting clerical or executive business or the practice of a profession.

Derelopment. Prior to 1858, except in a few commercial cities like New York, ottice buiduings were usually converted dwellings, the light, air, heat, and height which were sufficient for living rooms being reemed sutficient also fur the othice, the plans of new buileings closely following those in use for dwellings. A number of new buildings were erected during the period 1858 to 1895, at which time the elevators began to be common, and led to the use of five- and six-story buildings. About 1880 the speed of the pissenger elevator was increased somewhat, and during the next few years buildings of eight and nine stories in height became common: during the perioul up to 1890 the elevator speeds were gradually increased, reaching the practicable limit, and since 1890 the development of the office building has been along the lines of the carefully
bracel sted skeleton supporting a masonry covering, with an increased number of stories and a decreased size of the oftice unit.

Plur. It is repuired to produce a building having the greatest practicable mumber of romis of about mitorm size, each practically equidistant (in time) from the street, and each well lit and ventilated naturally. For a uniform distribution of light during business hours it is desirable that the atirect light shoud be admitted monning amt evening, and diffused light during the midulle of the day, a greater depemience being placed upon diffused than uron direct light. It is also desirable that each oftice shond receive a neanly equal portion of light during the day. It is therefore necessary that they should all he symmetrically arranged about an axis. If this axis rums east and west, the othices on the north side of the buidding receive diffused light only during the early morning and late afternoon in the summer. Those on the south side have the sun directly on them nearly the entire bear. The direct smanght on such othices is toointense to be admittel, and it is therefore necessary to nse awnings or shades, which darken the rear of the office. If the axis runs in a northerly and southerly direction, the offices receire the clirect sim in the moming, and in the afternoon and chuing the middle of the day are protected : shates, therefore, are mmecessary, anl the diffused light fills the entire rom during the greater jurt of the day. Tn courts, the direct light is unly available during a swall portion of the day: the balance of the time the retlected light trom the sides and the diffiused light must be depender on. If the long axis of the court is placed in a mortherly and southerly direction, the direct light can reach farther down than would be the case if the axis were placed in another direction, and the reflected light will be mmeh better. This follows as a necessary consequence of the laws of retlection, and can be readily demonstrated by using a canulle to represent the sum and a rectangular box having lightcoloured sides 1×3 inches in plan and 6 inches high. By placing the long axis of the box in variums positions with reference to a meridian, the amount of light can be noted un a picce of tracing paper beld at the hottom. To insure the even distribution of the light during the business days, lay off on a full circle the twentyfour hours which compose the day, draw two radii, one to 9 A.s. and one to 5 p.m., ant hisect the angle formed by these two with a thirl radius. This radius should be the approximate bearing of the court axis. The aim being to proride an equal number of mit oftices of equal desirahility, a unit building is developed hy placing two rows of oftices on either side of a centre corridor, the oftices opening to the street or court. As many unit buildings should be

OFFICE BUILDING; AJELILAN SURETY CUNPANY, NEW YORK CITY.
arranged in parallel rows as tho lot permits. learing alduate rourt spare between them amd joining them at their northerly ends, unless there is some controlling reason tue to the 1^{10-} sition of the lit or the excentional length of the building, he means of a cross lonilding containing the stairways, elevaturs, and connecting moridurs. Willer comers are meeted for high Thihtings. The size of the oftice unit depends on theal demands and the size of the lot, varying from 9×1.5 feet un to 1.5×25 feet. The corriturs should vary from $\&$ to 6 feet in width, and the walls from 1 foot to sereral feet in thicknes. The unit buiding will vary in width frum 38 to 60 feect on more. The cross corridors shouk be e-9 per eent, and the landing in front of the clevators 50 ber cent, wiler than the side corridurs, with 12 feet as a maximum. The main hall, from the street to the devators, should be at the street level, i feet wide in small buillings and 10 feet wide in larger ones. All of them should receive tirect light and air from at least one window. The courts should he frum 18 to 25 feet wide. In buillings of an L shane, the elevators can be placel at the angle of the L.

Hoight. Present practice ranges from ten to twenty stories. The linuit is fixed strueturally by the smallest dimension of the lot when the building is free standing or designed to be entirely independent of its neighlours, and economicalls, by reaching the point where the rental ralue of the additional story is not sufficient to pay the interest on the cost of the story, for the loss of space due to increase in the number of elevators in all the stories, for loss of space in the conrt, and for increased cost of serrice. All of these items are serions in amount, hut cannot yet be detinitely determinel. The author believes that the limit is at ahont sixteen stories, regardless of the size of the lot, and that as the lut decreases in size the height should Hecrease. The total height of the building is influencel by the height of each story, which shouht generalls be one-halt of the deyth of the rooms, hut never less than 9 feet for the oftice floors and 1 응 to 15 feet for the first and secoml floors. If an excessive height is given to the story, the light is not materially improved, and the cost of the building and of the serrice of the building are both needlessly increasel.

Hindows. The windows should occups an area of from 30 to 50 per cent of the entire area of the exterior walls of the office, being so placel that the top will be no more than 1 foot below the ceiling and practically squareheadel. The usual practice is to hang the windows on pullers and weights, dividing the sash into two parts, with the provision made. in the best practice, to rotate the sash in the frame, thus affording double the opening for

OFFICE BUILDING

rentilation in the summer, and permitting the outside of the glass to be cleaned without danger. Side-piroted and casement sash are alsu used to a certain extent. They should be so arranged as to be easily cleaned. Generally, abont 3.5 per rent of wiudow surface in the wall gives a very etticient light. Very large glass surtiaces should be aroided in cold climates as the glass radiates externally, the heat of the interior prolucing the effiect of a draught which is difficult to neutralize. Bay wimhows are used in certain localities and seem to meet the approval of the tenant, but are objectionable on the scure of cost, additional fire risk, and are not always efticient in adding to the rentable area of the ottice. They are always ditticult of satisfactory architectural treatment. The rereals of the windows are generally fixed by architectural considerations: any portion of them not required tor eftect shonk be placed inside of the windows, and the area of the room increaset hy reducing the thickness of the wall underneath the window as much as practicable.

Elerctors should all be grouped at one point at the eud of a court. Goonl service requires that a car shall be in front of a landing going in each direction every forty seconds. The height of building and speed of car fixes the number, and the number of oftices per floor fixes the size. The car shoukl he at least 5×5 feet and shoukl not exceed $\bar{i} \times 7$ feet. Some form of antomatic indicator operating within 8 feet of a landing must be used in high-sireed service to indiate the requirements of passengers on landings. The tlivision of the cars into way amd express, or into sections, one section serving the lower portion of the building and the uther the upper, is one that on it.s face seems to be good; but practically it is open to objection as calsing delay and congestion at the bottom landing. In buildings of reasonable height this queation does not arise.

Stairs are neel simply for communication from one tloor to another and for emergencies. Ther should be malde entirely of masonry and iron without winders, amd if more than 4 feet wide should have a hand rail on each side. They should be protected by their position so as to remain free from tlames and smoke in case of fire.

Trimming. The preference seems to be generally for wood floors in the oftices, thongh ground cork on jhastic asbestus may soon be in geueral use; mosaics or marbles in the halls, corridors, and toilets: wood trimming to the windows and dours on the oftrice sidie, and in the best buildings fireproof, or wood corered with sireet metal on the corridor side. Communicating doors between oftices may be fireproof or not. depending upon the character of the building and fumls arailable. The windows, as betore mentioned, may be double hung, or may

OFFICE BUILDING
OFFSET
be matle cascment winlows, opening out, there being two sashes in the frames. 'lhe dens: should always have transoms over them for ventilation. Ocrasionally the entire upher halt of the corridor partition is made with satsh and frames. This is ohjectionathle on the seore of fire risk, aml becanse in many oftices the spare is required for bookeases, pictures, latge maps, etc. Firepuens are sonnetimes placed in the office, but are objectionahle, ocmpying vabuable room, therehy derveasing the rental value of the office. In lowalities where the size of the lot owrpiod by the builling has resulted in very deep offices, lireproul raults have leen introducerl, simply to use up the room, as safes are generally preferred. Generally, conveniences uf this character which are built in the roun are likely to meet with the approval of lint a restricted mmber of tenants, and may profitahly be omitted.

Toilets. General toilets for the mse of the buildings should be provider on eatch floor where the mumber of oflices served is limge, or where the lot is 100×100 feet or larger. Where the lot is smaller the toilets shonld be gromped on two floors, and a considerable spare devoted to them. All of the closets should be in any case upen for the gencral nse of the temants. Hot and cold water shonld be slipplied to the washbasins, and if the lmiloling is of very high grade, conled and filternd lrinking water may also be supplier. All toilet compartments and floors shonld be of marble, with the com-partment-slab lifted at least 8 inches above the gencral flom level. There shoulal be a marble wainsent 6 feet high. Side walls and ceilings above the marhle should be fimished in chamelled paint on thin tiles, su that every portion can be washed. The toilets must he placed so as to have one wimlow opening to the outer air and preferally two. Toilets should be proportioned on the basis of one water-rloset for every five offices, one washbasin imul one urimal for each two closets. Every office shomlid also be provilled with a washbasin near the rear, supplied with cold water. All of the fixtures should be of the most aprored sanitary form with brass fittings, entimely open, and should he servend with plumbing pipe of the most approved form. (See Plumbing.) Where toilets are grouped on two floors, it is necessary to provide at least one washbasin and closet for emergeney use on each Howr.

Heating should be direet radiation, luw pressure steam, with the raliators placed in front of the windows with their tojs helow the sills. Experience has been had with indirect hot air heating, direct-indirect leating, and vilrious modifications of both, on both large aul small seales, and foume unsatisfactory. In some cases the steam pipes are conrealed in chases in the walls, and in other cases they are
left exprosed. In some canses the supply is hy the usinal twophue system, and in others by a one-pipe system. In the anthor's experience, exprosed pipes of the one-pipe systen for buiklings ut monlerate height are satistantory. Where buillings are rery high the supply mains hecome so large as to be unsightly and should be hidhem. (Sce Engine Reom ; Wamming.)

Artificial lighting! is almost exclusively by means of incennlescent electric lights throughout the cutire building. Gas is sumetimes installed ats a reserve for seneral illumination, and somatimes installed only in the hallways. The illmmation of the chitrance hatls and other protions of the building may le by rows of small lamps at or abowe the cornices, lighting ly means of retlected rays principally, or by clusters of light at the ceiling, shaded on the under side with ground ghass. In special places the enclosed are lamps are used to alvantage. All of the ceiling ontlots in the puhlic places shonlil be controlled by a switch operated by a key. In builangs operating all might it is economy to runspecial rircuits fur hall lights, one for general illumination ami the other for the night lights. The lighting of the uffice shonld be by means of a small reiling or lighting outlet, the fixture being placed near the ceiling and controlled ly a switch at the entrance door. 'The desk illumination is provided for by means of a cirenit rmming entirely aromm the exterior wall of the building in the bascboard or pieture moulling, which shond be formed with wire elamols to act as a moulding, purmitting branches to he taken off to any of the side walls desired, bracket fixtures or mosightly cord pendents being entirely aroided. Each floor should he provided with a separate riser controlled hy an indepembent switeln in the engine room, pacing the liglating of the buibling under the control of the engineer. (See lighting, Electric.)

Teleptemes. Provision slumld be made for the introhuction of the trlephome and mossenger calls to every othe mit, provisling one or more cable wats through the huiding, from which telephomes can be extemded throngh the mouldings in the hase.

Mechamical Pant, The bilding should lee entirely self-entilined, the most cconomical operation resulting from the combination of good builers, good engines and generators, economical pumps, exhathst steam heating, and above all a competent elsief engineer.

- (Aeorae Hill.
(For the construction of the high modern office building see Fireproofing ; Foundation: Iron Constrnction; Wind Iressure. Sce also Legislation.)

OFFSET. Distance or dimension taken perpentioularly to a main line or direction; the amount of a comparatively slight projection
measured or considerel as at right angles to the main structure or surfiure. Hence, where such a projection is culused hurizontally by a diminution of the thickness of it wall, the surface or piece forming the top of the projecting portion. The sereral iliminntions in horizontal size of a buttress, in frothir architecture, are properly olkets, lut are commuly spoken of as weatherings, which term applies, properly, to the expmed piects of stome.
O. G. Sime as Ogre (anlj. and nomi) ; a common trate term.
O. G. DOOR. A furm of stoek door common in pirts of the United States, so called because mate with stock mouldings having an ogee section.
OGEE. A double or S curve ; applied especially to the profile of a moulding.

Reversed Ogee. An ogee when nsed as an overkanging profile convex above and concave below; so dessignated from association with Cyma Reversi, which is an ogee so placed.
ogivale. In French, characterizel by the use of the Ogive; the term being applied especially to Cothic architecture, and signifying often merely pointed in style, or haring pointed arches. By extension, having a form resembling in mutline a pointed arch. (See Ogive.)
ogive. In French, properly, one of the diagonal ribs in a (fothic vault. This significance has been maintained by Viollet-le-Duc (Dict. Arehit., s. v. Offive), who points out that the term croix draugices meant in the fourteenth century a pair of diagonal ribs. As, however, the term itself carried the idea of curves meeting one another, and as the resulting form which struck the eye was always like that of the pointel arch, it resultel that the term has been generally applied in French writing to an arch made up of two circular curves meeting in a puint. Even so accurate and so recent a writer as Anguste Choisy uses the terms ogice and oyicel as applied to a pointed arch. The term seems to be as well establishel as is the adjective Guthic itself, as qualifying the pointed architecture of the Middle Ages.

OGNABENE, ANDREA; goldsmith and semptor.

The son of Jacopo, a goldsmith of Pistoja. In 1316 he mate the has-reliefs from the life of Christ in the altar of S. Jacopo at Pistoja signed per me andreani lacobi ognabenis Avrificem de pistorio. This famous altar was hegun in 1:85, continued by Ognabene in 1316, by Giglio in 1353, by Piero of Florence in 1357, and by Leonardo di Giovami in 137.

Marcel Reymond, La Srulpture Florentine; Alfred Darcel. Les Autels de Pistuin et de Florence.

OHLMULLER, DANIEL JOSEPH ; architect; h. Jan. 10, 179] ; 11. April 22, 1839.

A pupil of Karl von Fischer (see Fischer, Karl ron). He assisted Klenze (see Klenze)
on the flyptothek in Munich, and built the brick Guthic church in the Au suburb of the same city.

Seubert, Kïnstler-lexicon.
oilet. Same as Eyelet.
oIL PAINTING. That painting which is done with colours mixed with oil-usually linseed oil, with or without a drier.

Althongh oil painting is mentioned by the monk Theophilus (eleventh century?) and Cennino Cemini, who interprets the methods of the fourteenth and early fifteenth centuries, and though it may have been employed occasionally as a melium for mural painting, both in medixval aul early Renaissance times, certainly its general tuse does not antedate the great Venetians. Leonardo da Yinci tried it with disastrous results in his "Last Supper," and Selastian del Piomho was constantly adrocating its use, though he failed to convert either Michelangelo or Raphael, who preferred the fresco process.

Oil paintings invariably darken with age, for the following reasons: Oit is composed of an oil acill linkel with glycerine ether. Soap is a compoum of an oil acid linked with alkaties or oxides, such as putash, soda, lime, leat, zinc, iron, etc. The white lead used by painters is a strong soap maker ; zinc white and the iron oxides less so. While it seems to be certain that soap making, either by the pigment itself with the linseed oil, or by the addition of a drier, improves the solidity and durability of paint, it is ergatly certain that all soapp making has a tendency to redden or yellow. Oil painting cannot be used on fresh plaster, because the canstic lime combines with oil to make an excess of soap which, if the plaster be very wet, will run down the wall together with the paint. But even when the phaster is dry, the wall should be protected by several coats of paint (oil heing entirely omitted or reduced to a minimum), or other interrening material, such as canvas (as explained below), if it is to receive oil pictures; for dry plaster (earhonate of lime, or chaik, with saml) changes some pigments, especially if these be expused to iny dampness, which is almost inevitalle. Chalk with white leald or zine white easily proluces a yellowish white when mixed with oil. Moreover, oil is sajonified by wet chalk. The yellowing of oil is not causel by soap making alone; it is also causel by want of light. The less light there is, the yellower and darker oil-mixed pigments grow with time. The cure - if there be any is sumlight. No more oil should be used than is absolutely necessary - since oil, especially in combination with white learl, is a darkening agent. Sometimes it happens that decorative conditions exact rich, low-toned pictures, and under such circumstances oil would prove an excellent medium, the lowcring of the tone with time

UBSERYATORY AT WILLAMS BAY, WISCONSIN; VIEW FROM THE SOUTHWEST (see the figures in the text and Plate I)

OKTASTYLOS
heing of no import. Frequently the painting is not executed on the wall itself, but on canvas, and alterwarl transferred to the wall. Oceasimally this caluras is attachell to the wall by means of a stretcher. If the canvas be large this method is not to be recommended, owing to the shrimkage and expansion of the canvas. The process callend "maroutlage" is preferable, the painted callvas being laid in a bed of white lead, mixed with boiled oil, dammar varnish, and a drier, previonsly applied to the wall. Even to this process there are oujections. The surtace of the canvas is never stuite so that as the painted plaster would be, and frequently there are awkward joints. Nor can the canvas be applied to concave on convex surtiaces. Moreover, it is probable that the great ammut of oil with which the white lead is mixed will, sooner or later, darken the superimposeel pirture. To olviate this source of danger, oil might be onitted and the white leal mixed with some such meclium as dammar varnish. Glue should not be nseld, if there he any exposure to dampness.

The surface of the finished oil painting is apt to shine in spots. To prevent this, turpentine, or better still, turpentine and wax, should be freely added to the celones with which the piethere is painted, or a final coat of was and turpentine be applied.

> -Frederic Crowninshield.

OKTASTYLOS. An octastyle building (Vitmurius).

OLD COLONIAL ARCHITECTURE. (See Colonial Architecture; Tnited States, Architecture of, \& II.)

OLIVIERI, PIETRO PAOLO ; architect and seulptur ; b. 1555 ; d. 1599.

During the reign of Clement Vlll. (Pune $1592-160$)) he built the great altar of the transept of the church of S. Giovanni in Laterano, Fome. In 1591 he began the church of S. Antrea dlella Yalle, Rome. The nave was completed by (arlo Naterna (see Matema). The fagade is later. Ite made the momment of Gregory NI. in the church of S. Francesca lomana.

Gurlit, Geschichte des Darochistiles in Italim; Ebe, Sisit-Renaissmer.

OMODEO (AMADEO), GIOVANNI ANTONIO ; architect and semptor; b. 1447 ; d. Ang. 17, 1522.

Antonio was born near the Certosa at Pavia, and was attached to the works at that buikling at the age of nineteen with his brother Protasio. Alout 1470-1471 he built the "hapel of the Colleoni at the church of S. Maria Maggiore in Bergano. He designed also the monmments in this chapel to Bart dommeo Colleoni and his daughter Medea. About 1478 he returned to Pavia, and in 1490 succeeted Gninifurte Solari (see Solari, G.) as architeet of the Certosa.
(For origin of this building, see Bernardo da Venezia.) The faceale of the Certosa was carried out by himselt, his associates, Bencletto Briosen (ser Irioseo, B.), the Mantegazza (see Mantegazza), and athout thirty others whose names are known. He was at the same time supervising arehitect of the cathelral of Iaria. From 1499 to 1508, with Giowani Jacope Dokelnono, he directed the work on the central tower of the cathedral of Milan, which they carried to the smmint of the wetagon.

Calvi, Notizie ; Calvi, Lat Fombaziome del Tempio duhla Certoser: Miintz, Renulisance; Perkins, Tusctu sculptors.

ONOFRIO DI LA CAVA; architect.
He huilt the anueduct of Ragusa, Dalmatia, and in 1435 began the Palazzo del Rettore.

OOLITE. Oblitie limestone. A limestone comprosel mainly of small concretionary grammes of lime carbonate, and rescmbling the aggs, or roe, of fish. Example, Imedforl Oulite.

OPAION. A. In Grem-Loman archaology, an opening, as in a roof, for smoke to excape.
B. In Greek architecture, same as Larman, B. This is the Greek terme earresponding to luennerimm in Latin.

OPEN-TIMBERED (alj.). Having the timberwork exposed; laving the woolen framework not concealed by sheathing, plaster, or other covering. (For open-timbered roofs, see Wool Construction, Part I.)

OPERA DEL DUOMO. The workshop of a cathedral ; a tem common in Italian as describing a huileling in which certain ncessary work is or has been done in conncetion with a cathethal, and in which important molels, historical documents, and the like are sometimes preserved.

OPERA HOUSE. A bnilding intended primarily for the public performance of operas, hut hardly to be distinguished architecturally from the Theatre.

OPHITES. Lapis ophites. (See Serpentine.)

OPISTHODOMOS. In Grecian arch:cology, a butk or subortinate room or porch : in two general senses :-
A. Same as Epinars.
B. A smatler division of the whole naos or cella; the treasury; the lack room of the temple, sometimes oprening into the larger room, sometimes uprening only upon a back portico, which is then the puinaos.

OPPEN-OORDT. (See Opjenort.)
OPPENORT (OPPEN-OORDT), GILLES
MARIE ; architect, decorator, anl engraver ; b. July 27,1672 (at Paris) ; 11. March 13, 1742.

Gilles Marie was the son of Canter Johan Opren Gordt from the province of Guildres in Holland, an éléniste (worker in fine wonds) who appears frequently in the accomes of Jules Hardouin-Mansart (see Hardouin-Mansart. J.)

OPSTAL
and a pensionnaire of the king at Rome. Oppenort was directenr geimirul dos butiments ot jucrlins of the Wuke it Orlams, thene regrat. In 1719 he comtiment the construction of the church of S. Sutpice, Paris, whith hat been dis-
 except the purtal, which was athen by sersandoni (see servantoni). He built the great altar of s. Sulpice. Oppenort was une of the chief decorators engaged in teveloping the style assocliated with the reign of Lais IT: His pin(ipat mollectinn uf engravings, Recneil des

 hat been reproluced in facsimile (1 sol . too, latris. 18:8).

Mariette, Alucenturio: (iuilmard, Les matiters
 Lance. Dictiomaire; Lazar", Distionnaire des rues de Puris.

OPSTAL (OBSTAL), GÉRARD VAN sculptor; b. 1604 (at Antwerp, Belgium): il. 1668.

He legan the practice of his profession in Flanders, and was called to France hy Richetien in 1630 . He excented derorative seulpture at the Lourre, Tuileries, Hitel Carmavalet, the purtal of the hospital of La Salpetrière, the Palais Fivale, the Palais de Justice, and the Hotel Lambert, all in Paris. He hell the office of sculptere ordindire des britiments du roi.

Lami. Dictionnaive tos Eicuppteurs françus; Guiffrey, Comptes the Louis ini'.

OPTICAL CORRECTION. In architceture. an expelient resorted to for the purpose of correcting a disagreeable appearanee of certain lines or masses; thus, a perfectly horizontal beam or girder is apt to look as if it saggel downward in the middle, and an optical correction would be the giving to this beam a camber. Many refinements in lesign (see Refinements in Design) in ancient aul medieval architecture have been assumed too hastily to be mere attempts at optical correction, bit many of them are of this character.

OPUS. In Latin, Work, in the sense of labour or the results of labour: the common term nsed in compusition in the molern Eurupean languages for masonry, embroilery, and decorative work of different kinds. Some of these compound terms are taken direct from classical authors, and are applied without a perfect knowledge of the subject to pieces of work left us by antiquity. The piece of work exists, the name is found in a classical author: but it is often uncertain whether our modern applieation of the given name to the given piece of work is accurate. This is peculially the case with the terms borrowed from Vitrusius (1I., 8 , and elsewhere), whose extremely cursory and unletailed descriptions leave his precise meaning uncertain in too many instances. (See the titles

OPUS TECTORIUM

below; see also Classic Architecture; Masonry; Hosaic: Roman hmperial Arehitecture.)
opus alexandrinum. (Sce Mosaic.)
OPUS ANTIQUUM. Sime as Opus m certum.
opus Grecanicum. Work done in the Greck manner: apparently a pavement, as of mosaic, or an inlay of marble, sulpposed to resemble in pattern or in workmanship the work dune ly the Greeks.

OPUS INCERTUM. Roman masonry. as that of walls, the surface of which displays irregularly placell stones of difierent sizes, or even hanis ur other parts of brickwork. The signifieation appears to be limited to the facework of a wall. (See below Opus Reticulatum: Opus Spicatum: Opms Testacemm.)

OPUS INTERRASILE. Incisel omament; made either by cutting away the pattern and leaving the gromd, or by cutting away the ground and learing the pattern in low relief.

OPUS ISODOMUM. Foman masomry done with regular conser. (See Isonlommn.)
opus Latericium (Lateritium).
Masomry of tiles, or taced with tiles. (C'ompare Opms Textacemm.)

OPUS LITHOSTRATUM. (S. Mosaic.) OPUS MUSIVUM. Sane as Mosaie.
OPUS PSEUDISODOMUM. In Roman masomy, a kind of stonework or ashlar in which, while the stones of catch course were alike, they differed from those of other courses in respect to height, leugth, or thiekness, so that while eontimuns horizontal joints were maintained, surlh joints were not necessarily the same distance apart in the wall. (See Opus Inodomum.)

OPUS RETICULATUM. Roman masonry faced with sunared pieces of stone, usually yery small, aul set anglewise so as to cover the face of a wall, as it were with a net of joints erossing each other at right angles and making an angle of forty-five degrees with the perpendienlar. (Compare what is said under Opus lacertum.)
opus sectile. (See llusaic.)
OPUS SIGNINUM. Plaster or stnceo stated to have heen made of fragments of pottery grom up with lime ; sometimes, as in Pompeii, usel for tloor covering, which much resembles Terrazzo Veneziano. The name appears to be derived from the tomn of Signia in Latium.
opus spicatum. Masonry facell with stones or tile which are arranged in herringbone fashion or in a similar pattern, producing sharp points or angles. (See what is said aluwe under Opus Incertmon.) The arljective spicatus. signifying laving spikes or ears as of wheat, ete., is applicable to wher surfaces than those of a wall. Thms, testacen spicate is a pavement laid herringlone fashim.
opus tectorium. In Roman building, a kind of stuceo used to cover walls in three or

OPUS TESSELATUM

four coats, the finishing roat being practically an artificial marble usually polished to a hard surface to receive paintings. The distinction between this and Opus Signimun is not clear (Miklleton).

OPUS TESSELATUM. (See Nusalic.) OPUS TESTACEUM. Nasonry faced with tiles. This term, like uphes lncertum and others given ahove, refers to the face ot a wall moly, the mass or body of the wall mot heing ernsiderel.

OPUS VERMICULATUM. (See Nlustic.) ORANGERIE; ORANGERY. A bilding of the nature of at cold greenlumse (see (rreenhousi) used for the stomge in winter of armamental trees in tubs. The frefuent amploy of arange trees in this way in comertion with publio amd private palaces has cansed the use of the term for permament honses of the sort, which are sometimes of comsilerable architeretural importame. The Luxembourg eolleretion of paintings and sompture is now housed in the orangerie of the palace, which has received some moditications fir the purpose.

ORATORY. A. Same as Domestic Chaped (which see umber Chapel).
b. A small chapel of any sort, more partieularly one intended for solitary devotion ; a place of praver and not a place for litargieal celelration of any sort. An oratory was ulten erected as at mombial. At plares where it was supposen that a miracle hat taken place, or 10pun the site of the cell or other habitation of a saintel persomage, an oratory was ofen raised, anal most of these were extremely simple structures. Sone fow were of architertural inportance. The chapel of a fortress, or at secondary or minor chapel within its walls, is often called an oratury. - I. s.

ORBAIS, JEAN D'; architect.
Hos hame and inage were in the Latyrinth of the cathedral at Reins (destroyed 1779).

ORBAY. FRANÇOIS D' ; architect; b. l63t; 1. 1697.

Sm-in-law and pupil of Levau. He worked muder the direvetion of the latter uron the College Mazarin, now the Palais de l'Mstitut (see Institut), amil later upon the Louvre. He built other important builelings in Paris, and designed the Porte Peyrou at Montpellier (Hérault), a memorial areh, luilt $1690-1710$, in honomr of Lonis XIV., and especially of the Revocation of the Biliet of Nantes.

ORCAGNA (ANDREA DI CIONE) ; painter, musaicist, sculptor, architect, and poct; b. abont 1308 (Viasari) ; d. about I369.

The name Oreagna is an abbreviation for Areagnuolo. Orcagna is, after Giotto (see Criutto), the greatest Florentine master of the fomteenth century. He was, according to Vasari, a pupit of Amirea Pisano (see Aulrea da I'isa), and doubtless came directly under the influence

ORDER

of Giotto. In 136N he appears as a member of the Compugniat di Sim Laca. In 1357 Oragua competed msineressfully with Fran"esoo 'lakenti for the "apitals of the phers at the Dumb, Florence. In the same year he finished the fresons, incluling the paralise, of the Strozai chapel at S. Maria Novella, Florence. Between 1:34 athl 1839 he was capomerrestro of O_{r} S. Nielsele, Florence, and exernted the moly work of anditerture and sonlpture whin "atn with certanty the ascriberl to him, the tabermacle constructer to contain a mirarleWorking pioture ascolitod by Milanesi to Bernare Dote Didi. The tahastrale wats added in 1366 hy the goldanith Piero di Wigliore. Oragna was called in Ia59 to Orvieto, where he worked on the numairs of the libeale of the Duome until Sept. 1 $-1: 36$ - Vasari probahly ronfuses Andrea di ('ione with Benci di Clone (see Benci ili ('iont) when he ascribes the Laggia dei Lanzi to Oreagna. (Sce Talenti, Simonc.) Oreaga died seven or eight years lefore this building was begon.

Karl Frey, Lest!ine dri Lenzi; Castellazzi, on Sien Mirhple: Laixi P’uni, Lmomos di oreitu; Crowe and (avakandle, Inintiny in Italy; Vasari, Milanesi etl. ; Vasmi. Blashtield-Hopkins ed. ; Reynmml, senture Flomentine; Perkins, Tusten Siulptors.

ORCHESTRA. A. Originally, in a Creek theatre, the place orrupied ly the dancers and chorus about the altar of bionysos, and later the cireular space reserved for that furpose between the auditorimm and the proscenium.
B. In the Roman theatre, a semieirentar level space between the stage and the first semicirentar rows of seats, reserved for senators ant other distinguished suectators.
C. In a modern theatre, music hall, and the like, the space reserved for the musicians.
D. In the United States, by extension from the last definition, the main floor of a theatre or similar place of entertamment. A recent substitute for Paryuet. (Compare definition B above.) - I. N. B. S.

ORCHYARDE; architeet.
Urehyarde built Magdalen College, Oxford, which was fommed by Wraynflete, Bishop of Winchester, in 1488.

Ackerman, Mistory of Ocrord Lniversity.

ORDER. Primarily, a row, a course of stones, a rank of similar objects. Hence, in architectural practice, two significations, which, though apparently very different, are akin.
A. In masonry, a collse of stones, one ring of an arch or the like, considered as part of a larger structure. Esipecially, in arcuated buikling, such as the Romanesque of the north of Emrope, one ring of an arch which consists of several rings of clifterent thicknesses, horizontally. In some eases there are three or four such rings, but the arrangement of two is more

ORDER

common. A section through the completed arch in such a case is like at dunble thight of steps, the intrados heing much narrower than the extrados, and the areh thitkening npward or outwand with the ofket from eich order to the ome next above or outside of it.
B. The colnmas with their entahature of any buhbing: but esperially of Greek, (ireero-Foman, or neoclassic architerture. In this sense, the term is often limited to a single shaft with its aupurtenances as above; for the ristinction be-

ORDER

established five onlers, wamely: the three above named: the Tuscan, which to Vitrusins would have seemed a plain form of Doric and nothing more: and the Compusite, which to the Roman Imperial huikders must hare seemed merely one of the many varieties which the Corinthian style had to undergo. Neither the classical nor the pust-Renaissance writers speak of the Grecian

Order, Fig. 1: Grechan Doric; that of the so-callen Temple of Neptene at Pextem.
tween one orler and another is marked by the details of one such unit of a colomnade. The onlers known to Vitruvius (the only writer on architecture of classical times whose works have survived) are three: Doric, by which he means that Foman style of columu and entablature which is found in a few Italian buiddings; Ionic, by which he means the Roman Ionic as seen in buildings of his time, which have now disappeared, but which may have been of a style rery similar to that of Greece; and the Corinthian. The writers of the sixteenth century

Doric, although the buildings at Piestum must hare been known to the Roman buiklers, and although it is very lifferent from the Roman Doric. Modern designers in some modifications of the elassical styles have made many attempts at designing new orlers, and some of these have been effective ; but none has been perpetuated or modified by later designers. (See Cohumar Arehitecture : Cemposite : Corinthian ; Doric: Grecian Architecture : ©reco-Roman Arehitecture: Ionic ; Neoclassie Architecture : Roman Imperial Architecture ; Tuscan Architecture.) - F. S.

ORDER

Colossal Order. One of a lieight greatly beyond that of one story of the building within; especially one of neatly the whole height of the builling. It has often been stated that this derice, manown to antiquity,

ORDER

tiers of windows between the antique columns and hencath the original contablature. This is at hasty conclusion, as examples existed at an earlier epoch. An carly instance is in the two similar fronts of the museum buildings on the

Order: Grecian Durif; that of the Partienon: having the Entabfiture mufh less high and the Echinus much less spieading, in Prupurtion, than thuse at Paestum.
orignated in the modern Dogana (eustom honse) of the city of Rome, which was huilt late in the seventeenth century on the fommaltions of an aucient tenple, generally called Temple of Neptune, and which has its three

Campidoglio (see Cipitoline Museum, under Muscum ; Palate of the Conservators) ; and the largest one known, that of S . Peter's churel at Rome, is harlly later ($1550-1580$). It was much used in the eighteenth century.

ORDER

by extension, an order oceupying nearly the whole height of a one-story building, if large and high.

Persian Order. One distingnished by the use of draped male statues in the place of columns. The term is fomm in Vitruvius, I., I, and the author explains that the victory of the

ORGAN

proportions คu architecture; Normand, Noureau purallèle des urdres d'architecture des Gipees, des liomedins et des autems morlomes; Mauch (German translation of preceding).

ORDER ABOVE ORDER. (See Superimposition.) ORGAGNIA. (See Oreagna.)

ORGAN. A musieal instrument in which sound is protuced by the vibration of the air in pipes of wood and metal, and which is played by the keys of a keyboard opening and shutting valres of these pipes. The simplest form of this is the instrument earried in the land or on

Order, in Sense A. Arch of Two Orders, each having its Carved Hood Moclioing, the Toussules of the Steferiur Order of Two Culuyrs. Prisa Cathedral.
the left arm, and played on by the fugers of the right hand, as often seen in ancient paintings. The churelu organ, as dereloped in modern times, is a group of instruments rather than a single one, and each group of pipes and stops is often called

Lacedemonians over the Persians at Platæa led to the erection (probably at Sparta) of a building called the Persian portico, the roof being supported by richly costumed statues of the barbarians. (See Atlantes; Caryatid; Telamon.)

Chipiez. Histoire critique des arigines et de la formation des ordres Giress; Fauré, Théorie des
an organ, separately, and usually with some distinctive epithet, as the swell organ, the solo organ, and the like, the term "great organ" being given to the principal one of these groups, which is generally placed in the middle. The architectural arrangement of a chureh organ is usually made by plaeing it in a large wormen case with openings in all its siles aml.,

ORGAN CHAMBER

open at top; but the attempt to fit an orgen into such a case is uften accompanied ly a great anount of menecessary work, the putting up of sham pipes to form symmetrical gromps with those real ones which are visible, and the completion of a costly edifice, for the greater part of which there is no utility. Another plan is to arrange the different groups in an organ chamber or organ loft, with strict, or vary close, reference to their musical purpose and their connection with the keybourd, and partially to conceal the whole by a screen, which may be as lecorative as resired and wholly in accordance with the arehitecture of the church. This sorecn, if low, nead not even be pierced or opened ; or it may fill the whole openings of an archway, or the like, between the organ chamber and the church proper with tracery and piered carved work. (See the tollowing terms.) - R. S.

ORGAN CHAMBER. That room or space in which the organ is plitced ; often, in a chmreh, a separate structure between the choir aml a transept, or beside the choir, with a large oper archway betweon. It is often heetter, for the musical eflect, that the organ should stand almost free under the roof of the chureh, in which case the space screcned off to hold the actual instmment is hardly called the organ chamber. (See Orgatn: Organ (iallery.)

ORGAN GALLERY. In many churehes, where the organ is placed high above the floor, an upper floor with a purapet, or screen, fronting toward the church, and arranged to rewive the organ. It is often extemed so as to affom plape tor the singers as well.

ORGANI, ANDREA DEGLI (DA MO DENA) ; architert.

The first architect (inyergere) employed on the eathedral of Nilan (begun 1386). His mame appears in a memorandum of Jan. 15 , 1387. April 13 he is mentioned as ingermerio domini (ducal engincer). In October of this year he was appointel to superintend the lahomrers at the eathedral. In a letter dated Jan. 3, I 400 , of the Duke Gian Galeazzo Visconti, he is mentioned as the father of Filippino degli Organi (see Organi, F. Alegli).

Boito, Dromar di Milano: Amuali atrl Duomo.
ORGANI, FILIPPINO DEGLI (DA MODENA) ; architect aml seulptor ; (1. Narch, 1450. Sim of Andrea degli Organi (see Organi, A. (legli). He is first mentioned in a letter of the Duke Gian Galeazzo Yisconti, dated Jan. 3, It400. He was at this time appointed to a position on the furce employed in the construction of the eathedral of Milan, and Oct. 12,1404 , became a regular architect (ingegneve) moler the direction of Mareo da Corona. Sept. 16, I 410 , he served on the commission which determined the form of the vanlting and fying buttresses. The upper part of the cathedral was buitt from the drawings which he male

ORIENTATION

at this time (secrurlum desigurimentum magistri Pilippuini). In $1+17$ Filippino berame chief architeet, and retained that position until 1448. He made the monument of llaru ('arelli (now in the nare of the eathedral), probably with the assistance of Jacopinu Tralate.

Boito, Inomo di Milano; tumuli del Iheomo.
ORGAN LOFT, Sime as Organ (iallery.
ORGAN SCREEN. 1. In Englame, rarcly, a Roorl sereen upon which the organ lats been plated.
13. An ornamental screen of any sort separating the organ chamber from the body of the church. (See Organ.)

ORIEL. A bay window ; especially, one in an uper story, and uverhanging; caried on brackets or corbels, or upon an engaged column or pier, from which usually is rorbelled structure is carriel un, to the floor of the oricl. This distinction is the one usually made ; but in older writers the worl is nsel for hay windows eren of the largest and most massive sort. (Cuts, culs. 35, 36.)

ORIENTATION. Primarily, the state of one who faces, or of a building which is turned, toward the east ; hence, in architecture : -

1. The placing of churches so that the priest at the altar may face the east while he is celebrating Mass. It is thought that in the early days of the Chmeh the priest, in some parts of the Foman Empire, stural on the other side of the altar from the worshippers, and that therefore the bouly of the church was placell cast of the sanetuary ; but that when the priest's position was changed so that he turned his betck to the worshiplers, then the church also was changed, with its main entrance toward the west aml its sanctuary towald the east. (See Apse: Chancel ; Chevet; C'hil' ; Sanctuary.) The practice of orientation in churches is ly no means universal ; thus, in Italy, it is much less ohserved than in the north of Europe. The great church of S. Peter's at Fome, built upon the site of the early hasilica, has its marthex at the east end and its sametuary at the west.
B. The placing of any builling with reference, or apparent reference, to any special juint of the eompass ; thus, the Creek temples have an orientation which imolves the placing of the main entrance towarl the east, or approximately so; the larger pyramids of Egypt have their entrances carefully paced in a given special direction, and it is thought that in all these cases the rising point of a certain star, or some as yet manown and perhafs misumberatmul neressity, has determined these forms of orientation. In this sense the tem is used rem loosely, as when it is said that the huilders of Egyptian temples had little rive for exact orientation, i.e. placer their buiblings on axes not garallel with me another. (See Axis, B_{3}; En Axe, unler Axi.)

Orikl at Eist Esid of the Chapel, Phudhue Castlef,

Oeiel: See the Plan, above.

Obiel, front uf a House in Bruges; c. 1515.

Oriel formlig Chapel; Oli Tuw Hall, Prague, Buhemia

ORILLON. S'ume as Crosset.

ORLE ; ORLET. A narruw band, or series of small members, or units, taking the form of a border, hence a fillet forming an ulging or border. Specifically, a fillet beneath the orulo of a capital. (Sce ('incture.)

ORNAMENT. That whirh is ulded to a structure of any kind fur hecorative purposes alone. The torm is distinguished from Deeoration (see that term and Decorative Art), berause denoting something wholly abart from the neessary structure, which structure may be highly decorative,

Orviament in Luw Relifer, dothic Sivlpture. but not ornamental.

Sompture in the form of Basrelicf (see that term ; also Arabesque; Diaper: Relief), painting in the form of patterns when used as a border, diaper, frieze, or the like (see thone telms), mouldings and modifications of mouhtings (see Billet Mouking; Nailheal Monlling ; Dentil; Venetian Dentil), are all spoken of as crnament, rather in contradistinetion to representative statuary and painting. Thus, the statnes sct ufwn the geison and showing against the tympamum of a Croce temple, or those upon the Bernini colonnade at Rome, slowing against the sky, are hardly ealled omament; but the half figures in an arabestue, howerer realistic in treatment, are parts of a piece of omament. - R. S.

Orxament: English RomanesQee Sculptrre: The Space or an ArqADe Filded altwrnately with a Figure ash a Pasel bf Scroll-work.

ORSENIGO, SIMONE DA. (See Simone da Orseniga.)

ORSINI, GIORGIO (DA SEBENICO); architect and sculptor.

URNAMENT CaRVED in Rehief; Betuursa, sirla; डtth Centery.
he superseded Antonio di Pietro Paulo (see Antonio di Pietro Panlo) as architect of the great eathedral of Sehenico, Dabmatia (see Dalmatia and illustration). This bullding is an important example of the transition from the Guthic style to the Renaissanee. In 1444 Orsini built a ehapel in the churel of s. hainerio at Spalato, Dalmatia, anul in 1448 the Guthic altar of S. Anastasio in the catheniral of that eity. Between 145 I and 1459 he built the Loggia dei Mereanti and the tarade of S . Francesco della Scala at Ancona in Italy. Jime, 1464 , he was assuciatell with Michelozzo Michelozzi (see Michelozzi) in the reconstruction of the Talazzo del Rettore at Ragusa. In Itio Giorgio was sent on a special mission to Rome. In his contract with the cathedral anthorities at Sebenico he was bomd to do some of the carving with his own hamd. The door of his homse at Selrenico, witls the hear of the Orsini carved on the lintel, is still in cxistence.
Pietro Gianuzzi, Cioropiod de Sebenien; Fosca, Cattedrule di sibenicu; Jackson, Delmatia.

ORTHOSTYLE. Arranged in a straight ruw, as columns; rare, but usel in such phrases as an orthostyle plan, or the like.

OSSATURE. In French, the skeleton or framework of any structure ; hence, in English;
such a framework when of a more elaborate hind, as the steel cage construetion of modern buildings.

OSSUARY. A phace for the deposit and preservation of the bones of the deal ; espeeially a building for the safe keeping of bones after the resiccation of the flesh, or of such as are foum in cxalating new graves in a temetery. (Sce Charnel House.)

(overdour Panel; Modery Parisian Wrork, in Lotis XIV.

OVERHANG
OURADOU, MAURICE AUGUSTIN
GABRIEL; architect; b. July 24, 18:2 (at Paris) ; 11. June 27,1884 .

Ourator was a pupil of Tiollet-le-Duc (see Tiollet-le-Duc), whuse danghter he married. He entered the Ecole des Beaux Arts in 1845. After leaving the schoul he was appointel inspector of the works at the eathedral of Paris and of the château of Pierrefonds. He was made arehitect of the diocese of Chailuns in assuciation with Eugène Millet (see Millet), architecte des momments historiques in 1865-1870, and architect of the chatem of Pierrefmis in 1880.

Bauchal, Dictionnaire.
OUTBOND (alj.). Bonded, or fornuing a boud, along the face of a wall; as in the case of stretchers. Composed largely or entirely of stretchers.

OUT OF WIND. (See unleı Winl.)

OUTPORCH. A porch or outer restibule; a term having no special architectural significance.

OUTSHOT; OUTSHUT. Oricinally a shed or small wing built against one end of a house, indepembently, aml, in construetion, not forming part of the general framing of the house. In British local usage any small extension.
out to out. Same as Over All.

OUTWINDOW. A projecting loggia, or the like. (Compare biy Window: Oriel.)

OVE. Same as Orum.
OVER ALL (adjectival and ailverbial phrase). Between the edges or bommaries: from the extreme limit at one sile to the correspmuling point at the uther: esprecially between two imagimary parallel lines, or phanes, so dise1,osed as exactly to include all projections on two oplosite faces or edges. Said of measurements

OSTENSORE, LUCIANO. (See Luciano ta Laurana.)

OUBLIETTE. In medieval times, a pit or shaft comstuncted or excavated in the masomry or foundation of a castle, or similar Imiling, and in which prisoners were comfinel as in the most hopeless form of dungeon, or into which their borlies were thrown.

OUNDY. Wave, or, by extension, zigzag; sail of a moulding, a string course, or the like.
and dimensions.
OVERDOOR (arljectival term). Ocenpring a space above a doorway, or above a door frame, eren when no dorway is opened within it. The pheture panel or the like which fills such a space is known as an orerdoor picture, etc., the term being a modification of the French dessus de porte. (Sce Uremmatel.) (Cuts, cals. 41, 42: 43.)

OVERHANG. The projection of part of a strueture beyond the portion below; the exten-

Plan

OYERDOOR WINDOW; PALAIS DE JUSTICE, PARIS

OVERMANTEL

sion of an inclined strueture or member, outside of its base, or any fower portion : the amoment hy which any part departs from a given rertical line or plane. (See Leaning Tower.)

Oyernoor Paneifitag ayd Frontos, forming an Attic; 16th Cextury: Torpa, Sweden.
oVERMANTEL (adjectival term). Occupying the slace aluve a mantelshelf, or the front of a chimney-breast of any torm and above the open fireplace. Overmantel mirrors, pictures, panels, and the like are spoken of ; the term being imitated from the French clessus de cheminée. (See Overdoor.)

OVOLO. A convex rounded moulling, quarter round in section, or approximating that form.

OVUM (pl. ora). The rounded member, usually known as an egg, between the darts of au egg and anchor moulding.

OXEYE. A round, or more enmmonly, an oral wimlow. (Compare (Eil de Beuf.)
oyblet. Same as Eyelet.

P

PACE. A part of a floor slightly raised ahore the general level ; a dais; a broad step or slightly raised space, as about a tomb, attar, or chmney piece, or forming a landing in a stairease. The last meaning appears to be the most specific in modern usage, and in this sense is commonly accepted as synonymons with space. The latter term would seem to be more properly applied to the area at the turningplace of a stair which may be oeeupied by a landing, - or pace, - or by winders; and it is in this sense that the word space is used

PAGOT

by Mowat. Callet also Footpace, although this appears to be obsolescent. (See Landing.)

Halfpace. A. A landing where one flight of stairs stops and another legins, the two flights being on the same side of the phatform of the landing. A person going up such a stair reverses the direction of his horizontal progress as he reaches and again leaves the landing, making a turn of 180°. Sueh a landing is, therefore, usually about twice as long as it is wide, and extends the full width of the staircase. (See following subtitles.)
B. A raisel platform (see Hathrace).

Half Quarterpace. A landing corresponding to one of the two triangular spaces formed by cutting a quarterpace diagonally at 45°, the other half being commonly filled with winders, so that the stairs will still make a quarter turn as deseribed below.

Quarterpace. A landing in a stairease between two Hights which make a turn of 90°. It is, therefore, about one half the size of a half pace, and commonly abont square.
—D. N. B. S.

PACKING. Small stones embelded in mortar, used to fill up the interstices between the larger stones in rubble work.

PAD STONE. A stone template such as is used for snpporting, in a wall, the end of a girter or of a rouf truss.

PADUA, JOHANNES DE. (See John of Patha.)

PRONIOS OF MENDE (in Thrace); sculptor.

According to Pansanias, he was seulptor of the statues of the eastern pediment of the temple of Zeus at Olympia, fragments of which have been found. His statue of Nike (Vietory), described by Pausanias, has also been found in place.

Curtius and Adler, Olympia; Pausanias, Frazer's translation.

PAGNO DI LAPO. (See Portigiani.)
PAGODA. A shrinelike building, often of great size, in the religious architecture of Hindustan, Ceylon, Burmah, Siam, China, and lands oceupied by Malays, usually in the form of a tower as in China, or of a lofty stepped, pyramidal structure, as, generally, in India. The term is of disputed etymology. (Compare Dagoba ; Paoh-Tah ; see, also, Intia, Architecture of.)

PAGOT, FRANCOIS NARCISSE; architect; b. Aug. 31, 1780; d. Dee. 4, 184.

A pupil of De la Barre (see Barre), and the École des Beaur Arts. In 1803 he won the Grend Prix de Rome in arehitecture. Returning from Rome, he settlet at Orleans, beeame architect of that city, ant professor in the local sckool of Architecture. He built at orléas the Palais de Justice, the grain market, an abattoir (I823), the library, an insane asylum

PLATE III

J.IGODA

That of the temple of Horiuji, in Japan. This and the IJomlo are the obly early buildings in this establishment. They are of the twelfth century
A.r. The lowest roof is a modern addition. For the construction of this building, see cuts under Japan.
(1828), laid out the hotanical garden, and finished the purtal of the cathedral.

Herlnison, Artistes Orléanais; Lance, Dictionnaire.

PAILLETTE. In decorative work, a hit of shining foil used in picking out rclief work to obtain a jewelled effect in comnection with gilding or other metallic applications. (Cumpare I'aillon.)

PAILLON. Bright metallic foil used in decoration to show through enamelling or through a glazing with transparent colonr, so as to modify or emphasize its brilliancy, and bring it into harmony with the general scheme of colour. The term is also extented to gilding, or to parcel-gitling on wood, papier-maché, etc., when the gilding is to be glazed over with transparent colours. (Compare Paillette.)

PAI-LOO. In Chinese architecture, a decorative gateway. The design of these gateways is interesting, becanse of the general avoidance of the arch, even when the building is massive and on a large seale. (Compare Torii.)

PAINT (n.). Any dry roboring matter, material, or pigment, mixel with a liquil vehicle, so as to be readily applied with a brush to any surface to protect it from the weather or to give it any desirel colour. It differs from a rlye or slain in that while the latter is intemical to sink into the wool or other surface to whith it is applied, the former is devised to give it a superficial non-transparent coating, more or less impermeable. To this end paint is applied in several successive coats, put on over a puiming coat, which latter is intenden to prevent the other coats from sinking into the substance of the material covered.

For woorlwork and other parts of a builling, the dry paint is nearly always mixed with linseed oil ; and this mixture may be thinned with turpentine, which acts on the oil as a solvent. The more oil there is the morc gloss there is in the finisheal work: hence it is common to use almost pure turpentine for flatted or mat work. White carbonate of lead forms the loody of most paint, pure for white work, mixed with other powdered pigments as the desirel culonr is different from white; a darker pigment is snmetimes used pure, or a misture of two. There are varions fireproof paints, waterproof paints, luminous paints, etc. ; lout the essential function of all of them is, first, practical, to protect the material covered from the effects of exposure: and second, decorative, to give it colour or colours to enhance its resthetic value as an architectural feature. (See Oil Painting; Painting.) - H. V. B.
painted glass. (See Window.)
PAINTING. The work of covering any surface with colours as described under Paint, or with pigments mixed with water and gluc, called water colour, kalsomine, or distemper.

PALACE

The term frequently iuclules work done with a transparent glaze made with shellise or varnish; the treating of wooll with shellac and oil, or with wax and other materials in sucerssive coats, rubbed duwn between with [mien-stone and oil, to smooth and polish their strfaces and bring ont their beanty of grain and natural colvor; and the staining of wool surfaces without concealing the grain, as well as gilhing or otherwise overlaying them with metallic substanres.

Painting should supplement form with colour, making every part of a building æsthetically more fit for its various service of luxury or use. It can, to a great extent, correct crrors of form and proportion by a judicious choice and comparison of colours. It can appear to lower a room which is too high, or lieighten a room which is too low ; on the other hand, it call diminish or even destroy an architectural effect by want of sympathy with it. (See Mural Painting ; Encaustic ; Freseo ; Fresco Secco; Gilding: Intonaco; Katsomine; Oil Painting; Polish; Staining; Water Colour.)

- H. Г. B.

PAINTING ROOM. A studio, atelier, or workshop for the use of a painter as an artist. Experience has shown that the local romditions best suited to his work are a room, large and lofty, to accommodate large cunvases, and tc give ample space for the furniture, models, draperies, and other equipments essential to the practice of the art; it should he most abmorlantly lighted, mainly from the north, - in north latitude, - so as to give high amd low light, governed by screens and shutters; it shonld have the largest pussible extent of clear wall space, and, if pussible, galleries or lofts overlooking the area of the room.

PAIR (I.). As used of a staircase, a flight or series of flights from one floor to the next; perhaps derived from a furmer custom of habitnally constructing that portion of a staircasc in a pair of flights, returning on each other.

PAIR (II.). In mechanies, two forces, considered collectively, which have different points of application and which are equal, parallel, and act in the same lirection. (Compme Couple.)

PALA. (In Italian, anything flat and thin, as the blade of an oar. In ectlesintogy, a chalice cover or chalice veil.) An altarpiece. (See the subtitle.)

PALA D' ORO. The altarpiece, or retable, of S. Mark's church at Venice : a maguificent work in silver gilt, jewelled and cnamelled; tenth century and later.
PALACE. Primarily, the ofticial residence of any high dignitary ; hence, freduently the term is applied to a residence of exceptional magnificence and extent.
The name comes from the Palatium, the Palatine Hill at Rome, which term was ex-

PALACE OF CONSERVATORS

tented to the imperial residence during the life of Angustus. (For the residences of Italy, commonly callod palares, see Palazzo: see also Châtean; Hôtul ; Palater.)

PALACE OF THE CONSERVATORS. At limme, on the square of the C'ampidoglio: built by Jichelangelo and his suceessors. (See Cumpidoglio.)

PALACE OF THE SENATOR. At Rome (See ('ampinduclio.)

PALæO CHRISTIAN. Belonging to the carly ages of the Cloristian church. (See Latin Architerture.)

PALIASTRA. In Greek archæology, and later among the Romans, a public place appro-

PALAIS DE JUSTICE

still remains. It was greatly enlarged at a later time, and the front, on the Quai d'Orsay, with perliment and dodecastyle portico, was not fimished until 1807 . Since 1790 it has been mostly used for public purposes, and for the greater part of that time the second Chamber of the National Legislature (now the Chambre des Députios) has occupied it.

PALAIS DE JUSTICE. In France, a buiddiug devoted to law courts, judges' chambers, and the like, and usnally containing a large waiting room for the public (see Salle des Pas-Perdus). The Palais de Justice of Paris consists of a great mass of buihlings of many dates, which occupy that part of the Ile de la

Palais de Jéstice. Hîrre, Plan.
Three court rooms open out of the great vestibule of entrance. The corridors are lighted from the areat courts.
priated to athletic exercises or to preparing and traming fur the public games.

PALAIS. In French, a stately building: used in two general semses:-
A. A palace ; that is, the otticial residence of a sorereign, or the usual and most important residence of a prince of the blood or other great nobleman.
B. A building for the public serrice, especially when of size and arrhitectural importance.

PALAIS BOURBON. In Paris, on the south bank of the Seine: begun in $17-2.2$ as a private hôtel, the eutrance gateway of which, on the Rue de l'Université, built by Girardini,

Cité which is between the Pont Neuf and the Pont an Change, and on the soutla bank of the principal arm of the Seine. The ancient Conciergerie dorms a part of it : the round towers and the clock tower (Tour de l'Horloge), on the river, are of the fourteenth century, but they have been frecuently rearranged within. The Sainte-Chapelle is enclosed in one of the courts. The main huilding, having a western frout on the Place Dauphine, and a court and main entrance at the east end, was built by the architect Joseph Louis Duc, and was finished in 1869 ; it is one of the most successful pieces of modern architecture in Europe, and contains some important monuments. -R. S.

PALAZZO

Palazzo Riccarli, in Florence. originally, and for two loundred years, the I'alazzo Medici, and the chief home of the princes of that family. The building is from the design of Nichelozzo Michelozzi, and is one of the ear'liest buildings of the

Renaissance. It may be compared with the plate of the Pazzi Chapel (Neoclassic Architecture) for the presence in one case and the absence in the other of classical details. Three-fitths of the building is of about 1440 , the part on the right is later.

PALAIS DE L'ÉLYSÉE. (S'ee Élysée.)
PALAIS ROYAL. A mass of buiklings in Paris, immerliately north of the Lomre, front-

1787, and these form nu part of the Palais Royal.

PALAZzO. In ltalian cities, a large sepa- ing southward on the Place du P'alais Reyral, ant bonnded on the east and west by the Rue de Rieliclien and the Rue de Talois. The first strneture wis completed in 16:5 by the great Cardinalde Richelieu, and it was alterwarl much enlarged. Since 1672 the fuidting has always been the property of the fimily of Orléans, except during the years when it was hekd by the revolutionary government. The build-

Palazzu: Plan of the Palazzo Strozzi, Florence. ing above dexcribed is the palace proper, that \mid rate clwelling, a term nearly eorresponting to the is to say, all that stands southwad of the (ialerie dorléans. The buiklings which surround

French "hotel." The Italian term signifies, also, palace, in the strict sense, but as userl in Eng-

the great garden (nearly 800 feet long) were \mid lish it has only the meaning abore given; thus, huilt for wholly commereial reasons by the Due d'Orlénns, Philippe Egalité, between 1781 and we speak of the Palazzo Farnese, bit not of the Quirinal, or the Tatiean, or the Lateran, as a

PALAZZO COMMUNALE

palazzo. The cities of Italy are alomed by so many noble buildings, private palazzi of the thirteenth and fellowing centuries, that it is impracticable to give the names eren of those most important or most erlebrated; moreover, it is rare to speak of a prazazo hy its mame without also naming the city in which it stands. - R. S.

PALLADIAN ARCHITECTURE
Palazzo Commmade, aud sometimes by special names, as Palazzo Yecrlio.

Paleo Christian. Same as Patioo Christian.

Palestra. Same as Palestra.
PALIMPSEST. A. A parchment from which one writing has been remored to give place to another ; hence, the new writing or manuscript upon such a parchment.
B. By extension from the preceding meaning, an ancient inscribed slab or mediceral brass, which has been turned and engraved with new inscriptions and derices on the other side.
PALING. A fence formed of similar stakes or pickets set vertically, generally with small equal interspaces, to rails supported by posts; i picket fence.
PALISADE. A barrier composed of long stakes driven into the eartl close together, sometimes connected by horizontal beams, or bound by osiers interwoven, to form a defenceagainst attack, or for other purposes of secure enclosure. Palisades have atways been used in warfare as aids to permanent defences, as well as for temporary de-

PALAZzo COMMUNALE. In Italy, the building coutaining public othices, and the like, of a city or town. (See Palazzo l'ublico.)
palazzo publico. In Italy, a huilding containing public offices, as of a municipality or a larger community. These are known sometimes as Broletto or Palazzo Signoria, or
fences, as in comection with fortified camps, and the like.

Palladian architecture. Relating to the art or style of Palladio. This work belonged to the period of decline in Italian neoclassic architecture, when classic formality and the punctilious observance of rules were

PALLADIAN ARCHITECTURE

The Palazzo Tiene at Vicenza. This is one of the master works of Andrea Pallatio, its demerits being merely those attonding the wide disergence between utility and design; for the building is
arranged with almost a single eye to the exterior effect, and this effect is prodnced with stucco laid upon brickwork in close imitation of cut stone. It is a most powerful abstract design.

PALLADIO

taking the plare of the grave, freerom, and life which chatacterizes the earlier periond. The classicisism of Palladio was noted for a ecertain cold and correct purity of form. A favomite motive of his, known as the Pallanlian Motive, was to use a miuor and major order of columss in the same compsition, the former bring used to support the arches which wecoured between the latter, as in his two-storied arcale abont the medieval hasilica of Viemza. His writings hat the gool fortune to le considered the most anthoritative exposition of the principles of classic architecture in the seventeenth and eightement centuries thronghout Europe, and his momuments were models for the classic art of that period ; the name Palladian, therefore, is descriptive of that variety of neodlassic architecture distinguished for cold, inelastic, and mimaginative, lut correct, elegant, and studied classicism. It is generally held as true that the English classical revivalists followed Palladio, while the Frenth were rather under the influenee of Vi gnola. There has been some attempt as late as the last deearle of the nineteenth century to revive in England the stndy of Palladian examplas. (Sice Linglam, Architerture of.) Sie also Inigo Jones and Wren; or The Rise uml Decline of Monlem Architecture in Enctund, by W. J. Loftie (New York, 1893). (See Classicismo ; Italy, Architecture of: Neoclassic Areliitecture ; Pseudoelassic Architecture.)
-Н. Т. І.

PALLADIO, ANDREA ; arehitect; b. about 1518; (d. August, 1580.

Pallatio is supposed to have been the son of a carpenter named Pietro, employed by the scholar and poet, Gian Giorgio Trissino. He beeame the protégé of 'Trissino, who gave him the name Palladio (from Padlas, croldess of wisdonn), and educated him as an arclitect. Pallalio's first work wats the Palazzo Goudi at Lone lo in 1510. He visited Rome first with Tissino in 154, and again in 154. In 1545 he presented four designs for the reconstruction of the basilic:a of Ticenza. Work was begm from his model in 1549 . Palladio built the Palazzo Pisami at Bagnolo, near Vicenza ; the Palazzo Porto, now Colleoni, in Vieenza, 1552; the Palazzo Thime (Banea pepolare), Vieenza, 1556, dated ; the Palazzo Foscari on the Brenta before 1561; the Palazzo Pisani, ucar Padua, 1565 ; the famons Palazzo Chierieati, Vicenza, before 1507 ; the Palazzo Valmarana, Virenza, after 1566 ; and the Palazzo Porto Barbarano, Vienza, after 15i0. The famons villa, callen the Lotoml:, which he built for Paolo Almerico, near Vieenza, was begin before 1570 and finisher about 1591. The facale of the clurch of S. Francesen alla Vigna (Venice) was designed by him in 1562. In 1561 he built the cloister of the Convento della Carita (now the Acculemia, Venice), on the plan of a Roman house.

PAMPRE

It was nearly destroyed liy fire in 1650. Pallatio built the refertory of the church of S . (iiorgio Maggiore, Venice, athont 1560, and in 1565 the church itself with its fine fagade. In 1570 he designed the Clisister of the same building. He began the chureh of the Redentore, Venice, in 1576 (tinished 1592). In the third book of his Architellume is given a splendid design for a bridge sumusent to have been intended fior the fiaitu, Venice. In 1501 the loggia of the Piazza Marginre, Vitenza, was hegun from lis dexigns. In Fehmary, 1580, he began the celebrated Teatro Olimpieo, which was finished atter his death ly his son Silla and Vinerenzu Scanozzi (see Scamozzi, V.). Pallanlio's treatise on architerture was first published complete, in Venice, in 1570, with the title I quuttro Libri dell Acrhitettura. Many of his drawings were published by Lorl Burlington (op). eit.) (see Boyle, Re.) in 1730, and those on the Roman baths ly Bertutti Scamozzi (see Scamozzi, O. B.). A collection of his buillings was published by Rertotti Scamozzi in 1766 (11p. cit.). (See l'alladian Architecture.)

Magrini, Memorie; Zanclla, T"ista; Gualdus, Vite; Temanza, I'ite; Buito, Imerere Palladio: Ferrari, Pellation I'enezita; Melani, I'thladio: Lowl Burlington, Fablumbe Iutiche; O. Bertotti S'amozzi, Fulbirithe di P'ellmlio; Montenari, Troutro Olimpico; Rigato, Ossrrazimui sopra I'allulio; liondelet, lout de liialto.

PALMATE. Having fanlike lobes or leaves, snch as characterized the Greek anthemion or honeysuckle, and its derivations in conventional architectural decoration.

PaLmette. In Greek and Roman architecture, a conventional ornament, frequent in friezes, of which the most characteristic feature is an erect leaf divided into lobes, like a fan or palm leaf; a kind of anthemion. It was either carved or painted. The motive is supposed to have been developel from Oriental origins.

PALUSTRE, LÉON ; arelneologist aud historian of art ; b. Feb. 4, 1838; d. 1894.

He sueceeded Areisse de Cammont as director of the Société framretise d^{\prime} 'Archaologie, but abandoned this position to devote himself entirely to the stuly of the French Renaissance. lis great work, La Renaissance en France, wias published, Vol, I. in 1879, Vol. II. in 1881, and Yol. IlI, in 1885 . It was never fisished. l'alustre pullished many works on archienlogy and the history of French art.

Ch. Lncas in Construction Modrme, Nov. 3. $18!4$.

PAMPRE. A rumning undercut ornanent, generally in the form of a vine with grapes, used to fill eavettos and other contimons hollows in a group, of mouldings, as in an arehivolt, in the circumvolutions of a twisted colunn, or wherever great luxury of decoration was required.

PAN

PAN. A. A wall ptate (see Pon).
b. A part, larger or smaller, of an exterior wall ; in half-timbered work in England, especially one of those spaces which are left between the upright and horizontal timbers, and which are tilled either with plastering on laths, or by rongh brickwork, or the like. (Compare the l'reneh use of the word I'en de bois and l'un de Fer in the sense of one considerable part of the framing of vertieal walls in woul or iron ; alsu Pum de $1 / u$, ly which is meant generally a piece of any wall from bascment to cornice : atso l'en coune, which means a piece of wall forming a cut off corner of a luilding or a room. Compare also Bay; P'anel, the general definition.)

PANACHE (n.). The triangle-like surfuce of a prententive.

PANDROSEION. Same as Pandrosium.
PANDROSIUM. A building or enclosure on the Acropolis of Athens, sacred to the Nymph Pandrosos. It is generally almitted that this

Panel trith Ieraldic Escutcheon: Monument of John Laxgston Chyersfield, BuckišgHAMSHIRE, A.D. $1+5 \%$.
was rery near to the Erechthem (which see). The name is often applied to the sonth portico of the Erechthemm (see Caryatic) ; but there is not suffieient anthority for this attribution.

PANE. Any part or dirision of the elevation of a building having a plane surface and more or less definite or symmetrical ontlines or boundaries. More especially as follows : -
A. Same as l'anel, but applied to larger areas, as to one sille or face of a spire or tower.
B. A plate of glass, generally reetangular, set in a window, door, or the like.

PANEL. A. Primarily, a small plane surface usually smek helow the surrounding surface ; the term is akin to Pane, and both are derived from the term for a small picee of cloth, or the like. The arehitectural mancl is generally rectangular, but in some styles, wal, or circular, or irregular panels are used. (Compare Caisson, II.; Lacmar ; Tympanmm.) The sunken surface of the panel is nften charged with ornament. (See Paised Panel, below.)

PANEL

B. In carpentry and joinery, a thin piece of houd, generally rectangnlar, held at the edges by a frame in such a mamer that it is free to

Panel with Carven Diaper, and Serondary or Inner Pasel with Gothic Traceriv; c. 1500.
shrink or swell, while prevented from warping by the frame. Such a panel is nearly always sunk below the surface of the frame lout may be flush with, or project beyond it. - 1). N. B. S.

PaNel: Late Tunor Trafery with Carted Heraldic Bearings or Cognizancen; Layer Marsey Hill; c. 1530.

Fielded Panel. Same as Raised Pancl.
Flush Panel. One whose plane surface is flush, i.e., in the same plane, witl the stiles and rails whieh frame it, and which are often beaded

PANEL BACK

with a Hush heal on the eetges next the panel to mask the joint. Often used in tahle tops, and the like.

Linen Panel. One earved with the Linen Pattern.

Lying Panel. One which is placed with its greater dimension horizontal.

Raised Panel. Whe of which the face hats a raisel plane projecting beymb the edges of the panel, and sometimes beyml the frame or other surroumling surtace.

Sunk Panel. Une of which the face is recessed from the frame or other surrounding surfiace. - D. N. B. 心.

Linen Pinel; Layer Marify Hall, Eseex, ENGLAND; UHCA 192才).

PANEL BACK. Same as Panelled Back.
PANEL BOARD. A drawing loand of the kind used by water colour draftsmen, by whicde the paper can le hehl that and in phace without the tronlle of saturating it with water and so straining it tight. The bond is fitted with a frame which "an he removel at pleasure, and which, when fitted into plater, will hold firms. the elges of the paper which corers the panel. (Called alsu Frame Bomel.)

PANELLED BACK. The havk lining when panellerl: as of a wimlow latek (which see: see also Back, D).

PANELLING. 1 . The making of a strueture in carpentry or joinery ly means of frames holding panels. (Sec Panel, I.)
B. The breaking up of a surface by pancls.
C. The structure in suface resulting from the processes 1 or B; thus, at room may he lined with oak panelling, of a plaster or stone surface may be lroken up by pauelling. (See Caisson, II.; Wainscot.)

PANTHEON

PANEL STRIP. A narrow biece of metal, or monliled wool, or batten, to cover a joint between two slemithing boatros, so that several will thereby form pancls; or one between a style amb a panel, foming a secondary or acesssory patme, as in elaborate pattems of panelling.

PANE WORK. The division of the exterior surface of a homse into panes or panels, as construetively, in a half-timhered house hy the dispmsition of its risible timbers, whether arranged so ats to form rectangular panes, or, hy brancling and shaping, to enolose other and more or less theorative shapes as quatrefuils, "ircles, ete. The pane work of the half-timbered manom honses, imm, lospitals, cte., of the Tumber periond, emphasized ly the strong eontrast hetween the white ronghoast of the panes and the weathered backness of the leams, constitutes their most distinctive ehararteristic. (See lhack and White: Half-Timlnred.)

PANNIER. Same as Cumeille.
PANOPTICON, A mikling, especially a prism, so arranged on at radiating principle that a single inspector or guarl ean, from a central, common point, look throngh each of the ronverging halls. Its use was adrocated in Enigland ly Jeremy Bentham at the eul of the eighteenth century ; the most consjicnoms early example of the apmelication of this principle of Haming is the hanse of eorrection at Crlent

PANORAMA. In amphtectme, a building arranged to contain a large picture with or without accessuries, and of the kind known as cyclorama, diorama, or panorama: those three terms being used without clear distinction in desoribing the representations themselves. The buidings are sedbon of arehitectural importance, but that built be 1 iviond in Pirris, in 1859, amd called Panoruma Thtionol, is of some interest.

PAN PIECE. Same as Pan, B.

PANTAGRAPH; PANTOGRAPH. An instrument for the merhanial conving of engravings, plans, diagrams, ete., either on the same scale as the original or on an enlarged or reeluced scale.

PANTHEON. In Rome : a cirenlar Duikine with an octastyle portico hardly forming part of the lesign. The rotumela has walls of immense thickness, in which mass are chanbers, some showing as chapels mon the rotunda within, and others comealed and intended merely to diminish the amonnt of masonry, while allowing of the full spreal or clepth of the mass to act as a buttress for the cupela. The cupola is the largest existing, the dimension being generally given as 142 fert, whieh is also almust exactly the height of the interior from the pave ment to the top of the dume. The only opening fin the amission of daylight is the nenlus, nearly thirty feet in diameter. The building is thought
to have been huilt in the reign of Hadrian, and perhaps between $1: 20$ and 12t A.In. But it is not donbted that the present building represents an aurlier one commonly known as the Pantheon of Agrippa, and Imilt in the reign of Augustus ;

PANTRY

see). It was called by this name when, during the first Freneh Levolution, it was taken up by the state to serve as a place of burial and of memorial to distinguished citizens, and when the fimous inscription, aud grands hommes

lhe Pantheon, Rone
Isahellés rustoration, which, however, omits the bronze shutter of the oculus.
and the portico may be a remaining fragment of that building.

Lanciani, The Ruins and Erracations of Ancient Rome; for plates, Isabelle, Les Édifices circulaires ret les dömes (1855); Purallèle des salles romdes de l'Itatie.

PANTHEON (properly Le Panthéon de Paris). Same as church of S. Generiève (which

La patrie reconvaissante, was put mon the entablature. Under Napoleun III. it was a charch once more; but under the third Republic: it is once again the Pantheon, and is very elahorately adorned within by memorial paintings of great importance, and by a few sculptures.

PANTRY. 1. A small apartment adjoining a kitchen, in which provisions and kitchen

PAOH-TAH

utensils are kept, knives cleande pastry rolled, etc. By extension, otten applied to a closet, especially one among the oftices of a louse or hotel.
7. A small apartment aljoinng a dining room, haed as a wating or serving room, where the conses for a meal are laid ont for serving, dishes washed, silyer, glass, and chima kept, ete.; in the United States, ipecifically, callend a Butler's Pantry. (Cumpare Sonvier leom.)

PAOH-TAH. In ('hima, a templr, esjuscially the towerlike structure of the buldhists, always of an uneven number of stories. The most celebrated was the l'oreclain Tower at Nankin, built in the fifterentlo century and restroged in the Tai-piug Reboblion, between 1853 am? 185G. (See China, Arehiterture of.)

PAOLO DI MARTINO. (Sce Becrafumi, Domenico.)

PAOLO ROMANO; seulptor and architect.
His name appears frequently in the pontifical recorls. Between 1451 and $1+60$ he was employed on the trimmplad arel of the Caste] Nuovo at Naples (see Isaie da l'isil). Abont 1463 he made the statue of S. Amliea, which stands in a charming Dorid shrime near the Punte Molle, Ponte.

Muntz, Lers - Irts à lu comer des papes; Muntz, Rencissumef; Minieri Ricein, (ili -thtistidel Cistel Jumo; Vasari, Milanesi ed.; lerkins, llatian Sculptors.

PAPAKHU. In an Assyrian or Pabylonian temple, the most sacred place, the holy of holies. (See Mesmuntamia; Templo.)

PAPER. (Sce Building Paper ; Hanging.)
PAPE. SIMON DE: architect; b. Jule, 1585; 1. Sept. 13, 1636.

The son of a silversmith. One of his earliest works was the Korenbuis at Aucharde (belgium). In 1617 he was aplminted Stums bourmepster of Audeuarde.

PAPIER-MACHÉ. A composition of paper reduced to a julp, and mixed with glue, size, or other substances, so that it is readily monliked or cast in any desired form. It lemls itself to fine and clean morlelling, and, when mondelled, is conveniently applied for decorative porpuses in low relief on ceilings and walls. It is often especially prepared and mate waterpoof, to decorate exterior work.

PAPWORTH, GEORGE; architect; b. about 1781: (1. March 14, 1855.

In 1806 he settled in Dublin, and in $1 \times 3 \mathrm{~s}$ was elected to the Royal Hihernian Academy. He built the Muscum of Irish Inclustry at Dublin.

Palgrave, Dictionary of Irtists.
PAPWORTH, JOHN (aiter 1815, John Buonarroti) ; architect; b. Jan. 24, 1775; d. June 16, 18ti.

He was apprenticed to Thomas Wapshott. and had some instruction from Sir William

PARABEMA

Chambers (see ('lnambers). Inc acofured intimate practical knowledge of the details of construction, and designed a large number of lmildings in Lambon, and many comontry residences. Ho wats muth employed as a lamiseape gimicner, amd wrote many practical works on arelitecture.

Wyatt l'apworth, Inh I I. P'epeorth, arenuect; Arch. I'th. Niw. Dictionmy.

PAPWORTH, JOHN WOODY; architect : b. Marelı $4,18: 0$; il. July 6 , 1870 .

Elder sum of John Bumarroti l'apooth (sce Papworth, J). He entered the fingal Acandemy as a stalent in 1839 . J'apworth contributed many articles for the arehitentural periondiats, and wrote useful books on ardhitectmal sulyjects. He was largely employed as a prostial arrhitert. He was assomiated with his lirother. Wyatt Papworth, in the preparation of the Ihetiomery of the Architertural Prblication Society.

Arck. Pub. Sir. Dictimuryl.
PAPWORTH, WYATT ANGELICUS VAN SANDAU ; architert amd antiquary ; l. Jun. 23, 1822; 1). Ang. 19, 1894 (at the Sume Museum in Lonlons).

A yomnger son of John linonatroti Pipworth (see J'ipworth, J.). He studied with his father and served in the oftice of Sir Jolm liennie (see Remnie, Sir J.). In 1819 he was awaded the silver medal of the Institnte of British Architects for an essay, The I'culiur Charucteristics of the Pallutian N゙・hool of I Irehitecture. In 1867 he revisel amb edited the Entydoperdiue of Achiterture of Joseph Guilt isee (Gwilt, J.). In 1848 he melertook the formation of the Arehitertural Pohbication Soriety, amd in 1852 became erlitor of its Dictionary of Anchitecture, which was finished in 1802 (8 vols. folio). He fublished many works on architectural sulojects.

Ohituary in Journul of Royal Institute of British Arehitects. 18:4. 1. 6i8; :tephem-Lee, Dïtionary uf Vational Biograplyy.

PARABEMA. In buildings of the Cireek Church, a room or division closely ermeeted with the bema, differently described by difterent authorities. It is frobable that the siguification of the term varies with different epochs amb in different comtries. In a regularly planned Greek chmech of the latter time, there were always two parabemata, one on cither sile of the bema. Thus, in the coptic churches of Egypt, it is expressly staterl hy A. J. Buter (op. cit., Vol. I.) that a Coptic elurch has always three eastern chapels: the prothesis (see Prothesis), on the nortla of the loma, being the jlave for the consecration of the clements, while the diaconicon (see Diaconieon) on the south side serres as a vestry and satristy; while it seems to be evident that the prothesis and the diaconicon are the parabemata.

Butler, The Ancient Coptic Churches of Egipt.

PARADISUS

PARADISUS. In mediaval architecture, a court or atrium in front of a church, usually surronuded by cloisters, either in whole or in part: sumetimes another enelosure: thus, the cloister garth of Chichester Cathedral is still called the Paradise. (See l'arvis.) In domestic architecture, a small apartment equiralent approximately to the motern boudoir.

PARALLELOGRAM OF FORCES. A graphital representation of the eomposition and

resolution of forces. A force may be represented in magnitnde and direction by a line. If two or more forces act upon a body, they may be replaced ly a single force called the Resultant, a furce which, if reversed, would maintain the body in equilibrium. Suppose two forces applielf to the point O representel in magnitude and dircetion by the lines $a b$; draw the lines $a^{\prime} b^{\prime}$ parallet, respectively, to a and b, and we form the parallelogram of furces, the diagonal of which parallchogram is the resnitant, R, and indicates the force which would produce the same effect upon the point 0 as the two forces a and b, if acting simultaneously. This force, if applied to O in a contrary dircetion, would balance the tro forces a and b. (See Polygon of Furces.)

Parapet of solin Slais With Roof and Getter All of Cut stune; Syrli; 5th Century a.d.

PARAPET. A dwarf wall or barrier built on the eilge of a terrace, platform, bridge, hatcony, or other elevated place, as a protection against falling; also above the cornice of a honse, whether built with a steep or with a flat roof. It is chararteristically a solid construction, with a plain, straight coping: but as a feature of more or less decorated architecture, it is one
of the first to be emphasized by panelling and tracery, often jierced with great richness and

Parapet with Piecen Trefoils: S. Maky's* CHL゙KLH, UXFORD; C. 12 SO.
delicaey of detail; it is sometimes more or less broken with erenelations like a battlement, especially when used as a sky line, and in some clomestic work it is corbelled ont from the surface of the wall which it crowns, and takes the place of a cornice. (See Blocking Comse.) (Cuts, enls. 65. 56.)

PARASCENIUM. In the ancient theatre, a projecting stumeture or wing flanking the stage on either side, and with the scena, or background, enclosing it on three sides. It inchuderd apartments for the actors, and often the passageway, Paroctis.

PARASTAS (jl. Parastarde). That jrart of the flanking wall of the cella of a Greek temple which projects beyond its front or rear, enclosing walls so as to form an open vestibule; the ends of these walls were treated with bases and eapitals (see Anta), and the area enelosed

Paliapet: Three Venftian Patteras, comion is Balcelores:
No. 1. Byzantine style. 1lth century.
Yo. 2. Flarid dimhio. late 1 the century.
Fio. 3. 1th or 15th century, with baluster columns.
hy them with its npen screen of columms became a portico in autis. The word "parastas" is

Parapet with Pierted Trachry; s. Mary Magdalene, Oxford; A.D. 1337.

Parapet cut into Smadl Crenellations imitatino Batthements; S. Peter's Church, Durchester, England; c. 1450.

Parafet, Cathedral of Santlagu de Compostelfa, Spain; 1520 to 1540.

Parapet, Cathedral of Seville, Spain; 17th Century.

Parapet: Moderx Patterns in Brickwork, which must be carefuldy laid in Strong Cement Mortar.

PARATORIUM

oftern used to signify the anta itself, and Vitruvins applies the term to an isolated syuare pitlar. 'The jamb of a choorway, esperially when treated with shalt and rapital, is called parastas. (Also written l'rostas.)

PARATORIUM: PARATORY. A place where any premaration is male : particularly, in carly churehes, a phace for the offerings.

PARCLOSE. A sireen, or other enclosing barrier, ofters ribhly deorated, to protect a tomb, as at Fifiehl, Berks (orfoud Crlossary, pl. 184) ; to separate a chapel or chantry from the main borly of the church, as at W"inchester, Wells, Sinut Albuns, Salisbury, ete. ; to form the front ot a gallery, or for other similar purposips. It is either solid or of open work.

PARETTA. Rongheast with pebbles inserted : wfen left in their original colours so as to proluce chromatic effect.

PARGET. A. (iypsum, or plaster stone.
B. Plaster ; spetifieally, a kind of mortar formed of lime, hatir, and cow dung.
C. Course plasterwork in general. The motern faeing on rongh brickwork, as in the lining of thees.

PARGETTING : PARGET WORK. Plasterwork of various kinds; specifically, exterior

Pargetting, dated lif! but presehting Elizabethan Mutive; High Street, Oxfurd.
plaster facing, stamped with diapers in low relief, or in ornamental patterns raised or indented ; much used in the interior, and oiten on the exterior, of English bouses of the Tudor perionl. In interior work it is often delicately executed and highly finished. This sort of work is a marked characteristic in the external enrichment of some Elizabethan half-timbered houses. Sometimes ineorrectly ealled parge work.

PARIS, PIERRE ADRIEN ; architect; b. 1747; d. Alig. 1, 1819.

PARLOUR

He was a stument at the Ecole royule d drchitecture and stutied in lome as pensiomnaire d" roi. In 1778 he was appointed dessinuteur due rubinet duroi, and in 1780 was admitted to the Acollemie drahtectrre. In 1785 he was appointed architect of the cathedral of Orléans, and finished the towers of that church in 1790. In 1787 he was commissiuned to install the Assembly of Nutables in the palace of Versailles. He designed the Hôtel de Ville at N(utchatel, Pas-de-Calais, France. In 1806 he was appointerl director of the French Academy at liome. During his alministration he bought the antiqnes of the Villa Borghese for the Musée du Louvre.

Lance, Dictionnaire; Noucelle biographie générate.

PARK. A. A considerable extent of more or less carefully preserved woodland and pasture attachet to a residence. A legally enclosed and privileged domain which is especially defined by old English law.
B. A pullic reservation for recreation and utility, varying in extent from great govermment reservations, such as Yellowstone Park, United States, to a small square, or the like, in a city. Those in, or near, eities are commonly treated with great care in some form of landscape gardening, - D. N. B. S.

PARLER, PETER ; architect; b. about 1333 ; d. about 1397.

Parler came of a stonecutter's family in Cologne (Germany). He was architect of the choir and nave of the cathedral of Prague, in Bohemia, begum 1392. He was assisted and succeeded by his sons, Nicolans, Johann, and Wedzel. His bust stands in the triforium gallery of the cathedral of Prague. He is also known as Peter von Gmiud. (See Mathias D'Arras.)

Neuwirth, Workenrechnungen des Prager Dombaues.

PARLIAMENT HOUSE. (See Legislature, House of.)

PARLOUR. A. A room for conversation. The term was in use as early as the time of Chatcer, apparently, in a general sense, as meaning any place for the intercourse of a few persons, as distinguished from a large hall. When the term "drawing-room" came into use in a special sense, the word "partour" in England was applied rather to rooms for the family, as distinguished from rooms for the reception of visitors. In this sense we have "dining parlour " and "eating parlour," and in Lomlon private honses, "the parlours," applied to the rooms on the ground tloor, one of which might be the dining room and the other the library. When, in Mrs Lirriper's Lotlgings, the Major takes " the parlours," this must be taken to be the rooms on the gromed or entrance floor, as distinguished from the drawing-room at the

PARODOS

heal of the first flight of stairs. (Compare Living Room ; Reception Room; Sitting lioom.)
B. In a monastery or numery, the roon in which the members of the establishment were allowed to receive visitors. Such a barlour wats often divided by a grating, to one side ut which the immates of the monastery or convent were confinal, white the ghests were received only on the other side ; in this sense, an exact equivalent of the Fremb purloir, which has retained its original signifieation of a rom especially brurided for conversation. - ll . S.

PARODOS. In the ancient Greck theatre, one of the two passages separating the stage trom the caveit, or anditorium, through which the chorus entered the orchestra, amd which served also as entrances for the pullic. The paroulos was sometimes a passageway carrid through the parascenium, and sometimes distinct from it.

PARQUET. In a morlern theatre, the whole or a part of the primejual Hoor of the anditorimm. In France, the term has been appropriated to the part nearer the stage, but this term has been superseded by orchestre. In the United States the sume change has been male in the naming of parts, though, perhaps, not miversally. (See Orehestra : Parterre; Pit.)

PARQUET CIRCLE. In the United States, the space at the rear of the Parguet of a theatre eorresponding in extent approxinately to the parterre, but arranged with seats, and considered interior only to the parquet or orrhestra. (See Parterre.)

PARQUETERIE : PARQUETRY. A mosaic of woolwork for floors, combusel of hard wools of various colours or grains, tonghed and groured together in small pieces, finished flush on the surface, forming ormamental patterus, generally with borders, and always highly polished. It is sometimes composed of thin rencers glued to canvas, so that it can be put duwn like a carpet; lut properly it is of thicker stock glued together and secured to the under flooring, so as to form a solin and permanent structure.

PARSONAGE; -HOUSE. The residence of a parson, that is, of the man holding a living as a dergyman of a parish. (Bee Manse; Rectory ; Vicarage.)

PARTERRE. 1. The part of the Hoor of a theatre beneath the galleries, often raised so its to overlook the pit or parpuet.
B. A formal portion of a garden, set aside for flower beds of ornmental shapes.

PARTHENON. In Athens, Greece, an ortostyle Durie temple dedirated to the goudess Athenia. (See Greece, Architecture of.)

PARTHIAN ARCHITECTURE. That of the peoples subjected to the Parthian dynasty, whieh lasted for nearly fire centuries, from 250 B.C. to 226 A.D., and which, during the reign of its greatest monarch, Mitliridates (163-140 B.c.), extended its empire over 450,000 square

PARTHIAN ARCHITECTURE

miles. This dues not seem to have been a building race, and were it not for the discoveries made by W. K. Luftus at Warka (Erech), in Mesoputamia, of varions lecorative features, such as ratpitals and friezes ; and for the deseriptions given of the templeamb palace of Al-Hadhr, thirty miles nowth of Musul, tirst visited hy Ior. Ross and Answorth in 1835, and hy Sir Hemry Layand some ton years later, nothing would have been known of its arehitectual work.

The rematis of the palace at Al-Madhr consist of a block 350 feet long, $1: 88$ teet (hery, and from 50 to 70 feet high, which is suldivided into three great rereption halls or aikeans (one of which forms now the vestibule to a temple at the hatek), am four sets of smaller rooms, thee in number, one behind the uther. The awans measure two of them 49 teet wisle, the thirl 58 fect, and they oroupy the whole depth of the bulding. All the halls and rooms are vaulted with semicircular barel vaults, and orer the smaller chambers wats a second story. The principal front faces the east, amb the awans and the sets of romes are entered hy arched $\xi^{\text {rirtals }}$ that of the largest aiwan heing to feet wide and 60 feet higll. The palace is built in the brownish grey linnestone of the comerry, in regular courses with fine joints. The archivolts of the portals have two tascits and an outer moulding, and every alternate roussoir is lecorated with a mask in high relief. The imposts carrying the arches are moulded and carved with acantlus leares. On each of the piers between the arehed portals is a semidetiched shaft (the uprer part of which is loroken away, so that it is not known how it wits terminated) and on either side of the northern, the largest awan, are two slafts.

Orer the entrance door to the temple at the end of the south aiwan is a frieze with the heads of the sun god in the centre, and, on either side, doves holling the cresent representing the moon, hulls' heads, and gritins. Similar earvings were fomm ly Loftus at Warka, together with a large mumber of Purthian coins, ats also small capitals with busts in the centre, similar to those found on the voussoirs of the archivolts at Al-Hadhr. Sir Henry Layard and Fergusson attributed the palace to the Sassanian dynasty, but the temple with its doorway and frieze is known to hatwe existed in Harrian's time. The construction of the palare is also entirely different from Sassanian work. The raults are semicircular and not elliprical, like those of the latter ; the masomy is in regular connses with fine joints, whereas the Sassanian masony is of the coarsest kind, with thick mortar joints, and was always hidden under a hayer of stucco; and in no Sassanian bulding is there any Greek or Roman omament or seupture of the kind foum at Al-Hadhr.

The two palaces now forming part of the mosque at Diarbekr, iuml apparently rebuilt
partly with old materials, are decorated with columns, the shafts of some of which are richly carved with ornamental diapers similar to those fouml at Warka.

Communications by 1)r. Ross and Mr. William Ainsworth in the nimf and eleventh volnmes of the Royal Geographical Society of London ; the description, with plans and drawings, commnnicated to the Royal Institute of British Architects in 1046 and published in the R. I. B. A. Transactions, Vol. Vt. New serios, as a supplement to a paper read by R. Phesè spicrs. December 2, 1890, on sassanian Architecure ; I'rof. Rawlinson's Sisth firrut Monarchy nit the Incient Eastern Horld, the Puthian; and Trucets and Tipsearches in Chuldea and Susiumu, with an account of excarations at Warka, the Erech of Nimrous, be Sir Wiltiam Kienneth Loftus (8vo, London. 18.59).

- R. Phenè Spiers.

PARTING LATH. Same as Parting Strip. PARTING SLIP. In a cased frame, a thin strip of woul or metal hung from the top between the weights to separate thein and prevent their mutual interference. (See Cased Frame, under Frame.)

PARTING STRIP. Any slemer, thin piece, -usually of wool, - to separate and maintain a slight distance apart two adjoining members. Specifically, a strip of wood from $\frac{3}{8}$ inch to $\frac{1}{2}$ inch wisle, set vertically into or against the pulley stile of a window frame, to separate the upper from the lower sash by forming runways in which they can slicle past each other. Called also Parting Bead (which see under Bead: see also Cased Frame, under Frame).

PARTITION. Originally, any dividing wall. In motern buihling, specifically, a wall or similar structure separating the rooms or other divisions of a buildiug. In the Cnited States the term is almost entirely limited to structures of wood, bollow brick, or the like, as distinguished from solid masonry; one of the latter being commonly designatel as a partition wall, especially when serving also as a bearing wall. (See Wall.)

Folding Partition. A partition arranged in sections, each closing on the next, so that a large apartment may be readily subdivided aud again openel up, at pleasure.

Rolling Partition. One constructed on the principle of a rolling shutter (see Shatter) and serving the purpose descrihed under Folding Partition.

Stud Partition. A partition of studs ; corered usually with lath and plaster.

Trussed Partition. A partition constructed wholly or in part on the principle of a truss, so as to span an intersal without intermerliate supports. U'sed to relieve a flow of its weight.

PARTY WALL. A wall built on the line between two plieces of land belonging to ditterent proprietors, the purpose of which is to save room while providing a wall of sufficient thiskness and strength. The building of such a wall is a matter of agreement between the two

PASTI
owners ; he who first proposes to build erecting the wall under this agreement, the other owner agreeing to pay for his share of it when he puts up his own building, and rests his flour timbers and roof timbers upon the party wall. The custom and the validity of the agreement has been recognized by courts of law since the Middle Ages.

PARVIIS ; PARVISE. A. An open space in front of a church, usually surrounded by a balustrade or parapet, often slightly raised, where religions ceremonies were conducted in the open air. (Compare Paradisus and Peribolos.) The term is little usel in England or the United States, but on the Continent of Europe is extencled to signify the whole of a small square in front of a large church; and a house may be built frouting on the parvis of a cathedral, exactly as, in Lundon, it may front on "St. Paul's churchyard."
B. A room or porch connected with the main entrances of a church; in this sense used very loosely. - R. S.

PARVIS TURRET. A small turret built over a church poreh; often occupied as a library or study.

PASCHAL CANDLESTICK. A massive and sometimes fixed and immorable candlestick, arranged in a church to receive the Paschal candle, which is often of great size. In some Italian churches it is placed near the ambo, and is treated architecturally in the same style, as in the well-known instance of the cathedral of Ravello, and that in the Basilica of S. Clemente at Rome.

PASSAGE (I.). A gallery or corridor leading from one apartment, or suite of apartments, to another ; or from one building to another, as in a group of hospital parilions. More usually a comparatively narrow and subordinate means of intercommunication convenient in the service of a household; or, in large public buildings, a prisate footway giring access to remote parts of the edifice for cleaning or repairs, as the gallery made in the thickuess of the walls of a church under the nave windows.

PASSAGE (II.). In French and pronounced in the French way even in English speech, an arenue or alley connecting two thoroughfares through the interrening block, accessible to foot-passengers only. Sometimes corered with glass and lined with shops. (See Arcade (II.); Galleria : and compare Wynd.)

PASSAGE AISLE. An aisle made so narrow as to serve only as a passageway, as from one end to another of a church. Such a passage allows all the wilth of the nave to be used for seats, or to have no more than one passage, as in the middle. (Cut, cols. 73,74 .)

PASTI (or BASTI), MATTEO DE'; architect, painter, sculptor, anl melalist.

Pasti came from Verona (Italy), and was a pupil of Pisanello, the painter and metalist.

PASTICCIO
About 1446 he attached himself to the court of Sigismondo Malatesta at Rimini, Italy. The remarkable recunstruction of the church of S. Frameeseo at Limini (il Tempio Malatestiano,, mudertaken by Sigismonelo, was muluobtedly exeented under the direction of Pasti so far as the interior is roncerned. A letter to him from Leon Battista Allerti (see Allerti), lated Nor: 18,1454, imlicates that the exterior was luilt ly Pasti from drawings and directions sent by Alberti from Rome. (See Nuti Natteo and Agostino di Duecio.) As metialist he ranks next to Pisanello.

Mintz, Renaissance; Yriarte, Rimini; Geymüller-Stegman, Die Areh. der Lienaissance in Tosrana; Heiss, Les Mélailleurs de la Renaissance.

PASTICCIO; PASTICHE. 2. A work of art produced in deliberate imitation of another or several others, as of the works of a master taken together.
B. Especially, in decorative art, the modification for transference to another medium, of any design. Thus, the cover of a book may be the pasticctio of a mosaic pavement.

PASTORINI, PASTORINO ; painter, glass painter ; b. 1508; d. 1592.

Pastorimi was a painter of Siena, a pmpil of Guillamme de Marcillat (see Marcillat, Guillaume de), who, at his death, herqueathed to him all his work. After 1531 he painted glass in the eathedral of Sicua, and in 1536 restorel the windows of the Palazzo Petrucei (Siena). After 1541 he painted glass at Rome from cartoms by Yerino ilel Yaga (see Buonaccorisi, P.).

Miintz, Fruillateme de $M_{(t r-}$ cillat.

PASTRY ROOM. A room in the servire part of a dwelling or hotel appropriated especially to the making of pastry, and fumished generally with marble slahs for the rolling of ilongh.

PATENT HAMMER. A hammer used to dress stone hy cutting serics of short parallel
grooves. Its head consists of small chiscls lielil together by bolts, and adjustable as to numbre

PATENI LIGHT

and spang, the series being parallel with the hamell: (balled also Patent Ixe.

Patent Hammer.
PATENT Light. Same as Parement Light or V'ault Light (which see under Light).

PATERA. The representation of a tlat, round dish or disk, generally more or less decorated in low relief, to ornament a panel, frieze, etc. The term is improperly extended to rosettes and other approximately circular embellishments bearing no resembance to disks or dishes.

PATERNOSTER. An astragal, bagnet, or any suall round monlding cut in the form of beads, like a rosiary or chaplet. A moulding so cut is also called a preat moulding or bead moulding.

Patience. Same as Miserere.
PATINA. A. The incrustation formed on bronze by natural or artificial means. Those found originally on ancient bronzes are so admired that they have been imitated by various processes.
B. By extension, the surface of any work of fine or decorative art, supposel to be the result of time, and, therefore, greatly admired by students. Thus, an ancient earving in wool, supposed to have its original patina, is worth many times the value of one which has been cleaned by potash and repolisheal.

PATIO. In Spain, and Spanish-American comntries, an open court, partly or wholly surroundel by the house, but approached directly from without by a door or gateway which is frequently under the upper stories of the house. (See Court: Porte Cochere.)

PATROL HOUSE. In the United States, a building for housing the apparatus, horses, and men constituting a fire patrol ; a miformed force mantained by insurance eompanies, whose business it is to attend contlagrations and preserve the building and contents as far as possible from damage by fire, or by water, or the operations of firemen, and from theft.

PATRYNGTON, ROBERT DE; architect.
January 5, 1368, he was appointed master mason of York Cathedral (England) and built a great portion of the present choir. He succeerled W. de Hoton (see Hoton, W. de) and was limself snceeerled by Hugo Hedon.

Browne, York Cathedral.

PAULUS

PATTE, PIERRE; arelitect and engraver ; b. Jan. 3, 1723; d. 1812 .

Patte appeared first as a critic, especially attaeking the design of Soufflot (see Soufflot) for the l'mithéon (Paris), on accomnt of the weakness of the piers supporting the dome. He erected mumerons unimportant buildings, but is best known by his published works. He contimued the Cours d'Architecture of Jaeques François Blondel (see Blondel, J. F.), ant fublished independently Discours sur V'Irchitecture (Jaris, 1854 , Rvo) ; Etudes sur l'Architecture en France et en Italie (Paris, 1755, 20 pls) ; Essai su* l’Architecture Théatrale (Paris, 178:), ete.

Nowvelle biographie générute; Lance, Dictionnaire.

PATTEN. A. A stand or movable support, upon a number of which a buikding can be set without other fommation and without breaking the ground. In Euglish law this was held to remove the building from the elass of realty and, therefore, from the number of improvements which remain for the benefit of the owner. - (A. P. S.)
B. A stand, surjort, or foot; a term used loosely and without accurate signification in English. Thus, one anthority uses it for the stand or foot of a weathercock; another for the base course of a wall, or the sill of a timber frame.

PATTERN. A. A model made in some easily worked material, like word or phaster, to serve as a guide in respect to form and dimensions in the laying out of any piece of work in building requiring accuracy, or to facilitate correctness of outline in stoneeutting or stuceo work or carpentry ; especially to preserve and seeure uniformity in continuons work like monldings ; to serve as a matrix in casting in plaster, metal, or day ; or to secure correctness of repetition in all kinds of stamped and stencil work. The making of patterns for castings and for stonecutting ronstitutes a special trade, requiring unusnal intelligence and special training.
B. A design, considered as a mit, of which an idea can be given ly a fragment; as a diaper pattern, or sprinkled pattern ; or, more in letail, a Heur-te-lis pattern.

PAULUS ; arehitect and nosairist.
He made the altars, parement, and mosairs of the cathedral of Ferentino, Italy (11061110), and a prement in the Vatican gardens, which is supposed to have come from the first hasilica of S. Peter on the Vatican Hill. He prohably built the eathedral of Ferentino, Italy. An altar in the ehurch of S. Lorenzo at Terra di Cave, near Rome, bears his name and the date 1093.
A. L. Frothingham, Jr., Roman Artists in the Mildere A!fs.

PAUSANIAS

PAUSANIAS; traveller and historian.
Whatever is known of l'amsanias is gathered from his writings. IIe was a contemporary of Hatrian, who dicd in $1: 38$ A.D., and was the author of the famms Description of Greere, an itinerary in ten books, which contains a doseription of Corinth, Laconia, Mcssenia, Elis, Achaia, Arcadia, Bootia, and I'locis. It is evident from his works that he travelled widely beyond the limits of Greece and Ionia. He describes a tomb in Jemsalem, saw the prramids in Egypt, and visited the cities of Campania and liome. l'ausanias was writing his filth book in IIt A.D.

Introduction to Frazer's Translation of Pausanias's Description of (irpece; Smith, Dictionary of Biography end Mythology.

PAVEMENT. Primarily, a eovering of reil or artiticial stone or tile laid over the smrfice of a street, road, or the like. Hence, by extension, a flow covering of concrete, marble, mosaic, tile, or the like. In this sense, appliad only to large and important thoors in public halls, corridors, cte. Thus, we speak of the mosaic pavement of a chmrh, but the mosaic flowr of a vestibule.

Pebble Pavement. A pavement formed of clwely set water-roumled pebbles, smaller than cobbles, used for light service as in courtyarls and gardens ; often the natural contrasts of colour in these prebles were used to form patterns in a sort of coarse mosaic. This practice was rommon in the forceourts or doorway conrts of mansions of the serenternth and eighteenth centuries.

Venetian Pavement. Sane as Terrazzo Veneziano.

PAVEMENT LIGHT. Heary glass set in a pavement to convey light to a cellar rom or vault beneath; hence, usually, the same as Vault Light (which see under Light).

PAVILION. A. Originally, a tent or movable labitation.
B. A building more or less dependent on a larger or principal building, as a summer honse; more especially, a dependent residential building.
C. A central, Hanking, or intermedliate projecting subdivision of a monmmental builling or facule, accented architeeturally by more elaborate decoration, or by greater height and distinction of sky line, as in the parilions of the Louvre in l'aris. In this sense the term is used for a department, or group of warls, of a large pulblic institution, as a haspital.

PAVING. .1. The process of laying a pavement.
7. Same as pavement.
C. Paving material in general.

PAVONAZETTO. Same as Paronazetto Marble, under Marble.

PEDESTAL

PAX ROMANA. The Roman Peare. The contrat between the distrated and derastated condition of the anciant world and the peace bronght to it at the begiminer of the reign of Augustus lal to inlentifying pace and prosperity with linne. Hence the torm lax lionama, which was ranrent even alter the fill of the Empire. Comtemporary with lforare's ('ifomen Nowentare, and the first monmment hy which this fact is commemorated is the Altar of leate of Augustus (Aral l'acis), erected 1:3-9 B.e. in lione hy the Senate, and une of the most motable works of combined seulpture and arohitecture of the reign of Augnstus. The altar itself stoud on a plateom enchosed by a rectangular garapet about 4 motres high, fimmen of slals raved on both sides. The basement and ardhitrare loronght the total leoight to wer 6 metres. The slats were aranuel in two lines - a luwer one witl a deconation of vines and flowers intermingled with lirds, and an upper one with a sacrificial procession headerl by Augustus and his family, in evident initation of the Parthenon frieze. Both the figures and the buld, fet welicate, omamentation are among the best frouluts of Greco-Roman atr. The ornamentation ot the Purtico of Getavia and the Baths of Agripha may be compared with this. In the interior, groups of pilasters comected ly festooms hanging on buermes supwort an arohitrave. In a niche or corlicula oplusite the one door apparently storn the figure of the Earth (Terra). Compare this entire idea with the early P'elasgie idea of out-ot duor worship, of which it seems a survival. Uther mommental altars were erected as centres of national worship, under Angustus, for Gaul at Lyons and for Spain on the northwest enast. - Arthur L. Fruthingham, Ji.

PAXTON. SIR JOSEPH; Iantseaple gardener and arrhitect; b. Ang. 3, 1801 ; (l. 1866^{3}.

The son of a farmer, in 18.3 he enterel the service of the Horticultural Society, whirh hat leased the garlens at ('hiswick (England) from the Duke of Devonshire. In 1826 he was appuinted by the Duke superintendent of the Gardens of Chatsworth. In 1836-1840 he built the great eonservatory at Chatsworth. Paxton built the Crystal Palace of the great Exhilition of 185 l , on the prineiple of a very large gremhonse, and deserves the rredit of the bold imnovation. He was knighterl in 185I. He designed several important buildings and pul)lished many works on butany amd gardening.

Stephen-Lee. Dictionnmy of Tational Bingrapliy.

PAZzI ChapEl. (See Capella dei l'azzi.)
PECKY. Showing the first symptoms of deeay, said of timber
'PEDESTAL. A substructure upon whid a column, a statue, a memorial waft, or the like, is elerated. It consists in lioman architecture and its derivatives of a base or font, a the or

PEDIMENT

dato, and a surbase, cornice, or cap; and in dlassie architecture is suljeet to esperial eanons of proportion in relation to the coldmm or pilaster which it supprits. A contimuns pedestal is calleal at loolinm. The term is commonly extended to a similar feature interposed at long intervals of a balustrade, even when not supporting a vase or the like.
pediment. The low triangular gable following the roof slopes over the tront and rear of a classic building. It is copect by a comice of the same sertion as that of the entablature, and in part mitring with it. The triangular tympanm was the fied in which was disphayed typical seupture in high relief or detached. In the neorlassic styles the perdiment was often given a segmental or more claborate form, instead of triangular. It was also used to crown subordinate featares, such as doms and winduws, and in such eases often ealled Fronton. (Compare Coronet.)

PEDIMENTAL. Relating to, or of the nature of, a pediment; found on a pediment ; designel to be used on a pediment; thus the Niole Group in the Utizi Gallery is pedimental sculpture.
pedimented. Provided with a pediment; constructed in the form of a peliment. A pertimented gable is a gable of which the foot of the eoping or comice is comected with the ofposite foot by a horizontal string course, thus, in a measure, reealling the classic original.

PEDRO DE COMA (or CESCOMES); arehiteet.

According to an inseription on the wall of the preslytery of the cathedral of Lerida, Spain, Pedro was arehitert of that eathedral in 1203 .

Viñaza, Aldiciones al Dicrienario historico.
peel ; peel tower. (See Pele.)
PEen Check. (See under Check.)
PEEN JOINT. (See unter Joint.)
pela. (See Lamberti, Niccolò di Piero.)
PELASGIC ARCHITECTURE: BUILDING. In the ancient pre-Hellenie worll, a third style besile the two styles of architecture eurrent in the valleys of the Nile and Euphrates. This was less advanced and less differentiated artistically, but was diffused over a far wider territory and adopited by a greater variety of peopies. It ruled the eastern and northern shores of the Meliterranean and all its islands. The buik of the early population of this region was called Pelasgian by the Greeks, and a part of it was termed by the other Eastern nations Hittite (see Hittitc Architecture). Abundant traces of this people are found even in Egypt. These Pelasgic tribes ocenpied Armenia and northern Syria, colonized Cyprus, Crete, and other islands, making their headquarters in Crete between 2500 and 2000 в.c., and alvancing on the one side through Asia Nrinor, and on the other through Greece and Italy, of whieh

PELASGIC ARCHITECTURE

they oecupied the greater part. Their art inchuded the styles known as "Ægean," "PreMyeensean," "Mycenican," "Post-Mycenzen," and "Itomerie," as well as "Early Hittite." The substantial identity everywhere of the culture of these emigrants, although all were not of the same bloon, is slown by archzeologieal as well as architectural remains. Even after their pulitical power had been broken - in Asia by the Shemites (especially the Assyrians) and Arians; in Greek lands by the Dorians ; in Italy by the Etruseans and Hellenes - their architectural traditions were so firmly established that their style was long perpetuated. Ia Italy the tribes of Pelasgic blood, sueh as Sabines and Latins, retained their autonomy the latest, and here also did the style contimue longest. It is impressive in its massive grandeur and rugged simplicity, and in the way its momments are adapted to the pieturesque natural sites and become a part, almost, of nature.

The Orient. Never having been exeavated, the Pelasgic cities of Asia Minor and Syria are still alnost unknown, exeepting Troy, whose "Sixtlr" city (see Grecian Architecture) represents the highest loeal development of the Pelasgic style. At the opposite end of Asia Minor the prorince of Cappadocia has the Hittite capital Boghaz Koi, and other eities which flumished from about 2500 b.c., and lave been made better known by Perrot and later by Chantre. Nearly every province in Asia Minor shows works of this early architecture. Caria has them at Assarlik and Myndus, - the latter of very brimitive Cyclopean style, and Assarlik, remarkable for its tombs with dromos. In Lycia are the ruins of Pinara and of l'idua, with interesting series of square towers. In Lydia are the tombs of Sardes, especially the royal tomb of Alyattes, which rivalled the pyramids in circuit and height. Phrygia has fortresses, at Pishmish-Kalelh, and a great variety of saered and secular ruins of early date and great renown on and abont Mit. Sipylos between Smyma and Magnesia. It only requires excarations to make evident the monumental importance of this region for the pre-Hellenic age.

Farther east was the Hittite coufenteracy of Syria. Hazar, in Galitee, is a fine example of its architecture previons to the Hebrew occupation. Military architecture was even more highly developed than in Asia Minur, owing to the constant danger from Egypt and Mesopotamia.

Istends. Pelasgir architecture was thoronghly diffised throughont the ishands between Asia Minor ami Syria and Greece, even in the smallest. It is singular that (yprus, so soon colonized and so highly eivilizen, has furnished so little early architecture. At Melos the English sthool has heen unearthing primitive private and saered arehitecture. But it is C'rete which

PELASGIC ARCHITECTURE

furnishes the earliest and most numerous series. Gortyna and Knossos, its greatest centres, Presos, Goulas-Lato, Itanos, Priansos, Phestos, Axos, Elentherna, and a host more of the hundred walled cities mentioned by Homer, form such closely packed and, until now, practically untorched groups, with cxtensive ruins, as to show that here mure than in any other part of the Pelasgic world lies the key to this civilizition. Already the excavations of 1900 have begun to prove this fact.

Greece. Tralition mints to Thessaly amb Areadia as the great early Pelasgic centres in Greece: but the primitive ruins of Cyclopean and polygonal cities, especially momerous in the north, have been only superficially explured. The majority of discoveries have been on the famous sites of Argolis, such as Tiryns, Hycenz, Argos, Midela, Vaphio. In centril Greece the structures of Arne (Lake Copais) are the most monmmental ; while Attica is ever growing in imbortance as a late Pelasgic centre (Sparta, Menidi, Thoricos, Athens, and several necropoli).

Itcely. Pelasgic ruins are not found in Piedmont, Liguria, Lombardy, Venetia, Emilia, or Upper Tuscany; in fact, not north of a line drawn from Leghorn across to Ancona. But in most of lower Tuscany, Umbria, Latium, Abruzzi, Campania, Apulia, Basilicata, Calabria, and Sicily their cities abound, over one hundred having been locaterl. Of these Sicily and Canpania are least prolific; Calabria anl Basilicata leas explored. South Tuscany and Latimm are best known. We do not know in what relation these early tribes stood either to the Hellenes who displaced them on the south or to the Etruscans who vccupied many of the important northern citics. (For separate sites, see Italy, Architecture of.)

Megulithic. The megalithic constructions of the Ealearic Isles, of Sardinia, Malta, Gozo, Calabria, are to some extent a branch of Pelasgie, especially of Cyclopean, construction. The similarity hetween the sacred edifices of Malta and Crete is especially striking. (Sce Mediterranean Islands.)

Classes of Momments. The kinds of monuments thus far discoverel are: (I) citudels (see Acropolis) ; ($\stackrel{2}{2}$) city walls with their towers, hastions, and gates; (3) palaces of local muers, one in eath city; (4) temples and shrines, sometimes as palace ehapels, sometimes as separate structures ; (5) private houses, either of gramlees (villas) or of modest dimensions; (6) subterranean vaulted chambers and passages, usal either as tombs, treasure houses, cisterns, amexes, or in connection with sally ports; (7) forts, bridges, and other works of engineering: (8) small detached settlements, fiams, villas.

General Charucter of Pelasgic Ait. While in architecture there is practical unity of style,

PELASGIC ARCHITECTURE

in other branches of art thers is a great diversity. Cretan diseoveries show that there during both the pre-Myrencean Age (12th Egyptian Dynasty) and the Myrmatan Age (18th Egyptian Dynasty) extraordinary perfection was reached in decorative work and other accessories - in fresco painting, stucoes, sculptures, stone and terta cotta ware. In realism this art surpassed contemprary work in Egypt and Bahylonia. While 'Troy lags far behind, the art of Hycence and the rest of Argolis almost equals the earlier art of Knossos. Every trace of it vanished in the later Pelasgic art of Italy, where only the style of architecture remains unchanged.

Wuterials. The preterence for heavy stone construction is universal. However, crude hrick was extensively used in Syria, Cappadocia, and Grecce, though apparently not in Italy ; its use was confined to inside buildings, shrines, palaces, etc., and its disintegration accomits for mucls of the disappearance of arehitectural detiil. Varieties of limestone were preferred by the builders to the softer stones that required much tonling. For decorative details it is probable that woon, at times with metal sheathing, was often used, for example in columms.

Arehitectural Forms. There is a great variation according to period. Spaces were covered in two ways; either by wouden beams or by stone slabs. The palaces and houses undoubtedly used the lighter forms ; even the lintels of the doors and the window frames were wooden architraves. The earliest city gates were spanned by wooden beans. When stone was used in the gateways four forms occur: (1) the plane arehitrave of a long single stone; (2) the triangle, either bilt up from projecting courses, or formel by sloping jambs; (3) the middle form in which the narrower summit is crossed by an arehitrave; anil finally (t) the true areh, seldon found and comparatively late (Boghaz Koi, Ferentino). These various forms are also used in subterranean and open galleries (Tirgns). The true arch, requiring careful tonling and fitting, was hardly ever used except with different materials from those of the Cyclopean or even the polygonal work. For example, the bridge at Cora (Latium) is entirely polygonal except for the single bold areh, which is of the same material and opus quadratum as the double gateway of Ferentinc. The nse of vanlted clamhers was common everywhere. They are usen] as eisterns, storeruoms, and tombs (see Tholas; Tomb). The earliest chambers are both rectangular and circular ; if rectangular they are covered by course masomry, each course projerting and heing either left square or chamfered ; if circular they are corered with a dome in the same fashion, which thus takes an extremely pointed outline. In this way the form of the pointed arch amd vault is reached, though not the coustruction. Multitudes of these struc-

PELASGIC ARCHITECTURE

tures are found in councetion with all Pelasgic eities and neeropoli. It is in them that we have, until the present Cretan discoveries, been best able to study the details of refined Pelasgic construction and lecoration. The must fannus are the "royal" tombs of Mycene and the tholos at Orchomenos: the door with its lions and columns at the finmer and the carvel ceiling of the latter atre thus far unifue in their elass. Proto-boric columms have aloo been foumal in Crete loy Dr. Evalls. The type of the megaron, or palace hall, is sometimes with supporting columus (e.g. Troy), but the use of the rolumn seems never to hatre become characteristic or commun.

Cities. Pelangic cities were usmally built on naturally strong hills (exceptions, at Tiryns, Boghaz Kioi), and were defenter by a fortress or arropolis. In Greece, the fortified eity is much smaller in extent than in Crete or Italy. The enceintes of Troy, Tiryns, and Mycence could all be phaced withiu the cirenit of Norba's walls, and two Nurbas conld find room within Tetulonia, five miles in circuit. In Asia Minor and Grecee, the main structure inside the acropolis was the royal palace. In Crete and Italy, with larger eirenits there were usually two mommmental centres - saered and secular placed wherever pussible on two hills, like the Capitoline and ladatine at Rome. The origin of the city may be found in Crete, where small separate forts were first grouped together, and sometimes within a single wall for common defence. Then, as in a great city like GoulasLato or Presos, there are only three forts within the common enchosure. There were usually several encireling city walls: sometimes conceutric, sometimes intersecting, but never mure than three. The walls were mefented by frojeeting circular or rectangnlar towers at the gates or accessihle points. The gates themselves are often deep and domble with a cont and were supplemented by posterms connected with the interior by long vanlted passiges (Boghaz Koi, Norba, Alatri, Ferentino). Broal, well-grulel roads, with heary retaining walls, led up to the gates and connected the network of eities. They were protected at intervals by forts. In plan, these cities are an irregular oral, liffering essentially from the prehistorie terremare, and the Etrusean cities which use a square plan, with two main streets at right angles like the Roman camp. In Italy there is one city where the lines of streets and sidewalks, different classes of buildings, water supply and draiuage, grading system in terrace, with huge retaining walls, plan of honses and temples, ean be studied: this is Norba in Latium, recently surveyed ly the writer for the American School of Classical Sturlies in Rome. Similar work with exeavations is being commenced in Crete by the English, French,

PELASGIC ARCHITECTURE

and Italian archzologists. For northern Syria, the Germans have uneorered a typieal Hittite city at Senuljirli, which has two cireular circuit walls with a hundred small towers and three gateways, some of them decorated with monumental sculptures.

In Crete, the city of Goulas-Lato is even better preserved than Norha and is of far earlier clate. There still remain the great gate, and its ipproach and outworks, the entire city wall with its ramps and towers, the retaining wall.s of terraces, with stone honses and palaces often preserved to a height of 6 feet, with pasements and door jambs in place. It is now being surveyed, and will probably be excavated by the French. Thus far, Knossos has yiedded the best results, although the English explorers, Evans and Hogarth, have hat only one campaign of work. The great Palace of Minos has been found to be sacred to Zeus of the Double Axe (Labrys; hence Labyrinth, which see) and to be the fimous ('retan Labyriuth. The relations with Egypt are proved by a statuette of the lath Egyptian dynasty. There are earlier stages of the palace below the level now being exearated, which may date from abont 2000 B.c. The stonework of the chambers and passages is coated with gypsum, ant either frescoed or lecorated with paintel reliefs. This great roval residence of the ruler of the island was not defenied by any fortress. It lay, surrounded by the buildings of the city, which reached up to it from the lower level on terraces; some are villas of considerable extent, enclosed by heary walls, in part even earlier than the palace (pre-Myeensean).

Styles of Construction. Certain common traits may have been developed hefore the emigrations. For example, the so-called "C'yelopean" construction, before the introdnetion of metal tools for quarring and dressing stone ; also the use of bricks (especially smm-dried), adopted from the Babylonians and used in early Hittite, Trojan, and Mycensean palaces, thongh not for main outer walls of acropolis, city, etc. The listinctions that arose in rarions countries were due: (1) to racial differences; (2) to local material ; (3) to individual development.

The methorls of wall construction can he roughly classified as follows: (1) Cyclopean, of large unhewn blocks as they come from quarry, the crevices being filled either with chips or a smear of mul or cement ; (2) horizontal scales, also unhewn, in rough courses of small material ; (3) polygonal blocks dressed only where not exposed; (t) squared blocks hressed in same fashion; (5) polygonal blocks, and (6) squared blocks, both dressed on exposed as well as on other faces. There are many subvarieties. Ronghly speaking, these categories follow in the chronological order indicatel. Still, even when the Cyclopean blocks were used, there was

PELE

a difference inade between the outer and inner walls: the temenos and palace walls being of stones of medium size, and fairly uniform and regular shape, thus leading to irregular horizontal comses. Later, when the woolen wedges, by which the Cyclopean blocks and horizontal seales had been quarried and made ready for use, had been supplemented ly metal implements, which allowed of splaring and taring the blocks, the older and easier rongh methools were continued in the outer watls, while the palace walls, salnctuaries, tombs, treasuries, cisterns, and the like were constructed of tooled stones, sometimes pulygonal, but more uften in horizontal courses, hecause this was the most convenient in short wall spaces, broken by openings. It is a mistake to suppose that the use of tooled polygons is earlier than that of similarly tuwled course construction, for jolygonat walls contimed in use until long after Pelasgic artistic traditions had become obsolete. The famous polygonal wall at Delphi (sixth century) is mingue for its archaistic use of simuons lines, and the polygonal wall at Eretria is evell later. In Asia Minor the transition to the opus isorlomum. is shown in such enurse construction with oblique joints as the walls of Isionda in Pamphylia. Archaistic use of polygonal above with opus isoduimum is shown at Cnidus, in Lycia and Akarnamia, and even earlier in the fortifications with curved towers near Itasus: whils it occurs in Catium as late as the close of the Roman Republic. Of genuine carly polygenal masomry, the finest examples in Italy are the citadel of Alatri and the walls of Segni, Norba, and Ferentino, dating probably between 1000 and 600 b.c. - Arthitr L. Frothingham, Jr.

Schliemann, Ilios, Truju, Mykence. Tiryns; Schuchharelt, Schtiomenn's Excruations, etc.; t'errot and Chipiez, Mistoire de l'strt duns l'atiquitá; Chantre, Ernest, in Nourelles Archives des Missions scimtifitus (Vol. VIl., 1897); Papers in Arehæolorical Periodicals, as the American Journal of Archurology.

PELE ; PELE TOWER. Along the Scotch and English border, a small fortified tower or keep, common from the early Mildle Ages to the seventeenth century. It was the manor house of those ilistricts, and as such fomed a place of refige for tenants and neighbours.

PELLEVOISIN (PELLEVOYSIN), GUILLAUME ; architect; b. I $47 \overline{7}$.

Dec. 31, 1506, he was chosen to construct the new tower of the catherlral of Bourges, France, under the direction of Nicholas Byard and Jean Chesnean, and in I515 was made

PEN
sole director of the works at the eathelral. In 1522 he rebuilt the Hotel Dieu at Bumges.

Chemnavières, Archices de l'att francais.
PELOURINHO. A monument erertel in a public spuare of a Portugucse city as a sign that the corpmation has heen invested with muniripal rights ; it has uswally the form of a deworative column standing on a platiom.

PEN. An instrument for arawing or writing with ink or other colnured fluid.

Bow Pen. (See Bow Compass, under Conpass.)

Compass Pen. A pro mate like a ruting pen and fitted to a pair of compasses, for describing circles in ink. (See Compass; Dralwing I'en, helow.)

Dotting Pen. (Sce Drawing Pen, 3, below.)
Drawing Pen. Any pen for use ill drawing; specifically:-
A. A metal pen of the usual form, but gen-

Pele Tuwer, on the English avi Scottrsu burder: Aydon hall. Nurthembriand.
The undefended doorways opened into the hase-court, of which the high wall is now destroyed.
erally harder, and having a sharper point, for frec-hand drawing. (See Crowquill.)
B. An instrument for ruling lines in medranical drawing when guided ly the elge of a siquare. curve, or the like. In its most common form it has two thin, elastic, metal blades, fixed ficce to face in a handle, of which they form the prolongation. The hatles are precisely the same in shape, and have exactly correaponding romuled puints, between which the ink is retained ly capillary attraction. The distance hetween the points can be alljusted ly means of a screw, which thus regulates the thickuess of the tine to be drawn.

A donble drawing pen has two pairs of such illades, with a third screw, by which the two puirs may be adjusted, sin that two parallel lines may he drawn at a given distance ajart.

A dotting pen has, hetween the points of the blades, a sinall wheel, the circumference of which

PENARIA

is indented at intervals, so that, when travelling over the paper, it will deseribe an intermptel, broken, or clutted line.

Lining Pen. Same as Drawing Pen, D.
Railroad Pen. A donble drawing ben for describing two parallel lines, and nsed for dratwing railroal tracks. (See Drawing Pen, B.)

Right Line Pen; Ruling Pen. Same as Drawing Pen (B), above.

PENARIA. In Koman antiguity, a storeroom; or, ass some molern writers think, a small and minuportant sleeping room opening on a court.

PENCIL. A. A small brish for writing or painting, such as, in European countries, are made of camel's-laiir, sable fur, and the like, and, in the East, of different regetable fibres.
B. A piece of lead, plumbago, chalk, or other somewhat hard substance, by which a mark can

Pendant: Window Head cit into Resemblance of Two Arches, with Pexdant nistead of Mullios.
be made, whether set in a wooden case or a metal holder, or not.

PENCIL (r.t.). A. To prodnce or describe (as a line) with a pencil.
B. To paint, or otherwise embellish, by means of a pencil ; thus, joints in lnickwork are often pencilled in white.

PEND. In Scotlant, an arched roof of masonry, not groined ; hence, a raulted or arched passage through a block of luildings. In the latter sense sometimes in the plural, as the Pends.

PENDANT ; PENDENT. 1. Anciently, a pendentive.
B. A fixel hanging ornament, frequently richly sculptured; usmally the projecting lower end of a member or a piece of construction, as the bottom of a newel below a ceiling, or the

PENDENTIVE

bottom of a keystmue, or the end of a post of a rouf truss extended leelow the tie beam.
C. A hanging ornamental object of any sort ; applied loosely to hanging lamps ame lanterns (see also Curona), votive offerings in churches, and the like.

PENDENTIVE. - 1. A piece of masomry construction for filling in the space in the reentrant angle of two walls, beginning with a point or line at the bottom, and forming a continuous, more or less

PENDANT OF FAN Vatloting: Henry THE SEYEXTH'S Chapel, Westmin. STER; A.D. 1510. triangular surface sloping or eurring outward as it rises, until it ends at the top in an are

Pendant, lith Century, at Schloss Kalmar, SWEDES.
of a horizontal circie or a straight line, in order that a square or polygonal room may be covered by a cupula of circular plan or having more sides than the room. The simplest and typical

Pexdentife, Fig. 1.
form is the Byzantine, or spherical, pendentive, Fig. 1, the surface of which is part of a sphere

PENDENTIVE

whose diameter is the diagonal of the square to be covered. This half square, or cupola, is

Pendentive, Fig. 2. supposenl to be intersected by four equal harel vanlts whose diameter or elhord is the side of the stuare, or ly four rertical planes, and hy a horizontal plane tangent to the tops of the resulting semicircles. What is then left of the surface of the sphere makes the surfare of four pendentives, intembel to carry a smaller eupola whose diameter is that of the square to be covered, Fig. ‥ As the pendentive is most commonly built in the spandrels of large arehes, which pierce the walls of the room to be coverel, so it quite rommonly starts at a point above the springing line of its supporting arches, in which case its surface is part of a sphere whose diameter is greater than the diagonal of the square. It may also start from a line or a small cireular are, instead of a point, the corners of the square being cut off, as often oceurs in Remaissance lnildings, the diameter of the sphere being then less than the diagonal of the square.

It is evident that by means of spherical pendentives a dome may cover not only a sunare,

Pendentive, Fig. 5.
but a triangle or a polygon of any number of sides, or a rectangle, and cxamples of hexagonal, octagonal, and sixteen sided occur. There is a peculiar form, Fig. 5 , in the baths of Caracalla, Rome, in the angles of an octagon, faced with brick, and donlotless once plastered over or covered with marble. It starts with two straight lines, at an angle of 135°, which, as they rise to describe the surface, become enrvel, obliterate the angle, and merge into an are of 45° at the top. In the case of a rectangle which is not a square there are two methods of forming the pendentive. In the first, Fig. 6, the intersecting vaults are in pairs of different diameters,

PENDENTIVE

and the pendentives are mun together above the ridges of the smaller vaints, and contimen so up, to the level of the ridge of the larger, the diameter of the covering dome leing then that of the smaller. In the scoond, the sitle, or narrower, vaults are stilted so that their crowns are level with those of the main, or larger. The origin of the pendentive which we call Byzantine is not clear. There are apparently one or two Roman examples of it, as in the temple of Minerva Medica, Rome;

Pesidentive, Fig. f. but it is quite certain that its general use occurs first in the early Christian arehitecture of the East, whence it spread to the West. It is very rarely foumd in the Gothic jeriod, but is common in the Renaissance. For a fuller discussion of the forms see Sir Gilbert Seott's Lectures on Mediaral Architecture, Vol. II., and V'iollet-leDue's Dictionnaire Ruisomé.
b. Less accurately, any device for making the transition, internally, from the corner of a square or polygon to a

Pendentive, Fig. 7. straight line above across the angle, in orter to cary an octagonal ranlt or a spire, or as preparatory to a circle which shall carry a dome. The forms are various, and will be best understood if arranged as far as practicable in geometrical order.

Pendentive, Fig. 8.
A lintel, or several lintels, laid across the angle, Figs. 7, 8. Common in tombs in India,

PENDENTIVE
forming an wetagon, sumbunted ly a sixteensided polygon, which carries a cone.

Pendentife, Fig. !. at Latakieh, carryiug a dome. (De Vogiié, Syrie Ceutrule, Vol. I, p. i6.)
early example oceurs

C'orbel courses,
Fig. 9. Common in England as the support of the fuur noncardinal sides of a square tower which has to earry a spire.

A solid with a plaue surface, Fig. 10, part of an inverted pyramid. An

Pendentive, Fig. 10.

Pendentive, Fig. 11.

PENDENTIVE

Pendentive, Fig. 1 Ti.

Fig. 13 is a part of a cone, fan-shaped, spherical, or spheroidal. Fig. 14, domical, S. Julia,

Pendentive, Fig. 12.

A solid with a cylimllical surface, Fig. 11, Spoleto.

A solid with a comicel surface. Fig. 12 shows

Erescia. Fig. 15, domical, theoretically a variation on the preceding made by carrying up the walls until they intersect the half dome, but really an earlier form. Fig. 16, with a

Pendentife, Fig. 13.

Pendentive, Fig. 14.

Pendentive, Fig. 16.
the half of a right cone. Very eommon in French Romanesque, and known as a trompe.

Pendentive, Fig. 15.
segmental dome. Fig. 17, fan-shaped, from Limburg Abbey. The form, starting from a point, is common in French Romanesque. Fig. 18, cell-shaped, developed from Fig. 14.

Pennentive, Fig. 19.

Fig. 19, a transitional form, begiming at the spring as a conical, and passing into a demical smrtace. It is quite rommon in French liomatnesplue. Fig. : -0 , a barrel vault. A liyzantine form. Common in Saracenic arehitecture, lut the construction is ohseured by stalactites or homeycomb onmamentation.

Pendentive, Fif. 20.

Pendentive, Fig. 21.
Arches, simple or compound, generally called stpunches. Fig. 21 is a common arch, whose suffit is cylimbrical. Fig. n.2 shows a splayed arch, whose softit is a conichl surface. Fig. 2.3, an arell whose soffit has an elliptical curve om ome face and a circular on the other, the ridge being level, and the surfare of sothit emoidul. Fig. 24, a series of chamfered or monded arches. Fig. 25

PENDENTIVE

Pendentive, Fig. 22.

Pendenilye, Fifi. 23.

Pendentiye, fig. : $4 . \quad$ Pendentive, Fig. 25.

Pendintive, Fig. 26.
is from a tomb at Ohd Delhi, India. Fig. 26, segmental arches, with splayed or conical softits.

PENDENTIVE

Compound forms: Fig. 2^{-7} is a conical, fanshaped vanlt, with an arch in front of it. Fig.

Pendentine, Fig. 27.

Pendentive, Fig. 28.
28 is the half of a cloistered vault with an arch in front of it ; from the abbot's kitchen at

PENDENTIVE BRACKETING
Stanton Harcourt, England. Fig. 29 is a fanshaped form, spheroidal, with a squinch above

Pendentive, Fig. 29.

Pendentive, Fig. 30.
it ; Spanish, Gothic. Fig. 30, a combination of cylindrical, arched, and conical.

- Charles Babcock.

PENDEN-TIVEBRACKETING ; COR. BELLING. Corbelling in the general form of, and discharging the office of, a pendentive. The term is extended to include the apparent construction, common in Moorish and other Mohamonedan styles. (Compare Honeycomb Work : Stalactite Work.)

Pendentive Bracketing: Conjectural Resturation of Rouf of as Assyrlan Cupola, the Forms suggested By Moslem Wurk.

96

PENDICE

Pendice. Sume as Pextice.
PENETRALIA (p]. n.). The imermost parts of a building, as the inner chambers; hence, in particular, a sanctuary ; especially in Roman dwellings, the private chapel or sacred chamber in which the penutes of a household were enshrined.

PENITENTIARY. - I. A place for the perfomance of penanee ; a small bnilding in a monastic or emventual establishment in which a penitent confined himself or was contined. That part of a chmeh to which penitents were committed douing the service.
B. A prison in which convicts are confined for pumishment or reformation (spe Prison).

PENNETHORNE, SIR JAMES ; architect; b. 1801 ; 11. Sept.], 1871.

He was a nephew of Sir John Nash (see Nash, J.), and studied also with A. Pugin (see Pugin, Augnstus). He visited France and Italy. In 1832 he was employed by the eommissioners of metropolitan improvements (London) to devise plans for New Oxford Street, Kensington Palace gariens, Victoria, Kemnington and Battersea parks, the Chelsea embankment, etc. He built in London the Museum of Economic Geology, the Stationery Otfice, Westminster, the west wing of Somerset Honse, and mate may improvements in Buckingham Palare. His most notable work is the buiding for the University of London.

Stephen-Lee, Dictionary of National Riography.
PENNETHORNE, JOHN ; architect; b. Jan. 4, 1808 ; d. Jan. 20, 1888.

A younger brother of Sir James Pennethorne (sce Pennethorne, James). In 1830 he made a journey through Europe to Fggyt. He was the first to observe the curvature and optical refinements of the Parthenon; and he also observer the curvatures of the temple of Medinet Haboo in Egypt. In 1844 be published privately a pamphlet entitled The Elements and Muthematical Primiples of the Greek Architocts amblitists, in which he set forth a theory of optical corrections. Mr. F. C. Penrose continnell these investigations in 1846 , aml pmblishen his Irinciples of Athenion Architecture in 1851 (l vol. folio). Pennethorne's great work on The Geometry and Optics of Ancient Arehitecture was not published mutil 18TR. He mublishel also a paper in the Trausactions of the Royal Institute of British Architects (18781879) on The Connection betucen Ancient Ait and the - Inciert Geometry.

Stephen-Lee, Dictionary of National Biography.
PENN PIT. In Great Eritain, a primitive Jwelling under ground or nearly so : the pit excarated for the purpose being roofed at the level of the surface or, later, somewhat abore. (Addy.) (Sce Pit Dweiling.)

PENTASTYLE. Consisting of five columns, or haring a row of five columns in front;

PERCIER

said of a portico or of a building. (Sec Colutunar Arehitecture.)

PENTASTYLOS. A pentastyle builling. The term is modem, male up to correspond with hexastylos, octastylos, rete.

PENTHOUSE. A. Primarily, a roof of only one slope ; hence, ly extension, -
B.' A small building or shed with such a roof. In modern times used attributively, as a penthouse roof. Sometimes written Penlonse.

PENTICE. Same as Penthouse; written also Pendice, Pentise.

PEPERINO. A voleanic ronglomerate of ashes and gravel found in considerable guantities in the Ahan Hills, near lame, and much used in and near Rome in ancient and momern times. The name is given to other conglomerates found elsewhere in Italy ; as it is suggested by the resemblance of the black spots to peppercorns.

perac. (See Duperac, Etieme.)

PERCENTAGE CONTRACT. A contraet in which the buikler linds himself to furuish material and labour at market rates in the construction of a lmilding accorling to plats and specifications, his remmeration leing strictly confined to a stipulated percentage on the value of such labour and material. The main theory of sucb a contract is to give to the designer a more complete control over the work from day to day. (Compare Day's Work.)

PERCIER, CHARLES ; arelitect; b. Aug. 22, 1764 ; d. Sept. 5, 1838.

Percier was a pupil of Antoine Francois Peyre (see Peyre, A. F.), in whose ateher his association with Pierre Fontaine (see Fontaine) hegatn. He was employed also by Chalgrin (see ('halgrin) and Pierre Paris (see Paris, P. A.). In 1786 he won the Premier Grand Irie de Rome in architecture. He supported himself during the Revolution by designing furniture and decorations, introlucing antique motives from Rome and Pompeii. This may he thought the begiming of the so-ealled style empire, popular throughout Europe in the early years of this century. In 1794 Percier and Fontaine, acting together, replaced Pierre Paris in the direction of the decoration of the Opra in Paris. Between 1802 and 1812 they had charge of the Lonsre and Tuileries. They restored the eolonnade of the Loumre (see Perrault, Clande), and completed the npper story of the buikings on the court. At the Tuileries they constructed the chapel and theatre, and the buildings adjacent to the Pavillon Marsan in the newly opened Rue de Rivoli. They designed the Are de Triomphe dn Carrousel, and the great stairway of the Musenm of the Lourre which was removed hy Napmeon III. They designed residences in Antwerp, Brussels, Venice, Florenre, and lome. Pereier retired from the association with Fontaine in 1814. He pub-

PERCLOSE

lished liestuntution de la Conlmme Trajome （たが），aml，in ansmiation with Fontaine， I＇aluis，Muisoms at untors blificess de liome
 dréromtions arérutées dans ľéplise Totre－

1 rol．folio）：（Ituix des phus cíflures Maisonsde plaisance de Rome et de ses emirons（1：09－ 1013，grand folio）；Recueil des décorutions intéripurs（Paris，1819）：etc．

Tourelle biographie ainérale；Lance．Diction－ naire．

PERCLOSE．Same as Parelose．

PERISTERIUM

PERGAMENE ARCHITECTURE．That of lergamum or Pergamon，a city of Mysia in Asia Minor，all important centre of Greek civifization and art atter the time of Alexander． （See Greciau Architecture．）
PERGOLA：PERGOLO．A sort of arbour， common in formal Italian gardens or on ter－ races comectes with Italian rillas；formed of a lonizontal trellis，vine－covered，and suppurted hy columns of stume or pests of mood．A plat－ form on balcony so protected．The Latin forn， per！ulu，is sometimes nsed in English for such an arbour．
pergula．In Latin，a particu－ lar member of a larger building，espe－ cially of a honse，as to the nature of which modern writers liffer．Mian＇s Pumpeii and Panly＂s Real－Encyclo－ pertie，make it an upper and slighter coustruction，a halcony，bay window， or light wooden gallery ：especially the upper story of a shop，as in Pom－ peii，where the small shops enclosed within the insule（see Insula），have often uiper Hloors comectell with then；much as，in Paris，the slopl－ keeper＇s family live in the Entresol． By extension，a shop in either sense， for selling or working ：a Bottega or Studio．－R．s．

PERIBOLOS．In Greek archi－ tecture，a wall euclosing consectated grounds，generally in connection with a temple．The area so enclosed．In the Middle Ages，the wall enelosing the choir，the atrium，or any otber sacred place；or the other walls sur－ rounling the precinet about a church， aml forming the outmost bounds al－ lowed for refuge or sanethary．

PERICOLI，NICCOLO் DEI． （See Tribolo．）

PERIDROMOS．The narrow passage around the exterior of a peripteral building behind the envel－ oping columns．（see Peripteral．）

PERINO DEL VAGA．（See Buonaccorsi Pierino．）

PERIPTERAL（adj．）．Sur－ rounded by a single range of columms． Said of a lmilding，especially a tem－ ple．（See Colmmnar Architecture．）

PERIPTEROS．A peripteral
building（Vitruvius）．
PERISTALITH．A eircle or cincture of upright stoues，surounding a burial mound or barrow．

PERISTELE．One of the monotithie up－ right stones in a peristalith．

PERISTERIUM．The inner or second ciborimm：the Greek term for a hanging taber nacle．－C＇．C．

PERISTYLAR (alj.). Summaled by columa: : having, or pertaining to, a peristyle.

PERISTYLE. A rage or ranges of roof supporting columas enveloping the exterior of a buthling, ats of a peripteral temple ; ar surromming an internal conurt of a huilding, as in the Peristylimu of a Greek or Roman honse ; or forming a covered ambulatory or open screen aromil thy large open space, partly or wholly enclosing it. Also, by extension, the space so eneluseal. (See C'ohmmar Architecture.)

PERISTYLIUM ; PERISTYLUM.
as Peristyle : the original Latin worl taken directly from the Greek. By familiar extension in Latin writing, the enclosed garden of a large Roman house, forming al eomrt wholly or partly surrommled by ocerpied builulings, nut having a colomade on at least three sides.

Rhodian Peri-

 stylium. According to Vitruvins, one in which one side is higher than the athers. This form is supposed by some to imply a second story colonnate on that side, the upper story corresponding to the secoml story of romms.PERPEND. (Evidently derived from the French peripaing.) A. A thronglistone; a bondstone passing throngh the whole thickness of a wall and showing on hoth sides thereof, esuecially in a wall of stuared stomes or ashlirr. A perpend watl is a wall composed entirely of such stomes. K゙ceping the prepeul is a phrase formerly used by masons, referring to

Perpendictilir Anohitectire: Earlifet Tracery; Edinfiton, Wiltnhike, A.d. 13 ft 1.

Kreping the vertionl joints arer one another in the altemate courses. This nse, howerer, scems to $1 x$ derived trom nerpeudicular.
B. A vertical joint in masomry ; experially in hrickwork, in which, when of gown workmanship, these joints are suphnsed tomake regular lines perpendioular to the brels.

PERPENDICULAR

 ARCHITECTURE. That Euglish style which is rhataterized by perpenticular lines in the eommon nse of that tem, mone striatly, of vertical lines. The term was introhluced by Thomas Rickman for that style of English Gothio amhitecture which is chatheterized by window tracery laving straight stume multions, carried vertically not only in the lower parts of the wimber, and dividing the lights one from the other, but in the decorated, traceried top itself. The I style may he considered to begin in 1370, and it

Perpennicular Architecture: Late Tracery; King's Culdege Ciapel, Cambridge. never wholly disappoars so long as Gothise influence appears in English architecture, which is mutil a very late periut. (Sce Englaml, Arehitecture of.) -R.S.

PERPENDICU-

 LAR. RESTORING TO THE. The act of eorrecting a building, or part of a building, which is ont of fulumb, as in al wall or pier, a tower or spire. This is accomplished in ratious ways, acembing to the peenliar conditions of the case: by the distrihuted pressure of heary balks of timber applied in the form ot props or struts against the allected wall ur pier, and learing at bnttom against immorahle prints and actuated by jack.
PERRAULT

screws: or by pulling it into place by the use of turn-buekles in heary iron rods or bolts ; or by the driving in of steel werlges in the joints of the masonry ; or by iron rols jut in place when very hot aml exerting a drawing power by contraction while cooling; or ly a combination of these devices.

PERRAULT. CLAUDE; physician and architect; b. 1613 (at Paris) : 1]. Oct. 9, 1688.

Clame Perrault was a mathematician, seientist, and practising physician, who aequired a taste for architertmre. In 1664 Lonis XIV. undertook the construction of the eastem façade of the (fuadrangle of the Lourre (Paris). The

Perslan Architecture, Part I.: Platform And Ruins at Persepolis.
Tiew from the east, that is, from a poiut below and to the left of A in the plan. On the lef are the wingeit buman-headed bulls of the profylaea D in plan. The columas are of the so-called lyppostyle ball of Xerxes E on the second platform.
designs made by Levan (sce Levan) not being acceptable, a socheme was elaborated by Bernini (see Bernini), which was begun Oct. 17, 1665 , and soon afterwarl abandoned. Before the arrival of Bernini, Perranlt hat jresented a plan for the building, which was rejected at the time ; but this was presentel again in 1667 ancl accepter]. This building, forming the eastern side of the great court, and laving on its onter face the famous colomatle of the Lomre, was completed in 1674. The southern façade the river façade) was also huilt by Perrault. These builings were not actually roofed over until 1755. (See Gabriel, J. A.)

Lance. Dictiomucire; Bauchal. Dirtionnaire; Abbé Lambert, Histoire du Rè̀gne de Louis JII.
trôlour of the works. In 1513 he was replaced at From by the Flemish architect, Van Boghem.

Charret, Lyons Artistique. Notices hingraphiques; Charvet, Jian Perréal; Dupasquier, Notre Dame de Brou.

PERRON. A flight of steps, including jlatform and parapet, forming approach, as to the cutrance door of a house or public hall: usnally out of doors, but occasiomally in an outer vestibule, or the like. (Compare Stoop.)

PERRONET (PERONET), JEAN RO DOLPHE; engineer and architect; h. Oct. 8, 1708 (at Suresnes, France) ; 1. Febo. 20, 1794.

He was edheated as a military engincer, but abandoned this profession for arehitecture. In $17+5$ he rebuilt the choir and spire of the cathe-
-

PERSIAN ARCHI'IECTURE

A specimen of Joslem architecture in that country. Courtyard of the great Mosque of 'leheran, which dates from the sixteenth century of the Christian era. The decoration is almost wholly
in richly coloured enamelled earthenware tiles: a manufacture in which the I'ersians have always excelled.

PERSEPOLITAN ARCHITECTURE

dral of Alenfon (France), which had been destroyed by fire in 1744 . In $17+7$ he wals made director of the E'cole des Punts of Chunsisées, Paris, fonnded in that year. In 17 to he hegaln with Hippeam the great bridge at Orleans, France. $1_{11} 1763$ he rephared Hippeam at his death as premier ingénimer the roi. He lesigned the bridge at Nilltes in 1-6, the luidge at Nogent-sur-seine in 1766, the luridge at Neuilly (Paris) in 1768 , and the Pont Lonis XII. (now Pont tle la Concorde) in 1786. Perronet held the oftice of inspectenr yénirol et premier ingénieur des pront.s et chunssiéss du royume. He jublished Description des projets de lu construction des ponts de Tremilly, de Nirntes, drorléans et entres, etc. (Paris, $17 \mathrm{Na}-$ 1783, 2 vuls. folio; supplement, I vol. folio, Paris, 1789.)

Bauchal, Dictionnuire.

PERSEPOLITAN

 ARCHITECTURE. (See Persian Architecture.)PERSIA, ARCHITECTURE OF. (See Persian Architecture.) PERSIAN ARCHITECTURE. That of the lauls included in the modern kingdom of Persia, and those immerliately auljuining which have received and retained Persian artistic influence. Thus, although the great empire if Cyrus reached the Nediterrane:un, it left but little impression upon the arehitecture of Asia Minor amd Syria; while within the homularies of modern Persia that influence is still easy to study, and to julge, at least in part. Architecturally, Persia may be considered under (I) the rule of Darins, Nerses, and their successors, about 500 to $33+$ B.C. ; (2) the rule of Alexander and his successors, beginning 334, an epoch not identifiel with known huildings of importance in this region: (3) the Parthian rule in the second ant thirl centuries A.D. ; (4) the kingdom of the Sassanians, 206 A.D. until the Moslem conquest ; (5) the Moslen rule, resulting about the ninth century in an indepemlent Mohammedan kinglom. The later nurquests, as by the Seljuks and by Jenghis

PERSIAN ARCHITECTURE

Khan, ho not alter the national charactes of the P'ersian Molammedan art. (For these subjects ser, in the following orler, F'ersian Arelitecture, Pint I. ; Parthian Architecture; Persian Architecture, J'art 1I. ; Persian Architecture, P'art III.)

PERSIAN ARCHITECTURE; Part I. The origin of the architecture of Persia must be sought for in that of the two conntries conquered ly her, viz., Babylon and Metlia. From the furmer she derived the raised phatform, or terrare, on which her palaces were built, - the lrooud flights of steps which led up to them and to her jalaces, -and the winged bulls which

Persian architecture, Part 1.: Platforms and Palaies at Perserolis. The white surface is that of the plat forms.
A Landing of stairs from town to platfurm. $\quad F, G, I I$ supposed royal dwellings (F generally B Propytaea on the first plateau. " Ustern.
f) Stairs Jeadine to second plateau.
of Xixes.
if Throne room, L Unknown ruin.
flanked the portals of her Propylon. To the Medes she owed her porticoes and balls of culnums. Media heing a country abounding in timber, the supports of her peristyles and halls: were all in that material, proteeted and decorated with phates of the precious metals in thin lamina (Polythins). These columns in Persia were couniel in stone. The Persian colum, twelve or more diameters in height, is a copy of a woolen and not a stone support, and the rich deenation of the campaniform base and the capitals with their vertical rohntes on each side suggest a metallie origin. ${ }^{1}$ The bracket

[^0]
PERSIAN ARCHITECTURE

eapital may also have been derived from the Medes, but its firther development into the heads, or, more properly speaking, the torsi of halls and gritlins, is probably owing to the inthence of loalyonian or Chaldean art, if indeed the C'hatdean sculptor maty not he looked upon as the artist who carred the winged bulls of the propylon ant the rich balustrades of the flights of stairs.

The earlient l'ersian palare is the one built at latsargitle, by Cyrus, which consisted, acrording to Plandin and Coste, of a portiens, i.f. a huilding with its rouf suppurtel by rows wi columms, ant, at each angle, a small chamber enclused with walls which formed the antse of she entrance prorticoes. This type of building may have been the "stoa" referred to by Polybius.

A secomt Persian work is the Takht-i-Soleiman (tlirone of Solomoni), also at Pasargadie, an immense platform with a frontage of 730 feet, evidently huilt in initation of Babylonian work, lut executed in stone with an external wall of fine ashlar masomry with drafted joints. Portions of the wall still rise to the height of 38 feet, some of the stones being 13 feet long, and the courses 3 feet high. This platform is considered to he the terrace on which a palace was intended to be erected, but of which there are no traces to suggest that it was eren commencel. It is the earliest example known of regular drafted masomy, and may have suggested that type of ardhitertural embellishment which forms the chief characteristie of the substructure of Herod's temple at Jerusalem. (see Syria, Arehitecture of.)

From these we pass to the more developed examples at Persejolis and Susa, where, in the pataces of Darius and Nerses, and in the apadana, or great reception hall, of the latter monarch, we find the masterpieces of Persian arehitecture. The palaces at Persepolis were built on an immense phatform at the foot of a high range of rorky hills, consisting of the natural rock at the back, but on the west and south sides built in blocks of stone of rarious sizes, not laid in horizontal courses, but fitted to one another with the greatest acruraey, and held together loy metal clamps. The aproach to the phatform on the west sile is by a chmble tiight of stairs, 2.2 feet wile, the steps having a treal of 15 inches with a rise of 4 inches, so that they cuuld le ascemted lỵ horses. The first builling on the platform (origiually, probably, connected
make a model of wond for the relief, or senlpture. in the full round, as the case might be, upon which sheet of metal were secured. and finally beaten to the shape of the carving beneath." \quad It is natural that the precutiar forms resulting from the technical properties of beaten shet metal shoutu determine a style which is recognizable even in stone carvings when these were the creation of sculptors famitiar with works of this kind."
hy low walls with the parapet of the platform, now gone) is the Propylon of Xerxes, a square luilding with its root supported internally by four cohmms, with winged bulls tlanking the entranee and rear portals and doorways on the riglat and probably on the left. The best preserved building on the phatform is the palace of Darins, the examination of which will facilitate the inquiry into the restoration of the Hall of Nerxes, respecting which there is so much diference of opinion amongst antiquaries.
'The patace of Diarius was hinilt on a platform 10 feet high, aseended by tights of stairs at each end. Its principal front ficeel the south and consisted of at pratico of eight columns, in two rows of four each, in antis letween wings enclosed with walls. The portico led to a square hall with its roof carried by sixteen columns in four rows, the bases of which only remain in situ. There were other rooms on each side with a conrt and other roums in the rear, the plan of which has not been made nut. The wall between the fortico and the hall has a central doorway and two windows on each side; these were built in stone, the doorway in three stones, riz., posts and lintel, and the windows each eut out of a sulid block. These blocks of masonry were isolated one from the other, but the toothing left and the mortice holes on each side slow that the walls miting them were of an ephemeral nature, such as eutule brick, similar to those found hy Mr. Dieulatoy at Susa, and found also in those stone portals at Karnak in Egypt, which were originally tianked by huge coude brick pulons. Of the porticu the bases of the columns remain in sitn, showing their fosition ant the stone antie of the angle wings. The mortice holes to receive the ends of the epistyle are in advance of the line of columns, which would he inexplicable were it not for reprotuction of the palace farate in the tomb of Darius earved in the rock at the rear of the platform. The eapitals there carsed are double bracketed eapitals ; parallel with the epistyle are the two bulls' heads, and in between them and at right angles are other brickets projecting forward to earry the epistyle. The lower fitseia of the ephistyle, in fact, projects nearly a diameter uf the colum in front of it. To comerbalance their weight in the pertien of the palare, a similar bratket inside must have earried the roof boams. It is probable that these were all in timber, and the three fascile of that epistyle suggest that it was formed of three separate horizontal timbers projecting one in front of the other: they carried a series of joists, the ends of which projecting forward give the origin of the dentil eomice; the joists not leing placed quite contiguous one to the other: these joists carried a platform of buards on whieh the earth roof was formed.

We may now pass to the great Hall of

PERSIAN ARCHITECTURE

Xerses, one of the most stmpmblons works of antiguity, and which, thongh compmed only of the simplest elements, viz., a contral hall and three porticoes, covered an area greater than that of any buropean "atheralral, exerpting that of Milan and S. Peter's at home.

The remains of the I'alare of Nerses consist of the plationa or terrice, 350 feet cast to west, and 216 feet north to sonth, raised ten teet above the northern terrace, from which it was ascendes! by four flights of stairs, and of the bases of all the eolumms, viz., thirty-six in the central group in six rows with six in cach, anel of there other gromps in two rows of six each. ${ }^{1}$ In the restoration of this great hall there are many serions differences of opinion anong archeolugists.

In the east and west portiones the capitals consist only of the double bull or griffin ; the cross corbels on their hacks, being in timber, have disappeared. In the morth (primeipill entrance) below the bulls' torsi are two other features, the upper one consisting of grouns of vertical volutes, the lower a calyx with pendent leaves. The ornament of these two features, as well as that of the campaniform bases, resembles the forms taken ly thin plates of metal when beaten out on a woolen core, and is therefore probably derivel from the Median work alreally referred to. The columns were filuted, having from fortyeight to fitty-two tiutings, of elliptical seetion, and not semicirenlar like the Imic colmma.

The palace at Susa, first discoverel by Loftus in 1850 , was similar in plan, design, and detail to that of the great Hall of Xerxes ; it was raised on a platform on the east, north, and west sides, with an inclined ascent lealing round up to the higher lavel. On the soutl sinle it was on the same lesel as the comrt in front. Here Mr. Dienlafoy found nogative evidence of the existence of walls enclosing the central hall, viz., in the lines where the paving stopmed. The south side he considers was open to the court ; ass, however, its columns were placed between antie, its resturation wonld be similar to that of the porticoes and, as usial, the epistyle wonld project in front of the colnmms, raising none of those ditficulties of design which Messrs. Perrot and Chipiez show in their drawings, and whech are in distinet contradiction to the tombs of Darins and of his sucessmrs carved in the rock behind the phatform at Persepolis. The mignificent frieze of Archers in enamelled bétou, now in the Lourre, disoovered by Mr. Dieulafoy (the preservation of which was due to the fact of the walls they derorated having fallen forward on their fice), would seem to have decorated the

[^1]
PERSIAN ARCHITECTURE

two walls in front of the great Hall or apmanab. (1 m . Dieulafoy calls them pyons, but as the obming betwern them wats 170 fieet, it combl scarery le looked uron as part of a (lowrway.) The winding asecent refermed to wats pobably the private aproand of the king. Ahout 200 feret to the somth of these two walls Mr. Iiculafiog fonnd the remains of the great stairease, the steps of which, as that at Persepmlis, measured 15) inches treat and 4 inehes rise, the balustrade Ireing decorated with emamelled beiton hlowks. Mr. Dienlafoy found also portions of a frieze of lions in the same material, decorating some prots of the patate.

One of the most important discoveries mate hy Mr. I lieulatoy at Susil lies in the materiad employed for the walls of the Persian malaces, viz., that of crme briek, protected externally at Susi by hucks of enamelled bétom, ami at Persepolis by hurnt enamelled brick.

The only other monmmental works of Persian architecture are the tombs ; to those cut in the solid rock we have already referrel ; there are two examples of isolated tombs constrmeted in misomry, binit in the form of towers, square on plan. The example at P'msepolis, in front of the four royal tombs cut in the rock, measures $\ddot{I}+$ feet square an! is 36 feet in height. It is built in regnlar coursel masoury, with angle strips in relied, and a dentil rornice between, with stone rouf slightly weathered. The entrance domway is placol halfway up, and was closed miginallyly stone fours. Besiles nther recesses in the walls, probably introduced for decorative furpuses, there are a series of small sinkings or groores in the stome, placed at regular intervals, the object of which has never been ascertainel.

Exeept for their peculiar vertical position, there is such a close resemblance between the rolutes of the Persian capital and those of the Greek Ionic: rapital, that it is assmmed there may have been some connection between the two. The Greek Ionic capital, however, was fully developend elsewhere: in the archaic Temple of Diana at Ephesus, the capital uf which is nuw in the British Museum. It is probable thomgh that in both rases the features hat a metallic origin. At Neaulria, an ancient Greek city north of Assos, several capitals have born foums of a temple asoribed to the seventla century B.e., with vertical semivolutes, and underneath a calyx with pendent leaves, with much resemblance to those at lersepolis.

- Ii. Phení Spiers.

PERSIAN ARCHITECTURE: Part II., the Sassanian Period. The three principal nummments attributer to the Sassanian dynasty are the palares of Fironzabal, Serbistan, and Ctesiphon. The approximate dates of the first and list are known, Fironzabal having been erected by the King Fironz (Pheroses, A.D. 460 494), and Ctesiphon by Chosroes Nushirvan 110

PERSIAN ARCHITECTURE

(531-in9). Fergusson plawes Serbistan before Firenzabat, hut the plan of the finmer surgests an andrance in its comstruction, in that, instead of erecting the chormously thick walls we find in the latter, probably deriverl from the early traditions of Mesopntamia, its buiklers hat learned how to economize their thickness and to provide for the thrust of the raults by carrying them on piers built within the walls.

Firumabal also is the unly Siasamian building in which we fint, internally, reproductions of decorative features copsed from those in Persian palaces. The tralitions of Mesopotamia are shown likewise in the external breaking up of the wall surfates, which are decorated with a serics of semidetachet shafts withont base or capital, copied from the ground story of the Bahylonian tenple.

Scrbistan, on the other hand, shows the influence of Fioman work in its plan; the side halls, with their piers carried on stumpy colmmns, and the recesses between, covered with semidomes, recall, though on a much smaller scalc, the tepidaria of the Roman batls. The semidetacherl shafts are here employed to emphasize and give importance to the entrance purtals, or aiwans, instead of being distributed along the side walls.

In the great façale of the palace of Ctesiphon, similar shafts are found, aparently superimposed on three levels, in imitation of those of the Roman amphitheatres. The shafts, however, do nut stand one on the other, but are set hack and rest on ledges, and the design inchudes other features quite foreign to Roman work, so that it is possible the Greco-Roman work at Seleucia may have suggested the scheme of decoration, which is entirely different to any other known example.

The plans of Firouzabad and Ctesiphon are somewhat similar in arrangement, all the reception halls being in the front, preceded by great portals, and with an open courtyard at the back surrounded with smaller rooms. At Ctesiphon, there is one great aiwan, or reception hall, with a series of long parallel raulted chambers on each side, so arranged that the thmst of the raults should be nentralized. This will account for the exceptional thickness giren to the lower part of the front wall, viz., 16 feet 6 inches. At the back, the cross walls of other buildings resisted the thrust.

The principal interest in Sassanian architecture lies in its raulted construction, which, on the one hand, seems to be a revival of the traditional method of constructing elliptic domes as shown in Assyrian has-reliefs; and, on the other, to run on parallel lines with that development of domes carried on pendentives, as shown in S. Sophia and other churches of Justiman's time.

The chief difference, howerer, between the

PERSIAN ARCHITECTURE

Sassanian and loman or Byzantine vaulted surtaces, is that the former adhered always to the upright elliptical section, a form necessitated by the absence of centring. The ralue of the upright elliptical section given to a vault lies in the fact that the lower part of the ellipse being of slight curvature, it can be luilt with horizontal cuurses. Thus, the great barrel vault of the aiwan at C'tesiphon is 83 feet in span ; the bricks are built up in horizontal courses to nearly half the beight of the ellipse, learing a span of only 70 feet. In order to dispense with the necessity for centring, the rault is built with bricks laid flatwise in slanting rings. This system was adopted by the early Egyptians in their raulted granaries, and is practised down to the present day throughont Egypt and Persia.

The domes orer the three central balls of Firouzabad are built on peudentives, consisting of a series of concentric arches, the low one serving as the centring for the arch above.

At Serbistan, the central dome is carried on pendentives erected in a rery haphazard manner, which suggest that the Sassanian builder trusted to the excellence of his mortar rather than to any proper constructional method, unless the stone facing las fallen away, exposing only the filling in at the back. This is just possible, because the semidomes orer the recesses in the two side halls show considerable knowledge of dome construction.

It is evident, from the coarse quality of the masonry, rubble work of an inferior kind, that it was always intended to cover it orer with stucco; in the doorwars at Fironzabad are the only remains of stucco which exist in any of these Sassanian palaces.

Beyond this stucco work, there are ouly two decorative features peculiar to this style: the first is the zigzag (dents-de-scie) moulding, a design obtained by placing projecting bricks edgemise to carrr a string course, and this is found throughout Firouzabad and Serbistan. The second, found at Ctesiphon, is the introduction of angle shafts, without capital or base, to arched opeuings and arcades.

Eoth these features are found in a remarkable building at Ammon, in Moab, attributed to Chosroes, the Sassanian king, and supposed to hare been built ly lim, as well also as in the palace of Mashita, built during his triumphal march to Jerusalem in 14 A.D.

At Ammon, the zigzag decoration is carried romd the archmoulds, giving the design of the Norman dogtooth ornament. Both at Ammon and Mashita, the rich decoration of the carred stonework is due to Greek artists, in the former probably the native sculptors, in the latter those sent from Byzantimn for that purpose. (See Syria, Architecture of.)

In the ruck-cut tombs at Tak-i-Bostan, the Sissanian scudptor shows an acquaintance with

PERSIAN ARCHITECTURE

the capital as a lecorative feature, but not as a constructional one. There are, however, isolatel capitals at Bisontum, illustrated in Flandin and Coste, as also panel sculpture of great beanty and much originality, which cansens ns to regret that more is not known of their work. - R. Piené Siliers.

PERSIAN ARCHITECTURE; Part III, Moslem Architecture. The precise position of Persian art in the history of the Mohammedan styles is still a matter of clelate among scholars. Some writers - motably Ang. Choisy in his recently [mblished Mistoire de l'Architecthre - consider it the fountain heal of inspiration of all the Moslem styles. Others refuse it this preeminence, while conceding its dominant intluence in the Mogul architecture of Tmlia and in Uriental ceramic rlesign. The extent to which Arabie and Moorish architecture borrowed from Persia, or it from Bagdad and Cairo, can be finally determined only by a more thorough exploration both of Persia itself and of Persian, Turkish, and Arabie literary sources, than has yet been practicable. To restore, with any aj)proach to eompleteness, the aspect amd details of the earlier phases of Persian-Moslem architecture will always be difficult or impossible, owing to the havoe wronght ly the Mongol invalers of the thirteenth and fourteenth centuries. One fact, however, stands muntestioned; the Persians alone among Mohammelan peoples have had from the first an art of their own. In Persia, as perhaps nowhere else except in China, the art of architecture has been actively practised by natives, in their own way, without interruption, from the sixth century B. c. down to our own day, borrowing freely, at times, from other styles, but never without a pronomed national charater easily recognized. The prob. abilities are therefore strongly in farour of its having given to the conquering Arahs in the West far more than it ever received from them.

The history of Persiam-Moslem architecture naturally falls into three jeriods. The first extends from the Arah conquest in 641 to the Mongol invasion under Jenghis Khan in [2.2]. The second covers the long period of commotion and incessant changes of dynasty from 12.1 to the accession of the Sefi dynasty in 1499 . The thirl extends to the present time; tor in spite of the deeline in taste and architectural enterprise sinee the extinction of the Sefis hy the Afghaus in 1694 , the more modern works represent no real change of style from those of that dyuasty.

Of the first of these periods the remains are too seanty to enable us to reconstruct the carlier phases of the style, and there is hardly an anthentie vestige of the period of the Ablasit khalifs and of the great Haroum-al-Rashicl. The substructions of a few mosques rehuilt in later years, - as, for eximple, that of Kazvin, a considerable number of tombs of descendants

PERSIAN ARCHITECTURE

of Ali (the Prophet's som-in-law), known as imom-zedeh and preserved with reverence but probahly not withont frembent restorations, rendering their original aspert a matter of uncertainty, and seattered ruins of other buildings, genelally mere tragments, are all that remain of the first periocl. The most interesting examples are a number of tombs near Inaglad, dating jerhajss thom the tentlo century; mot, it is true, in Persia, but clearly Persian amel not Arabic in style. They have roofs suggesting pyramidal piles of heehives, arll heehive forming intermally a niche ; anm are wholly huilt of brick, which has alwitys been the farourite luilding material in Persia. These cellular pyramits suggest an origin for the whole Persian and Arabie system of "stalartite" elecoration (see article by R. Phene Spiers in Journal of the R. I. B. A., Vol. 4, New Series). Two runed towers at Rinei, the ancient Rhages, give further evidence as to the character of the style. One, facel with enamelled tiles and adorned with a Cufic inscription, has a species of stalactite cornice; the other is faced with rubble, originally plastered; both were once roofel with domes, and both have pointed-arched doors enclosed in rectangular panels. The triangular thating of the first of these towers, resembling that of ancient Persepolitan bases, illustrates the jersistent vitality of style tranlitions in Persia. At Hamadan, the ancient Eebatana, are the ruins of an ancient mosque displaying many of these same features. The antiquity of this elifice appears from the fact of its being stuccoel and painted externally instead of being vencered with tiles. The use of brick as the chief building material; the pointed arch, both of the equilateral and the four-centred or Persian type; the enclosing of each arch or feature in a rectangular framework; the exaggeration of the entrance portal ; the exterior decoration hy pattems in colour, at first on stneco, later by enamelled tiles; the use of Cufie inscriptions as leroration, and the stalictite cornices, - all these features, so charac. teristic of the later Persian architecture, are recognizable in these earlier mins. Several of these are clearly tracealle to Sassanian origins, such as the preference for and skill in the use of hrick, of the dome and other varied forms of vaulting, the exaggeration of the portal arch, and the general lack of monldings. It is possible that the pointed arch was a survival from the pointert-arched raults of Mesopotamia, from which the ancient Persians borrowel many details. These various considerations point to a home origin for most of the essentials of the Persian-Moslem style. The chamelling of tiles (or in some cases even of lricks of béton) in lnilliant coloms for exterior decoration was an art handed down in Persia and Mesopotamia, with occasional interruptions, from the very earliest antiquity.

PERSIAN ARCHITECTURE

The secome perion bayins with the oserthrow of the seljuik dyasty at the hamols of Jenghis Khan in las. In lisa lemia was werWhelmed ley a secoml Mongol wave under the terrille Timir. Iburing the interval there was considetable arelitectural artivity: hout upon the twath of Timur, who hat united all the I'ersian provines under a firm central government, there hegan a ecoutury of disurder and Hounlishel, calused ly the incessint quarrels of rival envernors. Yit in one and another ceutre there were, between these wars, periods of puict to which we owe most of the important exaluphes of the style of this perion remaining to us. Chicf among these is the tomb, of the Mongol Sultan oljanton Khoulahendeln at sultanieh (1.313), a fine ruin, consisting of an octagomal chamber covered by a dome so feet in diameter, rising with an oroid profile to a point liso feet high, and surrounded by eight slender minarets springing from the angles of the elifice. The sarcophagus is in a smaller chamber behind the oxtagonal hatl. The whole edifice, admiralily constructed of brick, is revettel externally with enamelled tiles, and all its details are in exeellent taste. A ruined mesigue at Tabriz is by some authorities attributel to this period (1313), and is probalby in part as whe as this, but its style is that of the fully cleveloped Sefi mosornes, and it was probably given its final form in the sixteenth century. The Great Mosique (Me.jid-iShah) at Kazvin was huilt, or rebuilt and enlargel, by the Sultans of the Dailamite line in the tenth century upon earlier foundations ; to a later part of the perivel belongs the mosque and tomb of Hussein in the same city. The greater part of the extant monuments of this period are tombs, expecially tombs of the descendants of Ali. The Persians belong to the Shiah sect, considerel heretical by the orthodox Sumnis (Turks, Arabs, etc.); they regard the descendants of Ali, the son-in-law of Mohammed, as the rightful successors of the Prephet: hence the great number of these revered imam-zulel. They are of various degrees of elegance and size, but nearly all consist of a square or polygonal chamber surmountel ly a lofty roof, either pyramidal or bulbous in form, and are decorated exterually with a reretment of colonred tiles. At Shiraz the tombs of the poets Sali and Hafiz belong to the latter part of the period (fitteenth century) ; they are both open-air structures of no great architectural pretensions, but not without elegance : that of Hafiz is sheltered br a canopy on columus, doubtless comparatively molern.

There are probably many mosques and other elifices of more or less importance originally erected in this perionl which woull deserve mention in a more extendel notice: hut earthquakes, and the Oriental habit of allowing a building to go to ruin when once it hegins to decay, and of then usinge its ruins as a quarry, hare destroyed

PERSIAN ARCHITECTURE

great mumbers of buildings, and many others have been rebuilt amb altered so many times that their original form is not recognizalile. The majority, therefore, of the extant momments of I'ersia belong to the thirid period, which begins with the accession of the sefi (callel also Sufi ur Stctarean) dynasty under shah Ismail, whose final trimmp orer lis enemics occurred in 1499. For mearly a handed years, however, no inportant luildings were erected; lout under the shal Albas I., the greatest of Persian-Moslem mulens, a man of great energy and ability, and one of the great luiklers of history, there was an extraondinary revival of architectural activity, in which the acenmulated traditions of the prist were develoneal into a complete and mommental style, and appliel to a great variety of buildings, often of great size and richness of detail. Ispahan was restured to its former dignity as capital, and embellished with a remarkable series of splendid buildings: and other cities shared in this renaisance of art. Abbas ealled to his court many European artists, to whom mar in part he due the grandiose planning of some of these great works: but there is no trace of Italian or classic detail discorerable in them. The Shah Hussein was also a great builder. The Sefi dynasty - the first native Shiah lynasty in Persia - was overthrown in 1696 hy the Atyhans, and it was not until the accession of the present Khadjar line at the begimning of the nineteenth century that architecture experienced another revival. The Shah Feti Ali erected a number of palaces, mosques, and cararanserais, and the art is still practised with no essential change of strle, though with less splendomr and purity of taste than under the Sefis.

The most impurtant works of the Sefis are at Ispahan, and include the Great Syuare (Meidan Shah), the adjoining Roval Mosque (Mesjil-iShah), the Djuma Mesjid or "Friday Mosque" (corresponding to the Jumma or Jami Masjid of Indian cities, and the Jami of Turkey), a structure of rarious periods enlarged and completed under the Sefis; the Medress or college and caravanserai erected by Shah Hussein to the memory of his mother (Medresselh-Mader-iShah) ; the Chehil-Soutum palace by the same Shah, and the two splendid bridges aeross the Zemleiroul, the Allah-Terdi-Khan bridge of thirty-three arches, built under Shah Ahbas, and that of Hassan Bey. To the reign of Feti Ali Shah (eir. 1805) belong a number of important palaces, monulues, and tombs: at Ispahan the relebrated Nirror palace (Ainelh Khaneh) and Char Bagh parilion : the great mosque at Koum with its Medress (college) and several tombs; the Kasr-i-Khaljar palace at Teheran: the great caravalserai of Mlohammel-baker at Passaingan, and many bazars and public baths of no little splenduni.

PERSIAN ARCHITECTURE

These very varied londings are treated with remankible uniformity of style. The great mosipues, medresseh, and caravamsrais are huilt aromid large conts, usmally sumate or revtangular, contered by in imposing valted portal, and surommed by arcales, usually in two storitos, whin give aceess to the various chambere, rombs, or cells behind them. The centre ut betch side of the square is ocempied by some expecially inportant feature, sucl as a portal, or a prayer rom, or music gallery, invariably proceted by a rolossal prortal or derply peressed ardh, enclosed in a stuare framework of decoration rising high above the two-storied arades, and fromently fianked by tall and slender romml minarets, bearing an arculed gallery carried on stalactite corbelling. Opposite the rhity entrance is manally the main prayer room of the mostue, wh the ehapel mostlle of the college, with a similar portal and minarets, but distinguisher by a lolty ovoid-pointed dome, often swelling with a budbous outline from a high drum. This extertur dome is wholly distinct from the interior vaialt, which is much lower: an armgement whioh may have been introdncel by European architeets in the reign of Shah Atbus.

As to details, it should be moted that neither the horseshoe nor the ensped arch prevals in Persia. The equilateral pointed archoreurs but rarely; the characteristic lemsian arch resembles sonewhat the Tudor areh of the perpendieular English style, being four-centred, or, more often, having the upper outline formed by two straight lines meeting at an obtuse angle. The vaulting, generally executed in brick, is often treaterl with great ingennity ol detail, with complex interpenetrating surfaces, structurally more scientific than the treatment with stalactite decoration. Excellent examples or this are in the Tailor's Bazatr at 1swanan atul the bazaar aml baths at Kashan. Somotimes, however, stalartite vaults were used, ind it is not improbable that this sort of ornament, though less lavishly used by the Persians than farther west, was originally invented in l'ersia, as already observen.

In the matter of ormament the Persions sumpassed the Western Noslems as far in reramic: deeoration and in the flowing grace and freedom of their patterns, as they were infirior to them in variety and splendomr of ombument. Harilly a mouling is to be met with in Prorsian exterior lecoration, which is effected almost entirely by means of ceramis tiles in beantilul hues of blue, yellow, red, and grom, with inseriptions amd details often in blark. It was Persian artists who carried the art of wall tiling into Turkey, and into Egypt, Sicily, the Noghreb, and Spain. This art umderwent a revival ronserfuent upon the importation uf Chinese wares and ceramic artists into Persia under Shah Abbas, and is still praetised, thongh

PERSPECTIVE

less surcessfully than lomurly. Persian deenrative art maken free uso at piotures, of maturalistic flomal and animal lomes, and rem of soulpture, dillering in this from the nome arthodox Moshem art. In the Char-bagh pavilion at Ispathan, the four slender wonden rohmms that support the panelled ceiling stand on pedestals formed by gromped varyatides; anl pietures are an important elenent in the decoration of the Hesht-Der Behisht, on "Eight (Gates of Paradises" Morlern I'ersian arehiteco ture, following, no donlit, an innemorial traditim of whirl the slamer fohmmes of lersepolis were the interpretatimin stome, makes free use uf wood, both for the sipporting rolumbs and for the ceilings of its palares :mullowes, and uses it with great eleganre, as in the Chehil-sontuns palace at Ispahtur, the Kasi-i-kharljar, the Throne I'avilion at 'Teheran, and the famums Mirror Hall near Tipahan, in whirh small panels of louking-glass ate inkail in the mosaic ornament of the columms and nther womlwork, with an eftect sumewhat tawdry perliaps, but not withont a certain eharm. 'The Persians are alepts in a certain kiml of formal garalening, which adds to the ediecte of their palares and spuares, and which was camied to Jutia by Persian artists in the train of the Mognals in the sixteenth century. - A. D. F. Hambin.

The bibliography of l'ensian art is scanty. Deseriptions by medieval travellers and the writings of Pietro della Valle aml Krusurski of the six-teenth-seventeenth centuries, the travels of Oisely and Aalcolm in English, and in handy and popular form the stary of lersie and Iorsia and the Persions, by S. (i. W'. Benjamia, give comparatively tittle information on the Moslem architecture. For this, dependence is chitfly on French works: Flandin et Coste, Ioyuye an leme: Coste, Woruments homornes de lat Perse; Texier, Desuription de l'. 1rménie, la Prose et le Misopotemip; Dieulafor, L L'st Xorleme de lu lemse; Gaynt. L.Art Prosam. Cf, also in the Geman IIomellurh der Arrhitektur (Damstalt) the volume Die Butelirmst des Istam, by Franz Pasha; Dieulafoy, Li. Ire Antiqne de le Perse, l'art V: Monmments Perthes et S゙ussomides: lerrot and Chipiez, Historere de P'Art dens 7° Autiquité, V'ul. V', La Perse; Loflus,
 Fergusson, Palaces of Vinevel and l'erspolis.

PERSIENNE. A shatter or window blind with slats; either hinged at the side or attached at the top and hanging lonsely. (Sce Blimd, and subtitles; Shutter ; also Ileseription of llalles ('ontralles umler Tron (Constrution.)

PERSPECTIVE. The at of representing graphically an object as it actually appans to the cye ; scientifically, a form of projection by the use of which such a representation may be ohtained, or very elosely approximated. Also the result otitained by either promess.

Perspertion as a science is usually umberstood as meaning limear perspetive; that is, the scinutifio process as distingushed from, for example, the free hand methomls of representing

PERSPECTIVE

PERSPECTIVE

mature, or from acrial perspective as considered ly painters.

Linear persjective is a branch of Applied Geometry, like Descriptive Geometry, Projection, aml Shales and sharlows. But while these disenss the real dimensions and directions of lines, and their projection on plane and curved surfaces by parallel lines. perspective treats of their alparent directions and dimenstons as viewed from a certain definite point, and of their projection upun a plane or curred surtace by lints converging to a point. This Inint, called the "station priut," is the point supposed to be uccupied by the eve of the spectator. This system is sometimes called conical projection, as distinerushed from orthugraphic and isometric projection, because the rays of light, consilered collectively, which pass from the outlines of an object to the eye approximate the form of a cone, of which this ontline is the base, and the eve the rertes. If this cone is cut by any intervening surface, the line of intersection is the perspertive of the given outline, and when viewed from the station point it corers and coincides with the outhine in question, and is a picture of it or true representation of its appearance.

When the intervening surface is a plane, it is called the plame of the picture ; it is understood to be rertical unless specified to the contrars, and the picture is then said to be drawn in plane perspective. This is the srstem in ordinary use for the study and exhibition of architectural designs, as in making preliminary studies. The point in the plane of the picture opposite and nearest to the station point is called the centre of the picture, or point of sight. It is the orthographic projection of the station point.

There are tro methods of obtaining, in the plane of the picture, the true conical projections of lines. In the first methorl, which is that of direct conical projection, the aim is to obtain the projection of the points at the ends of the given right lines, and of a sufticient number of points upon the given curred lines. By connecting these points the perspective of any figure can be constructed. In practice this methorl is commonly usel only in the horizontal plane of prujection to determine the pasition of rertical lines as projected in the picture plane. The position of borizontal and inclined lines is then obtained by the second methol, the method of infinite lines. In the first method points are first determined and then lines are obtained by connecting the points. In the second method infinite lines are first determined, and points and finite lines are oltainerl by the intersections of these infinite lines.

In uractice, it is usual, in making a perspective drawing of a building, to determine the horizontal dimensions. that is to say, the posi-
tion of rertical lines, by the method of conical projection, using an orthographic plan to represent the building, drawing a line through its nearest corner to represent the plane of the picture, taking a point at a proper distance from it to represent the position of the spectator, or station puint, aud drawing lines from the different puints in the plan to the station point to represent the visual rays. These lines cut the plame of the picture at points which give the position of the rertical lines in perspectire. Vertical dimensions are then laid off on the nearest corner and transferred to other vertical lines by drawing the perspectires of horizontal lines from the points so obtained. By the same process the persuective of any line parallel to the picture plane may be found, as it is obviously parallel to the line itself.

To obtain the perspective of a line not parallel to the picture plane, it is necessary to find the perspective of two points of the line. Usually, the two points chosen are the point where the line pierces the picture plane and the extremity of the line supposed to be prolonged to infinity beyond the picture plane. The tormer point is it. own perspective, and is readily found by the process abore described. The projector of the latter point, infinitely distant, must necessarily be parallel to the line itself: hence, to find the perspective of the extremity of a line, uraw a projector through the station point parallel to the given line. The point so found will be the perspective of the extremity of the given line as well as of all lines parallel to it. Such a point is called a ranishing point ; in it the perspective lines of any parallel system meet, and appear to ranish. Architectural designs are largely composed of, or can lue reduced to, systems of parallel lines. vertical and horizontal. The former are drawn in perspective by the process first described : the latter by the location of the ranishing points, which are usually two, for the two faces of the building meeting in front of the observer. Furthermore, these two vanishing points serse to obtain the perspective of any other point by means of imaginary lines drawn through the points parallel to either system.

Distortions and Currections. A perspective drawing looks all right when seen from the station point, but it necessarily appears more or less distorted when seen from any other point. For the appareut size of objects is determineal to the cye by their relative augular dimensions, and their position hy their angular distance from the point opposite the spectator. But in plane perspectire drawing the distance of points from the centre of the picture is determined, not by this angle, but br its tangent, and the size of an object is made proportional, not to its apparent angular dimensions, but to the differences of the tangents of the angles. It tullows that dimensions become more and more

PERSPECTIVE

exaggerated as they are more and more distant from the centre. This is not very noticeable within an angle of twenty-five or thirty degrees. Beyond that it becomes intulerable. Eren within this range the mavoidable distortion of circular, cylimdrical, and sphorical objeets becomes ufiensive. In fact, as is realily seen, the matline of objects drawn in plane perspective is exactly similar to that of their shatows cast uron a screen parallel to the plane of the picture by a tandle ocrupying the station point. Such shadows are notorionsly distorted. It is only at the centre that they are of the same shape as the objects that east them.

A practical remedy for this slistortion is foum by limiting the range of perspective drawing to fifty or sixty degrees, and then " doctoring " the difficult objects, snch as spheres, colunns', and round towers.

For similar reasons the human figure is never put into perspective, but is always clawn in orthographic projection, as if at the rentre. This is sometimes dificult to manage when other objects, such as chairs, tables, etc., are drawn in plane perspective.

Another way to awoid these distortions is to draw things just as they appear, in their apparent angular dimensions. 'This, of course, conld be exactly accomplished only \quad ין on the interior surface of a hollow sphere. But for objects of no great height, so that only horizontal angles have to be considered, a rylindrical surface answers as well. (See C'mrvilinear Perspective, below.)

Angular Perspective. A methorl of perspective in which a rectangular parallelopiper would be so set that four of its elges are parallel to the plane of the picture, and eight inclinel, and that form of its faces are inclinet, and two normal.

This is the most common case, lmildings being generally drawn with their comers vertical, and parallel to the plane of the pirture, while their floors are level and the caves and other horizontal lines are directed right and left to their vanishing points. Such an oljeet has two vanishing points aml has three horizons, one horizontal and two vertical. The station point may be anywhere upon a semicircle, of which the line joining the two ramishing points is the diameter.

If an object is set so that its sides are very nearly forty-five degrees with the plane of the picture, it hat better be taken exartly sir. A horizontal square then has one of its diagonals normal to the plane of the pieture, with its vanishing point at the rentre, which is now halfway between the right- and left-hand vanishing points. The other diagonal will have its perspective horizontal.

Bird's-Eye Perspective. A method of perspective for which the eye is taken at a consid-

PERSPECTIVE

erable height abuve the grount, so as to loon down upon the objects to he represented, thus having an extended rauge of vision. It is thas not a separate lnanch of the selunce of perspeetive, but may make use of any of the systems here idseribed.

Curvilinear; Cylindrical Perspective. A methon of jerspertive in which the surface of projection is a hollow vertical rylinder, with the spectator at at point on the axis ; the pirture is then said to be made in 'glindrieal, panoramic, or eurvilinear perspective.

Paboramas are painted mpon such surfares, and such a surface is virtually employenl in sketrhing from nature. But when it is beveloperl, that is to say, flattened ont, the perspectives of all the straight lines appear curved, as may he scen in some of Turner's pictures, and in flotographs taken with a revolving camera.

In the construction of surh drawings the perspective of evary right line is properly a certain geometrical curve; parallel lines appear as a group of such curves, all of which have the same origin, which is their ranishing point. But by substituting their tangents for the curves themselves, at any place an ubject cam be thawn, as in plane perspective, without serious error ; and by a continnous series of such blame perspectives a very close approximation to curvilinear may be obtained. P'roperly, curvilinear perspective should inchde also spherical perspective ; that is, a methond involving the use of a spherical surface as the surface of propection. This process is, however, harlly availahle for practical use, as the surface of a sphere cannot he developed unon a plane.

Diagonal Perspective. Angular Perspeetive in which the principal faces of an ohject are shown as if at forty-five degrees to tha pieture plane ; one set of diagomals of the square in plan vamishes then at the centre of vision, lalfway between the right and left chief vanishing points, and the other is parallel to the pioture.

Linear Perspective. (See main article, above.)
Oblique Perspective. That in whicha rotangular parallelopiped would be so set that all its faces and all its edges would he indined to the plane of the picture. There are three vanishing prints and three horizons. The station point is fixed, and is at the rertex of a triangular pyramil, in front of the picture, of which the three horizons form the base. The centre is at the point in the plane of the picture where the thre perpendienlars dropped from the three vanishing points upon the opposite horizons meet and cross.

Oblipue perspective is nsed when an ohjert is not vertical, or when the plane of the picture is itself imelined, as sometimes haplens in photography, as when a camera is directed upward at a tall building, the sides of which will then appear to approacl.

PERU, ARCHITECTURE OF
One Point Perspective, Same as l'arallel Persmetive.

Panoramic Perspective. Siml as C'urvi-

Parallel Perspective. A methorl of werspertive in wholl the principal plane lace of the ubjed is assumed ats parallel to the pieture plante. When at retangular patablelopiped is su sithated that fum of its fares and four of its mberes ate nomal th the phate ot the picture, and the uthers parallel to it, it is sain to be in parallel perspertive or om puiut perspective. sinde mily these fomr exfes have a ranishing pront. This is at the centre of the pieture. Whol is the ranishing point of all nomal lines.
lamallel prosective is much used for interiors, street fronts, ete, especially if vertical rinces orem in the olgert, since if these are parallel to the pioture they can be put in with comprasecti.

If an olject is very neatry in parallel perslective it lat better be drawn exactly so. (Werwise, hoth the horizontal ramishing points may conme on thas satme side of some portion of it, which is intulerable, as may ofteu be seen in photugraphs, eslecially of iuteriors.

Plane Perspective. (See main article, above.)

Spherical Perspective. (See Curvilinear Perspective.)

Three Point Perspective, Same as Oblique Perspective.

Two Point Perspective. Same as Angular Perspective. - W. R. Ware.

A great number of text books on perspectire lave been published, which are useful for the the study of the usual methods of perspective drawing, but for a full scientific treatment of the subject in all its branches. consult Mrdern Perspertice by Prof. W. li. Ware, 1 mol. text, 1 rol. plates. See also Herdman, corvilinear Perspectice in Vature.

> — R. S.

PERU, ARCHITECTURE OF. (See South America, Architecture of.)

PERUCCI. (See Peruzzi, Ballassare.) pervgino. (See Vinucei, Pietro.)
PERUZZI (PETRUCCI, PERUCCI), BALDASSARE: painter and architect of siena, haly ; b. Mar. T, l481: נ. Jan. 6. 1556.

Penuzzi was probably bum at Yolterra, Italy, the sou of a Florentine wearer, and was brought up in Siena. He went to Fome about 1503. and umber the patronage of the famoms Sienese banker, Agostimo Chigi, levoted several years to stmly. One of his earliest buildings was Chigis villa, now (alle the Villa Farnesina, finished abont 1.5]0. After the leath of Raphael, Peruzzi was associated with Antonio (II.) da San Gallo (see San (Gallo, Auronin II.) in the smperintemence of the works at $\$$. Peters church, and held that position intermittently from Ang.

PETRUS DE MARIA

1, l520. until his weath. During the reigu of Adrian V1. (lope 150:-1523) he was invited to Bulogna by the firesitenti of the ehmerh of \therefore Setronio to design a lawale for that durch. A drawing in the fathie style now in the sacristy is attrimend to him. Peruzzi in 1525 milt the (hsoli patare in Rome. At Siena he was twise make crathete det publico on petition of citizens: The little court of the oratory off S . Caterina anl the Villa Belcaro date from this time : and in 1529 he was made cuponutestion of the cathemal. He beran the fanous Palazzu Ilassimi (-Ille Colonne) at Fome in 1535, the year before his death. He began also the palate of Angelos Iamsimi (now Palazzo Orsini).

In painting, Peruzzi was at first a pupil of Pinturicedio (sece l'inturicechio). He afterward assisted haphand in Rone. Among his many works are the faintings of the choir of S. Onofrio (lome). much of the decoration of the Farnesina, and the decoration of the Capella Pozzetti at S. Maria della Pace (Fome. I5I6). He frequently ilesigned fêtes and processions. anl painted many tarales. His notes aml designs were used hy Serlio (see Serlio) in preparing his books. Peruzzi was buried in the Panthem near liaphael.

Rudwlf !adtenhacher. Baltassare Pemezi und seine Worke: Vasuri. Milanesi ed.: Vasari. Blash-fiell-llopkins etl.; Münz, Renoissance: Suys et Handebrurt. Polais Mossimi: A. Venturi, Furnesina; Donati, Elogrio: Gaye. Cartegyio.

PEST HOUSE. (See Lazar House.)
PETER OF COLECHURCH ; priest aml architect; 4. 1:20.

Lomlun Bridge was destroyed and rebuilt in 1097, 1136 , and probaldy at many other times. All these early structures were of wood. Aceording to Stow (11) cit.) the last woolen bridge was huilt by Peter. curate of S. Mary Colechureh (London), in 1163. The first stone brilge was begum by Peter of Colechurch in 1176 and finishell in 1209 . It was coustructed on twenty arches with nimeteen piers, and houses were built upon it.

Knight, Lemfon; linight, Cyclopedia of Lomlon: Stort. Surrey of Lindon: Redgrave, Dictionary of Artists: Thumson. Lindon Bridge.

PETIT. FRANÇOIS; architect.
A son of Cuillanme l'etit, maitre des a uries of the city of Bealurais. Day 3, 1578, he was chosen to conduct the works at the Pont Neuf (Paris) with his hrother Jean, Guillaume Dlarchand (see Marchand. G.), and others. Dlawh T. 1600, he contraeted with others to huild the western portion of the Firande Galerie du Loncro. (See ('hamhiges, Pierre, II.)

Berty, Tupngraphip. Lourve et Tuileries.
PETRUS DE MARIA: architect aud mosaicist.

Petrus de Maria built the cloister at Sassorivo

PETRUS GULIMARI

near Foligno，Italy，fini－hed in l？29．This moms－ ter is similar to that of the Lateran．
Frothingham，（＇wister ag the Luterorn．
PETRUS GULIMARI．（S＇e（anlimari lia Piperno，Petris．）

PEW．Oricinally，an emelosel amb slightly elevated phase fitterl with a dexk amd bume or lexis complete ronvenimes for writing the plase for a cashier or paymaster，a clerk who hat hmsi－ ness with the publice or any ome who meeterl a eertain separation of endesure，while stall ree maming aeresible．Lawyers fomerly receded their clomita in pmble places whem carlo attors ney hand his uwn pew．Later，a box in a theatre； and，in the same way of extension，an emborel space with one wo more seats in a chomoh held by une person or family，ats distinguislual from the open benches，which were tree． The pews of the seventeentla and oighteenth eenturies had often seats on thrre sides of a space abont 5 by 7 feet，enclosed with womlen partitions 4 feet or more high．The nine teenth century pew is generally long aml narrow，with back and ents is feet high or loss，an！fitted with one long beach only，the

PHAROS
13．J．）．In 17G：he wem the（imend Pram de Rome in arditecture．Victumines to l＇aris，he was apmointed centrialmer of the lmildinge at the rlâteain of S．Comatin anl かf゙ F゙ontaine heathe lle de－ sisucal the clece toral palare amb chaprel at（in． hentz（ H 以eminh Prussia）．Thalew the Empire he was arehitert of the administrat tion of the hos． pitals．Hepruls． hislued severat works on archi－ tecture．

PEIV IN CHIHCH 1T ELKNTONE，

Guatremere de Quincy，Notine sur A．F．Peyre；

PEYRE，ANTOINE MARIE：arhitect； 1）． 770 ；1．May ㄹ，l心は．

A soll of Marie Joseph Parye（see Feyre，M．J．）Emder the birentoire he Was ap川uinted urbhilecte des billmonts cimbs and took eharge of the emstruc－ tion of the Ohweratome and of the in－ stallation of the Musie des Monuments Franças in the consent of the Petits－ Augustins under the direction of Marie Alexandre Lenoir（see Lenoir，M．A．）． In 1 NoO he was appointed arehitect of the l＇alais de Justice（＇aris），an！male extensive arditions to that bulding．In 1800 he bilt the old Gaité theatre in Pars（now destroyed）．He bmilt also the theatre at Somsons and a the－ atre at Lille．He published sev－ elal works on architecture．

Nouvelle hiographie grinérale；

PEYRE，MARIE JOSEPH；architect； b． 1730 ；1．Ang．11， 1788.

He won the Gramel Irix de Rome in arehi－ tecture in 175 s ．In 1767 he was admatten to the Archlesmede Arhitectere．In 175：2 he was associated with We Wailly（see Wailly）as su－ pervising architect of the chatean of Fontane． Hean，and with fom built the Uléon theatre in Paris．

Banchal，Dictommetre．
PHAROS．A．A lighthonse or heacon tower which ancmently stood on the lsle of Pharos，at the entrance of the port of Alexandria．Henee，－
B ．Any lighthouse for the direction of sea－ men；a watch tower or beacon，especially when of a more or less monumental character．

PHIDIAS (PHEIDIAS)

PHIDIAS (PHEIDIAS) : senlptor and architeret.

Plidias hegan as a painter. Ite was one of the three great pupils of Agelailas (see Agelaidas). His

Peif in Chírch at Kidlingtos. Oxfordshire: With Abrrevidtion of the Name of Jesus (1.H.C.: see Article 1.H.S.). earliest recorded work was a elryse lephantine statue of Athena at Pellene in Achaia, Greere. About toy he male a statue of Athena Areia for a templeat Platiea in Freotia. To this early periox may be aseriberl his Aphrodite Ourania, the Apollo Parnopios, the Hermes Prona os, and the Amazon at Ephesos. Betore the end of the alministration of Cimun (d. 469 в.c.) Phidias made the bronze statue of Athena Promathus which stood on the Acropulis. The history of the great ehryselephantine statue of Zeus in the temple of

that god at Olympia is obseure, but it was probably deulicated about $4+8$ B. C. After this time Phidias was attached to the administration of Perieles at Athens, and Phidias, aceording to Plutarch, was made superintewlent of all the public build ings. The colossal rlaryselephantine statue of Athena which stood in the Parthenon was conPew: Chl'rfh at Steeple As
tox, Oxfurdshire; c. 1500 . secrated in 438 b.c. (See Elgin Harbles; Greece, Architecture of : Parthenon.)

Collimon. Histoive de la Sculpture Frepame: Collignon. Ihidius: Waldstein. Exsays on the Art of Pheidics: Story, Phidias and the Elyin Marbles; J'etersen, Die Kunst des Pheilias; Michaelis, Der Parthenon; Hamilton, Lord Elgin's

PHOTOGRAPHY

Pursuits in freere ; Plutareh. Pericles; Pausanias. (Frasel`s Trans.).

PHENGITES. Same as Phengites Marble; umber Marble.

PHILON ; arehitect.

Philon wis included by Varro among the seren greatest architects of Greece. His lest known building was the arsenal at the Peirents (the port of Athens). This building was erected between 346 and 32 es b.c., and was lurned hy the Roman general stulla. Fhilon wrote books on proportion and a deseription of the arsonal. An inseription has been found giving an aceurate description of this building. (Choisy, op. cit.)

Choisy, Etudes épigrapleiques: Thos. W. Ladlow. The Athrnium Arsenal of Philon in American Journal of Philolor?!.

PEW: Church at Miltertosi. SumerSETSHIRE, A.D. 1540.
The upper panel has the rusal escutcheon, with the Garter. Tudor liose, and a Pomegrabiaze.

PHOTOGRAPHY. The art and the process of making pictures by the action of light upon chemically prepared surfaces. as of paper. glass, metal, ete. The applieation to the sturly of arehiteeture dates from about N 4 ? , at which time Ponti, of Yenice, was making p:iper prints of important buidings in Venice. The prints made at this time, though somewhat farlel, are still useful. E. D. Baldus, of Pimis, was making large and rery splendid pietures of French cathedrals as early as $185 t$, and these pictures are still in excellent condition.

The great majority of architectural photographs which are purchased by travellers in Europe are taken with a vien to giving a general pieture of an agreeable sort: earefully taken pietures giving less visited buildings, and espeeially views of letails on a large seale, are often diffienlt to procure. In this respect there is a very great difference between one tomn and another.

Great colleetions of architeetural photographs 128

PHOTOGRAPHY

PHOTOGRAPHY

have not very commonly been male, one reason being the difticulty attending their acemmation, owing to the abseme of a well-urganized trate with its eatalugues, its alvertisemments, aml its tracle methors. The necessity of providing much space for the accommodation of photographs allul the difticulty of their organization and cataloguing, and the constantly increasing momber ut books illustrated hy photugraphy, have also comuted against the making of these collections. It is probable that the formation of a complete collection of architectmal photograpls wonll involve the immediate purchase of 70,000 or 80,000 prints and the taking of humdreds of new ones yearly, besides the necessary taking of many piotures tor which special onders wond have to be given. A photograph of a building or part of at buidding shonda he taken without the slightest reference to the artistic effect of the picture. The olject of the picture being to convey to the stuclent all the facts possible, concerning the work of architeetural art, the photograph shond be considered as a faithful mirror in which those trutlis are preserverl. On this accome many uperators prefer an overcast day which, by avoiding strong shadows with sharp edges, enables the stadent to see the details of the building even in its recesses. On the other hani, there are those students of architecture who insist umon the intention of the designer to use shalows as the ehief element in his architectural fesign. It is to be observed in relation to this that designing in shadow is rather an ideal of the theorizer upon architectural lesigning than a practieal matter; as is mate evident by the fact that the details of the north tlank of a building, where the sun sellom strikes, are not often very unlike those of the south side. The practice, therefore, of taking photographs in cluuly weather is to be commended, the resulting photographs being much truer and softer, and with careful stopping down of the lens and giving a longer exposure, the details, in the shate and high light as well, will be strong and brilliant. Until within the last few years the photographs of interiors have not been sucessful, owing to the hatation or fog which would appear around all windows facing the direct light ; but with the introbuction of the non-halation plate moch of the trouble is obviated. The tlash light is hardly to be recommended for architectural reproluction, as long exposure of the plate will give best results except in interiors where light does not penetrate at all.

Photography, as applied t_{1} the rendering of architectural subjects, may be divided into two divisions, - prints by direct process, and prints which are photo-mechanieal.

Direct process is where the negative is usell for making a positive print by the action of light on a sensitized surface.

Photomechanieal is where the negative is a means only to prohure either amother negative or a positive on sume hamber surtare, on which printer's ink can be spreal for the phrpose of mechanical printing.

Prints by dirent process may be made by direct contant with the negative, thms giving the sume size pisture as the megation, or may be enlargel by solar or are light projuctions on to the semsitized faper ; or a large negative of the desired size ean be mate from the smadl negative, from which direct printing win he done without the forther neressity of a projecting or enlarging ramera; where a large number of prints are to be mate this is the lest methoul. For direet printing there are many papers, as silver, aristo, rera, blue print, platimm, varbon, Jromicle, velox, rete. For detail, such as is required for arehitectural subjeets, carbon and lorminte give the hest results, and especially are adapted for enlargements.

Mat surdice papers are, on the whole, to he recommended over the ghazod papers, as avoiling the annoying reflecting surtites, thongh for acouracy and clearness of detail the glazed papers may be preferren.

The varions papers above mentinmed can he divided into three elasses, - those which print ont atter exposure to the light, through the negative, those which print but faintly or where the image is scarely disemible, and those which show no image ; the two latter chasses must be developed after the exposure is made betore the full image appeas.

Silver, aristo, vera, and blue print are of the first class, platimotype of the secoml class, and bromide and earbon of the third class.

Of the prapers in the two latter classes, i.e. those which do not jrint out, jbitimm is to be recommended both lor the results oblanined, the extreme facility for working, and tor permanency; it yidds a soft gray print, but lacks brilliancy of detail in the half tones and shadows : it might be said that it is to photography what the impressionist shool is to painting.

The platimum print is thoronghly appreciated for pictorial work where softness and ctlect are sought and minute detail is not required.

O1 the processes belonging to the second division, the photomechanical, there are as many varieties as there are papers in the first division; those most in use are the collotype, photogravure on heliograme, half tone, or photo-electrotype.

The collotype process is worker on a film of bichromatel gelatine, which, when exposed meder a negative, may, when washed aml dried, be treated in the same manner as a lithographic stone: that is, the parts acted on by the light retuse to absorb water, hut take the greasy printer's ink, while the parts not acter om absorb water and refuse the inks.

PHOTOGRAPHY

The collotype process is used largely in all countries, and workell under various names. In Cimmany as Lichthlumb, in France as phototypie, and in England and America as collotype, phoutyme, athertype, ant various wher fancy names. The heljotype is a slight molification of the collotype process, the principal feature leing that the gelatine film cau be hardched with chrone allum, and atterwarl detached from the support on whieln it was uriginally jreparenl. It then foms a tough and flexible skin of gelatime, which can he usell at any time for printiug from by attaching to a ziuc plate or to a cylimer.

For the represuction of architectural sketches fur illnstrative work, either line drawings or colnured sketches, the photo-electrotype process is most in roune, and is one of the earliest processes of engraving with the aill of photography. If a back and white line drawing is to be reprohucel, a sheet of chromotized gelatine is exposed unler the negative, the effert heing that the parts most affected by the light shining through become insoluble and incarable of absorbing water, while the parts not affected become realily soluble when treated with warm water or an aretic acil bath, so learing the insoluble parts to form an image in relief: from these, monlds in wax and plaster are malle, from which the copper relief block is made for typographic printing. If the drawing to be reproduced is either in wash or in colone, we have to cleal with what is known as tone work, and the negative most be made through a fine lined screen, about two hundred lines to the inch; this breaks the light up iuto little dots and syuares. prodneing what is generally termed a " halli toue."

If a reproduction is to be made from a photograph, the photngraph should be made on silver paper, and not too glossy.
In summing up, as to the most desirable methosl for the reproshaction of architectural sulijeter, it must be stated that it depends entirely on the use or purpuse to which the reproduction is to serve.

Where a large umber of prints are to be made of the same suthject, one of the photomechanical processes must be accepted; while if time aml number of prints or reproductions do not enter into the question, it is safe to say that the best results are from the carbon print, its superiority orer other fapers being its brilliancy and softness of detail in high light, slades, and shalows, also the latitude it aftords for rendering different tone, to which must be addel its permanency.

Of the photo-mechanical frocesses, the photogravure is undoubtedly the most satisfactory in every way, giving the most exquisite detail ; its range is so great that the softest or hardest materials will come out in their true valne; the

PICTURE GALLERY

stone corbel or the carefully wrought grille will, at a glance, show in true cuntrast with the delicately veined polished marble colums and the soft plush draperies, and it is in this rery partieular that the half-tune process is so inferior, texture heing almost absent. In fact, the one shouk harlly be compared with the other. The former is a hand process, where each picture is jolled from the copmer phate, while the latter is the direct resnlt of the "apiul fire" multiplying printing machine, and naturally the least expensive.

In emunerating the varions methods above, the American synnym is given in each case.

The Eneycloperdic Dictionury of Photogreqhy, by Walter E. Woulbury, is a most valuable work, capable of furnishing aid to every student of the suhject.

- Charles I. Berg.

PIano nobile. In an Italian residence, the principal story containing the apartments of ceremony and reception, usually one flight above the ground, but often situated above an intermediate entresole or mezzanine. (Compare Premier Etage, muder Etage.)

PIAZZA. A. In Italian cities, an open syuare more or less surrounded by buildings; the open area made by the intersection of sereral streets.
B. In the United States, same as Verandah.

PICCONI, ANTONIO. (See San Gallo, Antonio II., da.)

PICK DRESSING. The first rough dressing, or facing, of grauite or other hard-quarried stune by means of a heary jick or wedge-shaped hammer. Piek lressing prohuces a result suitable for heavy finmlations or underpinnings where smonth wonk is not required.
PICKET HUT. A rude dwelling made by driving stakes, or "pickets," into the ground, and roofing them. The Mexican jacait construction is a form of picket hut. (See Jacil.)
-F. S. D.

PICTOU STONE. Au olivegray, finegrainel, carboniferons sandstone from Picton Harbour, Nova Sectia. - (r. P. M.

PICT'S house. In Scotland, a rude dwelling built often mpon the side of a hill, so that parts of the honse are exeavated, while others are enclosed by walls of unhewn stones. The rude stonework was carried $u p$ in a conical or domical shape until the roof was completed; then the earth wals heajel! above it, or a layer of turf or peat was used to cover everything. These buildings were sometimes large, containing many chambers.

Witson, Prehistoric Annals of Scotland.

PICTURE GALLERY. A hall planned and provided with regard to wall spaces, area of thoor, and lighting by day or night, for the

PICTURE PLANE

Pier: Theory of Piers as Explained by Runikin.
A is a wall, hardly strong enough; B contains the same culbic contents gathered up into piers, b, and curtans, a, This will te so very murh stronger than f that the material c, c can be removed with safety. This is trie of very many conditions.
most convenient exposition of pictures. (See (Gallery, C.)

PICTURE PLANE. In perspective drawing, the plane of projection, generally vertical. (See Perspertive.)

PIECE WORK. Work done ami paid for by measure of quantity at a fixed rate, according to a previous estimate of value; i.e. at an agreed price per thomsand for a certain quality of brieks laid in a specified manner, or, in the case of stonework, at a given price per perch, ete., in contradistinction to work tone and paid for by the measure of time, or by lump sum. (See Contract; Day's Work.)

PIEDROIT. A pier partly engaged in a

Clustered and BandED PIER. CHOIR, LINCOLN CATHEDRAL; C. 1300.

Clusteren Pifir: ONLY THE VAULTING Shafts Bandfd.

PIER

Pier: Nave Arfade; Islip CHURCH, OxFORDSHIRE; C. 1180.
wall ; perhaps to be distinguishen from a pilaster, as having no cap and base. A telin of loose application, adapted from the prenwh Pemb drot. (Compare lilaster Mass.)

PIEN : PIEND. All arras; a salient angle. Compumil terms result from this meaning ; as pien hammer, a hammer lowing a cutting elge ; pien rafter, in Scotlam, a hip rafter. (see Pien (herk, whrler Cherk.)

PIER. A. Any more or less isolated mass of masomry, generally acting as a support; as the portion of a wall between two openings, the sujports - larger than mere enlmoms - ol vanlting in merlheval charches, the projecting huttresses or'stiffeners along the Hanks of Ro. manesille and Pier: Clustramenand bannGothic churches, the masonry and

Pier: Clustrren and binnddhal; 13th Centery. grillage moter a eolamn in modern construction. (Sce Column ; Clustered Column ; Pilaster and following titles.)
b. A strmeture like a bringe or dyke, projecting from the land into deep water to allow of the loaling and unloating of vessels, or more ravely to protert an anchorage or the entranee to a harbour. (See Embankment ; Fondamenta; Jetty : Landing : Molo; Quay; Riva.)

Compound Pier. Any pier composed of several members grouped together, as distinguished from one having a simple square, eir-

PIERCED WORK

Pifr: Cltistered Pier; Old, Northamptos• SHIRE; C. 14 J̃o.

Pifr: Clestfired Pier of Latest Type, with ONE Capital for the WHULE. STUGUMBER, CHCRCH UF S. Mary, sumerSET: C. 1500.
cular or polygonal section. The term thas includes all clustered pillars or piers, and those having a eruciform or stepped cross section. They constitute a distinguishing feature of medieeral church architecture, through almost its entire histury from the tenth to the fifteenth or sixteenth century.

Recreation Pier. (See unler R.)

PIERCED WORK. Decoration which consists mainly or partially of per-

Pierced Work: Stone Window Slabs: Cemtral Stria. forations. The essential character of this kind of tecoration depends on |important works is the tomb of the Marechal whether the perforations are intended to be seen

Pifrced Work: Switzerland, 1Tth Cextčry.
Fascis below string course in wrwalen hou-w each plepcing bordered by light coloured paintings.

PIGTAIL AND PERIWIG STYLE

as accentuated points of light against dark or of dark agaiust light.

PIETRA NEPHRITICA. (See Nephrite.)
PIETRASANTA, GIACOMA DA; architect and sculptor.

Many of the buildngs in Fome, which are attributed by Vasari to Ciuliano da Maiano (see Giuliano da Maiano) and Baccio Pontelli (see Pontelli), were probably built by Pietrasanta. Among others, the church of S. Agostino, built in the reign of Sixtus N. (Pope 147-1484). In 1450 he made several marble doors for the Capitol, and in the records of Pius II. (Pope $1458-1464$) he is mentioned as superintendent of the construction of the loggia of the Benediction, with the title "Superstes fabrice pulpiti." In 1467 and 1468 he appears as director of the works at the Vatican and the Palazzo di S. Dlaro (Pome).

Müntz, Les Arté à la cour des papes.
PIETRO DA CORTONA. (See Berretini,

Pietro.)

PIETRO DI MINELLA. (See Beccafumi, Domenico.)

PIGALLE, JEAN BAPTISTE; sculptor; b. Jan. 25, lily; d. Aug. 20, liざ.

At the age of eight he was employed in the atelier of Fobert le Lorrain (see Lorrain, P. le), and at twenty evtered the academy of painting and sculpture in Paris. He studied in Fome, and on his return made the heautiful statue of Mercury, now in the Lourre. One of his most

PILA

Styl simply, and this abbreviated form is rather common even in serions writing.

PILA. In Italy, a holy-water font, consisting of a howl momed on a shaft or timot, as distinguished from a fout seented to or hanging from a wall or pier. (Compare lénitier.)

PILASTER. An engaged pier with a more or less flat face, projecting slightly from a wall surface, and furnished with a eapital, hase, etc., as if to correspond with a column : the shatt may be in a single piece, or it may be built ul in courses with the masonry of the wall of which it forms a part. It was a Roman expression of the Greek Auta, but, unlike the anta, its capital was made as mearly as possible like the capital of the corresponding colum, with which in Roman work it was nearly atways associated as a respond, but rarely used independently in Roman work. But in the Renaissance, the function of pilasters becane greatly enlarged, and they were often used, without the detached columns from which they were derived, to express upon a wall face an orter of arehitecture or a superimposition of orders in Hat relief as it were, taking the place of the engaget column as uset in the practice of the Romans. The engaged piers in liomanesipue architecture are sometimes, by extension, called pilasters. - H. V. B.

PILASTER MASS. An engaged pier built up with the wall: usually withont the eapital and base of a pilaster ; an undeveloped buttress, as in Romanesque work. (Compare Piedroit.)

PILASTER STRIP. Same as Pilaster Mass, but generally applied to a comparatively slender pier of slight projection.

PILASTRATA. In Italian, and by adoption in English, a row, series, or order of pilasters. (Compare Colomade.)
PILE. A post, or similar member of wood or metal sumk or driven into the soil to form a foundation for a superstructure or to form a retaining wall or dam. Must commonly used in series in solt aud yichding soil, or in water as a support for walls, piers, and the like, whose pressure would be too great for the soil. When in place, a pile may reach a hard substratum and thus serve as a colum or post to transmit the pressure of the superstructure through the softer material to a firm foundation ; or it may resist the imposed pressure by the friction of the material against its sides. (See Foundation.)

Close Pile. One placed in immediate contart with amother, as in the construction of a coffer dam.

False Pile. A pile, or similar memher, phaced on top of a pile or piles, after driving, to reach a desired level. (See Follower Pile, below.)

Fender Pile. A pile used at water fronts to act as a guard or fender between boats and

PILE

Pigeon Hur*e: Shirlay, VirGINIA, U.S.
(Compare cuts umder ('olombier.)
a landing. The most nutable examples are those of Venice, which are mentimed hare on arcomint of their derorative effert. They are adorined with simple painted decorations, recalling the colours of sume heraldic ardievement.

Filler or Filling
Pile. One driven het ween gange piles after these have been placed.

Follower Pile.
One nsed, in driving, as an extension to a pile which has been driven to its full length without reaching a haral buttom or meeting with sutficient resistance. (See
Fabse Pile, ahore.)

Gauge or Gauged Pile. One of several earefully placed
 by accurate measurement, as a gauge for the rest of a series. The tops of gange piles are commonly eommerted by a horizontal lellge, or wale, on each side, between which the Filling Piles are driven.

Pilaster of Decurative Interior: Peristyle, Holse qf the Faun, Pumprif.

PILE

Pilaster: Eirly Romanesque Forms, jth Cextury: El BARAH, SIRIA.
Hollow Pile. A hollow metal crlinder used as a pile aml commonly sunk from its interior.

Hydraulic Pile. it form of hollow pile. inside of which excarating is carried ou ly means of a jet of water.

Pneumatic Pile. A furm of hollow pile which is forced into

Pilaster: Late Seo- pile, withdrawing it, classic, wruught isto and ramming sand intu FURM OFGAISE: schloss the opening. (See
TURPA WEstergottLAND), SWFDEN. place loy atmospheric pressure when the air within is exhansted, bringing with it the displaced soil. (See Caissun I.)

Pug Pile. (See Sheet Pile.)

Sand Pile. A preparation for fuundation in soft soil-a substitute for a woorlen pile-by a filling of sand in a deep round hule: usually formed by driving a wooden the opening. (See Foundation.)

PILE DWELLING

Screw Pile. A pile terminating in a serew at its lower ent, by which it is fored into very harl material when revolverl.

Sheet Pile. One of a series of acenately cut amb squared timbersgenerally broad and thin, as planks driven in cluse contact, as for forming a temporary wall about a deep excaration. In its best form, a slueet pile is tongued and grooved, and its foot is bevelled so as to form a point or sharp elge at the sile which is to come against a pile which is already in place: in drising, the pile is thus wedged close. The form known as the pug pile has a tongue and groove of doretail section by which it is tightly locked to its neighbours.

Sheath Pile. Same as slieet pile: a corruption, posibly in confusion with sheathing, which such piling resembles. - D. N. B. S.

PILE DRIVER. A machine bs which a heary weight (about $1 \geqslant 00$ pouncls) is raised to a height and then allowed to fall suddenly. The windlass mas be turned by hand, or by a small steam engine; the weight or hammer is commonly released by the antomatic action of a hook which is thrown out of a ring when it reaches a certain lreight.

PILE DWELLING. A house built upon piles, especially when surrounded by water or swamp, the piles being long

Pilaster is DecoraTIVE W゙GODWURK: 17TH CENTCRY: W゙ADSTENA, SWEDEX.

Pilaster strip: Fots. IAISA ABBEY: C. 11%.

PILE TOWER

enough to lohl the loonse with its platforms amb atcessories at some distance above the surtive. Simh dwellings were very common in Europe previons to the rlevelupment in each region of organized society, the isolated jusition and the surromming surface of watre or marsh serving as a defence. They are still in use in tropical regions, as in certain of the Pacifie islands. A village composed of such liwellings is known as a lake village or a swamp rillage. Huch of our knowletge of prehistoric archeology is obtained from the remains found on the lake bottom or buried in the swamp on the sites of such villages.

Some of these villages seem to have been of the nature of communal dwellings ; in others a complete street of rough woodwork or of wattle seems to have been facel on either sille by the dwellings, each imlependent of all the others. - R. S.

PILE TOWER. Same as Pele Tower:

PILING. The process, and the result, of iriving piles.

PILLAR. Properly, any isolated vertical mass, whether monolithic or built up in eourses, as an isolatesl pirr, or the like. The term is harilly a technical one, and is very loosely applient ; thas, the mass of coal left in a mine to carry the rock alove is so

Pillar: Nive Arcitef Piers in the
illar: Nave Arcitpe Piers in the
Form of Simple Pillars; Fountains Abbey, Yorkshire, England; c. 1180.

PILLAR OF VICTORY

Pihlar: Square and Roind Oxhe (commonly callef Piers and Culumis), Kokaniya, SyRia; 5th Cenfury a.b.
calleat ; and the English Bible (Gen. xix. 26) speaks of a pillar of salt. In architecture, the term is applied to a vertical supuorting member which is not a column nor a pier, in the usual senses of those words: also, to large memorial cohmms.

Compound Pillar. Same as Compoumd I'ier, unter Pier.

Midwall Pillar. (See Nitwall Columm, unrer Column.)

Pompey's Pillar. A large menurial cohum of red Egyptian granite, in Alexantria, Egypt, erected by lompeins, a prefeet, in honour of Diocletian, in the fonth rentury A.D. (See Memmial Cohmm.)

PILLAR OF VICTORY. A pillar-like

1I.L AR, OCTAGONAL: CHIRCH HI ORTON-ON-THE゙-IILL, LEFFESTERSHEKE; C. 1350.

PILLARET

structure devoted to the commemoration of a victory, the term being sometimes extended to buildings like cantern pagodas, which are hardly pillars in any strict semse. The rostral cohmm (see Columna Rostrata) of the Lomans, and all those folumns men-

Pin in Visibie And DecHRATIVE FRAMING: A SWisi Chalet.
The diaponal brace is halved and not ched inta the pright and is held with two pin tionel under Memorial Column as being rommemorative of military triumph, as well as the rude cathstones or megalithic pillars of the North, are included unter this title.
pillaret. A small pillar.

PILLOW WORK.

 The decorative treatment of any surface with pillow-like projections; more especially of any member of an order, usually flat, with a continuous chshion-like swell or bulge. (See Cushion.)PILON (PIILON), GERMAIN ; seulptor and arehitect; b. 1535 (in the Fanhourg SaintJaques, Paris) ; d. Feb. 3, 1590.

In 1558 Pilon receivel payment for eight figures in relicf for the vault of the monument of Francis I., at Saint-Denis (see De l'Orme, Philibert), one of his earliest and best works. He supcrseded Domeniculue Florentin and Geronimo della Roblian (see Roblina, Geronimo della) as sculptor of the monmment to Heury II., at Saint-Denis, and mate all the statues of this monnment The las reliefs of the hasc are by Laurent Regnauldin (see Regnanklin) and Fremyn Ronssel. lilon made the momument to Guillaume du Bellay de Langey at the catheItral of Le Mans (finished in 1557), and the monument to Birague in the Louvre. One of his most celehrated works is the group of Three Graces which supports a vase in- Pincacle: Oxtended to contain the heart
 of Francis I. This mork,

FORD CATHEDRAL: C. 1220. made for Catherine de' Medici in 1561, is now in the Lourre.

Lami, Dertionnaire des seulpteurs francais; Palustre. Renaissanre; Gonse, Seulpture française.
PIN. A cylindrical or slightly conical or wedge-shaped peg or bolt, generally of woorl, aseal to connect two or more pieces together.

PINNACLE

It is most widely used in mortisc-and-tenon framing, and the like. (Compare Bolt.)

PINACOTHECA. In classic architecture, a building for the preservation or exhilition of pietures; in modern use, a gallery of painting. (See Pimakothek.)

1'NNACLE

A part of the cheret of the cathedral at Reins. The importance of these pinnacles is in their colossal size. for each from the level surfare at the top of the great huttress rises solfet to the finial upon its spire. ant ineludes a solid basement piereed
only ly the waterway leading to the gargoyle, an open nifhe containing the great statue on its pedestal, and the spire, which itarlf is accompanied by four minn pinnateles. The garmoyles are ruined in effect by the modem water-leaders.
ing, rising above the neighluming parts of a building. It is generally nsed to crown a buttress, or the like, to which it gives additional weight : alsu, at each of the four corners of a square tower, to fill the space left hy an ortargonal sjire above, and to complete the proportion. In sume examples, the pimatcle consists of all open pavilion supporting a spire, the whole being of great relative size. (See Buttress; Flying Buttress : Gothic Arehitecture.)

PINNING IN. The closure of open joints in rubble work or rongh walling by small welges or spalls of stone fitted into the interstices and bedeled sulidly in mortar, especially to aroicl hollow spaces in the interion of a wall ; lust it is enstomary, in specifying for the fice work of such a wall, that there shall be few spabled joints.

PINNING UP. The operation of securing the solill horizontal bearing of timbers or lintels on walls or piers of masoury by the insertion of thin wellges of stone or layers of slate or metal; the operation of ilriving in metal welges ur blates to bring the superstructure to bear fairly upon the substructure, or to resture to the perpendicular a wall which is not plumb. (See Perpendicular, Restoring to the; Shim.)

PIPE

PIN STOP. A metal pin inserted in atny turning member to stop it at a certain point, as in the key of a gas fixture.

PINTELLI, BACCIO. (See Pontelli, Baccio.)

PINTLE. A pin forming an axis or pivot to seeure two parts or members, while leaving me or hoth free to revolve ; espeeially, a combination of such a pin with another jart, by which it is hehl more or less at right angles, forming a sort of hook.

PINTURICCHIO, BERNARDO; painter; b. 1459 ; d. I5l3. Pinturicelio painted frescoes at the Sistine Chapel (Rome), which still exist ; the Borgia apartments at the Vaticim, recently restored; and the decorations of the library of the cathedral of Siena.

Crowe and Cavalcaselle, Ihis-

Pinvacle: PeTERBORO C.THEDRAL, A.D. 1234
tory of Painting in Italy; 19. W.
Kitchin, Piccolomini Library; Volpini, Appertimento Borgia del Vaticuno.

 triry, with PiNideles of whully Decurative Purpuse, and Usüsually High.

PIPE. A long, generally eylindrical, hollow borly, used for the conveyance of a Huil, as a drain, or a steam, water, or gas pipe. The material of pipes difters according to the service whith they lave to perform. To quote some examples:-
for soil and waste pipes: heary cast iron, asphaited and galranized wrought irom, brass, and heary lead for short branches;
for rent pipes; heary cast iron, galvanized or lead-lined wronght iron, heavy lead and brass;
for drain pipes ; earthen, cement, and extra heary cast-iron pipes;
for supply pipes ; heary drawn lead, plain black, galvauized, enamelled, learllined, tin-lined, and glass-lined wrought iron, tin-lined lead, tinned brass, and copuer' ;
for suction pipes from cisterns and wells ; tin-lined lead and hloek-tin pizues; forilluminating gats ; black or plain wronght iron, galvanizel wronght iron, and for exposel work, brass pipes:
for steam; plain black wronght-iron pipes; for gas and water strect mains ; heary asphalted east-iron pipes, asphalted or cement-lined wronght-iron pipes, for water; wooten \log pipes.
(See Gas Fitting ; House Drainage; Joint: Plumbing.) - W. P. Gerhard.

Supply Pipe. The pipe by whiel the public gas, water, or steam service is con-

PIPE BOARD

neeted with private or especial service. In plumbing, the supply service precedes the serrice of special distribntion.

PIPE BOARD. A board secured over a sink or the like, commonly fixed to the wall ; to which the variuus plumbing pipes for supply

Pixnacle: Spanish Revarssance; Cathedral of Leos; 15:20-1550.
or tell-tale purposes, with their fancets, are attached.

PIPPI, GIULIO (Ginlio Romano) ; painter and architect; b. 149: : 1. 1546 .

As the principal assistant of Raphael (see Santi, R.) he was associatel with him in executing the frescoes of the Stanze of the Vatican. He also superintended the execution of the fres-

PISCINA

coes in the loggia of the Farnesina (finished about 1518). He assisted in the decoration of the Loggia of the Vatican, and of the Villa Madama, near Rome. In 1525 he designed the Palazzo del Te (abbreviation for Tejetto, a sluiceway or canal) at Mantua (finished 1528). Ginlio built his own palazzo, which still stands in Mantua, and the tomb of Baldassare Castiglione in the church of S . Maria delle Grazie (Mantua).
Stiller, Pruluzzo del Te in Allgemeine Banzpitrnu, Vol. XLIN. : Rottani, I'oluzzudel Te: Carlo d'Aren. Fita ed opere di Giulio Romano; Müntz, Liemoissunce; Vasari, Milanesi ed.; Gaye, Cartegyio; Gruner, Specimens y! Ornamental Art.

PIPPI D'ANTONIO DA FIRENZE; senlptor and architect.

After 1491 he was associated with Ambrogio d'Antonio da Milano in the construetion of the portico of the cathedral of Spoleto.

PIRANESI, GIOVANNI BAPTISTA; arehitect and engraver ; b. 1720 , at Tenice ; d. Nor. 9, 1776.

He was the son of a mason and went to Rome at the age of cighteen to study architecture. His phates were published under the following titles: Amtichitit Romame, 4 vols. folio, first ed. 1756, second ed. 178t; Mommenti rleali Scipioni. I vol. folio, 1785 ; Scionf"ephine quentuor Templorum I'etrium, dedicated to Pope Pins V'., I vol. folio, 1756 (Part Il. contains the Pantheon) : Della Magmificenza ed Architettura de' Romemi, 1 vol. folio, dedicated to Clement N111.; Opere T'urie di Architettura. etc., Rome, lear VIll. of the Republic; Lapides Capitolini, 1 vol. folio, ledicated to Clement XIV.; Il Campo Hurzio dell Autict Roma, 1 vol. folio, Fome, 1-62; Antichite al'Llbano e di Castel Gcundolfo, 1 vol.folio, dedicated to Clement XIY.; a volume of plates on the column of Trajan, a volume of plates on the ruins of Pestum, varions engravings of Foman vases, eamlelabra, etc.

Biography compiled from a manuscript memoir of Piranesi by one of his sons in Library of Fine Arts, 1831.

PIRCA. A kind of construction found in Peruvian ruins where round stones are lairl in mortar, forming a sort of rubble. - F. S. D.

PISANO. ANDREA. (See Andrea da Pisa.)
PISANO. GIOVANNI. (See Giovanni da Pisa.)

PISANO, NICCOLÒ. (See Níccolò da Pisa.)

PISANO, TOMASO. (See Tomaso di An(lrea Pisano.)

PISAY. Sime as Pisé.
PISCINA. A shallow basin or sink, supplied with a drain pipe, generally recessed in a niche, which is often elaborately decorated. In modern churehes, generally situated in a cano pied niehe in the sanctuary wall, on the Epistle, or south side of the altar, and east of the Se-

PISÉ
dilia, nsed to receive the water in which the priest washes his hanus at the Mass, and also that in which the saterel ressels are enemsel.

Mallet, ω^{\prime} Archeologie Religieus, ö vols., I'aris, 1887.

\author{

- C. C.
}

PISÉ. A building material (see Pisé Masonry, umder Misonry)

This material is much used in parts of ('entral and South America. A kind of jusé work was used by some American lndians, a goml example still existing in the noted ruin, Casa Gramele near Florence, Arizona, aml also uthers in Mexico. Another variety was in use in the Saladn Valley, Aizona, where an examination of

Piscina: In Dwellivg-Hou'se at Oakham, RetLaNodehre; lỉth Centery.
many ruins diseloses a methol of ramming the clay between two lines of wicker womk homed together by cruss sticks. (See Cajou; Clay Walling ; Tapia.) - F. S. D.

PISON : architect.
Pisom, Whitre dicurre, constructed, at the clowe of the tenth century, the old cathedral of Le Puy (Haute Loire), central France, of which restiges appear in the present building.

Bourassé, Cathédrales de Frunce.
PIT. In a theatre, or the like, the main portion of the floor of the auditorimm, situated at a lower level than the dress citcele or boxes which originally enclused it on three siles. Commonly separated from the hoves hy a sunken aisle. The term is now, in (ireat Britain, applied to the inferior seats in whatever part of

Pisilina: Cowlini: Chulech; c. 12 BO .
the floor of the house, and in the U'uited States hats heen superiseled hy the term Orchestra or Parquet.

PITCH (I.). The amomen of slopegiven to any memher, as a ronf, or part of a roof ; thus, a pitch may lue stated as of $\because \underline{2}$ to 3 (viz. ? feet or inches unight to 3 feet or inches horizontal) or of a given angle (30 degrees, to degrees, etc.). An ingenious instrment is sold, levised for the eaxy determination of the pitch of roof amd much used by carpenters, surveyors, and the like. It is furnishel with a spirit level, and lyy the use of this, a glance will letermine either the angle of the pitch or the namber of feet of rise or vertical height which eorrespomes with a given length of slope, or, at fleasure, with a given horizontal length.

PITCH

The pitch of roofs has generally been ileterwined ly two ronsilerations taken together ; one, the anomint of rantall or snowtall which is to be expectod during the year, or any seasom of the sear; the other, the material with whieh the rout is covered. A rowi made of sheets of tin plate, zinc, or other metal soldered tugether, may be much more tlat than a rouf of shingles; thic, again, suncwhat less stcel, than a slate rouf - - all without danget of leakage so long as the roof is in goud repair. Other considerations, such as those of architectural effect, have, howcree often affectel the question ; thus, the six. teenth century arehitects of France inherited from the (rothic church buiklers a taste for very steep and high roofs, requiring very lofty ehimneys, which, tugether with proportionally large cormer winlows, hecame an important feature of the Renaissance building of France. A lumdred years later this taste had disappeared, and the intinence of classical and psendo-classical traditions coming from Italy eaused the arloption of roofs of very low piteh and almost entirely concealed bebind blocking courses, parapets, and the like. The flatter roofs may have required somewhat greater care in their construction: but the elange from one to another was wholly caused by local and temporary change in taste of design. - P. S.

PITCH (II.). The distance from centre to centre of rivets in iron construction.

PITCH-FACED. In stonework, haring the edges of the face trimmed down to a true arris or angle all around (see Draft), so that, when lain up in the wall, the central part of the visible face of each stone is left projecting and rough as it came from the quarry, or but slightly dressed into shape with the pick, while the joints are narrow, true, and all on the same plane. A pitch-faced wall, therefore, is a rough wall of sifuared stones with fine joints somewhat below the general surface. (See Rock Faced; Stone Dressing.)

PITCH HOLE. A recess or depression occurring in the surface of a stone which has otherwise been more or less dressed to a true face for setting.

PITCHING PIECE. Same as Apron Piece.
PITCH OF AN ARCH. The rersed sine, or height, from the springing line to the highest part of the soffit or intrados.

PIT DWELLING. A residence wholly or in part umder ground and formed by an excavation. Recorls of honses which appear to have been entirely subterranean are not uncommon, and there exist in the south of England (Aldy, op. cit.), in several parts of Italy, and upon the sites of different Gaulish cities many pits Which mist have been from 4 to 6 feet deep and from 12 to It feet in diameter or width, all of which were evilently, from the remains within them, used for human habi-

PLAN

tation. The wall, if any was needed for greates height, was built up of rough stones, or by screens of wattle covered with mul, but the roof seems to have been in every case a pyramid or cone of boughs. It has been pointed out that there still remain many English cottages of which the floor (of beaten earth, or of stones lail upon the earth) is a foot or more below the surface, and allusions to this will be found in literature. It is claimed that houses were warmer in winter if built in this way. (See Pennjit.)

Addy, The Erolulion of the English Housw; Hamerton, The Mount and tutun; Hetbig, Die Ituliker in der I'sebene.

PIVOT. A pin on whicli any object is free to revolve ; it may be stationary or attached to the revolving object. In antiquity, used in the place of linges for doors and the like ; fixed near to the jamb in the sill and lintel ; or fixed to the door and revolving in suckets. In modern times, heary sash with large sheets of plate glass have sometines a pirot in the midulle of the top and bottom rail; pivots are also used for hanging fan lights and other sask, being secured to the middle of the site stiles and haring their sockets in the jambs, or sides of the frame.

PIVOT LIGHT. A glazed sash suppurted on pirots so that it may be opened and closed by revolving, either horizontally or rertically; a common arrangement for fan lights.

PLACARD. I. Pargetting; parget work.
B. The decoration of the door of an apartment, consisting of a chambranle erowned with its frieze or gorge. - (A. P. S.)
C. In French use, a small, shallow eupboard.

PLAFOND. A ceiling in the sense of the under side of a Hoor. The French term used in English, especially when such a feature is made decorative.

PLAIN TILE. (See Tile.)

PLAN. A drawing which geometrically represents an object in horizontal projection, as distinguisherl from those representing rertical sections or elevations: it may represent the exterior of the oliject as seen from above, as in a root plan, or any part of its interior as shown by a burizontal section, as a floor plan.

As the homizontal section lias the adrantage, over rertical sections and elevations, of being able to set forth the shapes, dimensions, and mutual relation of all the apartments in a buiding and the character of its intercommunications, the plan is generally considered as the basis of every architectural composition.

Plans, in the plural, commonly, any set of graphic delineations intemled collectively to describe an ohject or objects, even including vertical projections and perspective drawings. (Sce Planning.) - D. N. B. S.

Fig. 1.

Fig. 4.

Fig. 5.

Fig. 3.

Fig. f).

Plan: A Comparison of the Systems of the Forms of Church Plans of Different Eforhs. For thise of the basilica Type, of Romanesque, cothic, Renaisaniof, hid Cinquecento, see under Cherch and Subtitles.
Fig. 1: Church of \therefore. Mark. Venice, the typmeal Byzantine Foruck cross with Dive cupulas with a marthev earrleal around the three sirles of the

 omitted; therefore rednced to the simplest turms, a Gruek cross enclosed by walls as stuple as a bux, a sinule culaba, and lour burrel vaults.

PLANCEER

Block Plan. A plan giving the general mass or untlines without sublivisions: as when it is desired to exhibit the relations of a building, as a whole, to surrounding buildings or grounds: or when the general distribution of rooms is indeated ronghly withont minor details, as doors amd wimbers.

Ground Plan. That ome of a set of arehitectural drawners whicls shows the groum story of a loulding, or, in some cases, of the basement story. It is usual to consider the groumd plan as the primary drawing to which others must be made to conform, and this because it is commonly the one first laid out and the one in which the general limes of construction are first considered and more or less determined.

Plassing: Chutreh at Kalat Sem'as, Syrla; 5Th CeNtury.
O. colomn of S, Simeon Strlites. The circle A, A. A, fixes the Hypaethral octagon. The circle R, R, tixes the exterior of the atisidioles. The circle D, D, fixes the length of the three great porches north, sonth, aod west. The circle H, h. S, fixes the width of the onter narthex to each porch and the length of the bare of the church proper at the east. Lines drawn through C, C, are the axes of the church and porticues. The sides of the oares and aisles being made warallel to these axes. Lines drawn through $\boldsymbol{F}, \boldsymbol{R}$, are the axes of the absidiules.

Perspective Plan. A plan drawn in perspective ; used as a preliminary process of drawing in perspectire, but rare.

PLANCEER. The sotfit or underside of any projecting member as a cornice. Also, a plank; a floor of wood: sometimes called plancher, or corrupted into plansheer.

PLANE (r.). To smooth as with a plane, said of wood more especially, but also of stone of such qualities as will bear fine dressing, and of forging of iron and steel. In architecture, as in ship builling, even the heariest timhers were finished by the hand plane until about 1830 ; at that time the planing mill became common, and this has received great improve-

PLASTER

ments. Planks and boards are said to be millplaned when they are of that smoothness which is ohtained by the planing machine. (See Woodworking Machinery.)

PLANE OF A COLUMN. The surface of a longitudinill section mate on the axis of the shaft of a column. In some Greek peristyles and porticoes the plancs of the columns incline inward slightly. (Sce Refmements in Design.)

PLANE TILE. (See Tile.)
PLANK. A piece of timber, the thickness of which is small as compared with its width. In the United States it is always more than one inch in thickness. In construction, only such pieces as are laid flat or nearls so; thus a tiurber, 3 inches $\times 10$ inches, laid as in flooring, is called a plank: but when set on edge would be a beam or joist. (See Slow-burning Construction.)

PLANNING. The laving out and developing the general scheme of a building, referring especially to its ground flan and floor plans as the hasis of every architectural compusition. This process involves the auljustment of the building to the site and a consideration of the grales and their effect upon the plan: the size, shape, and proper mutual disposition of the halls, rooms, chambers, corridors, staircases, and ottices of all degrees, laving in view, first, the adaptation of each to its especial use in all respects of practical comfort, courenience, and accessibility ; second, the best construction compatible with proper economy; third, the reconciliation of the uper stories with the lower, so that there may be no unnecessary, costly, or awkward concessions ; fourth, the possible exterior derelopments, in respect to height, fenestration, division into pavilions and proportions generally ; and fifth, beauty, harmony, and distinction of style by proper subordination or emphasis of eaclu part in accordance with its just relative importance, so that a complete unity may be established throughout the whole fabric. In this process the establishment and obserrance of axial or centre lines and lines of rista are often made to play an important part. (See Plan; also Architecture: Drawing)

$$
-\mathrm{H} . \mathrm{V} . \mathrm{B}
$$

PLANT (r.). To attach by gheing, nailing, or otherwise securing to a surface, particularly in carpentry: usually with on. A moulding when not worked in the solid is said to be planted on. (See Stick.)

PLAQUE. A tablet or distinctly flat plate, generally of metal, whether plain or ormamented, for exterior or interior wall decoration, or to be inserted or inlaid in a pauel. (Compare $\mathrm{Pa}-$ tera.)

PLASTER. In building: -
A. Same as Plaster of Paris.
B. A mixture, either of lime or of lime and

PLASTERING

phaster, in sense A, with sund and water, amd sometmes with short cattle hair or vegetathle fibre, in considerable quantity, used while wet for corering surtaces of walls, or the like, where it hardens with a smooth surface. This is the only common use of the term in buithing, as other preparations serving the satue purpose are tarely called hy this name. (See Arriscin; Chunam; Gatch ; Gange Mortar, under Mortar ; Gaugel Work; Intonaco ; Rough Cist ; Stafl ; Stucco; see also Plastering.)
plastering. The art and the practice of mixing and applying plaster in sonse B, inchuling the occasional use of plaster in sense A. It is customary to apply plaster in three or in two coats. For tliree-coat work the first coat is generally rather coarse mortar made of lime and sand with mueh hair mixel in the paste. This is put on wet, and rulbed hard with the trowel or float so as to form a good key upon the lathing or the masonry, while it is deeply stratched or scored to allow the secoml coat to make a key. The second coat, catter the trowning or floated evat, is of lime and saml, and is floated smooth. The third coat, called finishing eoat, may be a hard fimsh, and is them composed of selected lime and fine white sand or marble dust, and is rubhen very smoth; or else it is of samd finish, and is then made like the second coat, but with selecterl and washed sand, and is floatel true anl smooth. Honldings are made by ruming nearly pure phater, in sense A, along the line to be followed, and then shaping the soft material by a pattern or templet, or by casting them in pieces of some size which are then nailed in place. Raised ornaments are of this material, sometimes stiffened with glue, or of lapier maché ; they are put up while the first or second coat is still wet, and keyed well into it, the finishing coat being worked around them afterward.

Sand fimish is employed when the wall is to be painted, and when the peculiar depth and glow of colour cansed ly the rough surface is desired. Hard finish is much more common in modern times. Where painting is to be very elaborate, special treatment of the plastered surface is necded, unless plaster, in the strict sense, is replaced ly some cement. (See Stucco.)

Plastering was used by the Romans both separate and in combination with stucco; it was used also throughont the Middle Ages, though what remains of this is generally a fine and apparently pure gypsum (phaster in sense B). It was in the sixteentlo century that the use of flat, plastered ceilings began to replace the visible soffits of the floor beams and girders; and as this was nearly contemporaneons with the classical revival in the north, the Elizatethan aul Jacobean English huiklings offer examples of very elaborate moulded and patterned ceilings male of plaster. Colonr was

PLATE

mixell with the plaster very often, and different colours used in the same piece of work, with deliterate search for polychromatic eflect.

- İ. S.
plaster of paris. A. Gypsum ; so called hecause first discovered in the tertiary of the Paris basin.
B. Gypsum deprivel of its matural moisture by heat, which, when gromul to powder and diluted with water into a thin paste, sets rapiclly, anll expands at the instant of setting, a peculiarity which couses it to take sharp and delicate impressions from a mould. (See Plastering.)

PLAT. (See Plot, ni. and v.)
PLATBAND. I. Any flat or square faced monlding of slight projection in compratison to its width, timming a contrast or rest in a group, of mondings of curvilinear section, as a tascia in an architrave.
B. A that atrei (which see, under Arch).
plate. A. A member intembed to serve as the ummediate support of isolated pressures, its expecial advantage being to distribnte those pressures willely thronghont the mass of masomry or the row of separate urrights of mon or wool which sumpert it. (1) A timher, phank, or phere of seantling used in this way (for which see sul-titles, Gromm Plate; Pole Ilate; Wall Mlate). (2) A piece of metal or a block of stone of even surface amb of uniform thickness, often not very much larger than the end of a bean, girler, or trinss which rests unon it. (See Templet.)
b. A tlat slab or piece of material of any sort intendel, not for constructional ${ }^{\text {min }}$ inses, but as an aceessory. (See the sub-titles, Hand I'late; l'ush l'late.)

Bearing Plate. A plate in sense A; espesially one used to carry a great and concentrated weight, as one end of a heavy truss.

Deck Plate. A purtin plate in cases where the upper slope of the roof is so nearly flat as to be called a deck.

Ground Plate. The lowest plate in a timber frame, resting upon the fomblation of masonry or the piers which replace it ; therefore, usually the same as sill, as in the framing of houses, and the like.

Hand Plate. A flat piece of hard, and often glazed and washable, material, intended to be tastened upon a door at the point where it is apit to he handled in opening and shutting. In ofd-fashioned houses its piace is sometimes taken by a black painted parallelogram or other figure и口и the lighter surface. (See Push Plate, below:)

Pin Plate. A form of Bearing Plate; so callell becanse, when cast in iron, it is made with a pin intended to project downwarl into the masoury and steally the plate in its place.

Pole Plate. A plite for the support of the ends of the common rafters; specifically, such

PLATEA

a plate laid aeross, and resting upon, the tie beams. and acting in place of a purlin.

Purlin Plate. A purlin in a roof which takes a new set of rafters, ats where there is a break in the inclination of the roof, the upper part being less stecp, than helow. (See Curb; G:ambrel Roof, unter Roof.)

Push Plate. A thin piece of metal, porcelain, or similar hard and washathle substance applied to a loor at a point where it is frequently pushed by ham or fort ; especially the somewhat ormamental piece set below the knot and keyhole, and, more rarcly, above these. (Sve Hand Plate.)

Raising Plate. In carpentry, any continuons hormontal timber laid upon the top of a wall or upon a timber framing, to support the heels of rafters or any other superincumbent frame work; a wall plate.

Wall Plate. A plate resting upon the wall and carrying the timbers of a Hoor or rouf ; more esperially the piece which supports the ends of the rafters of an ordinary roof, and which is often spoken of as "the plate," withont qualifcation.

- R. S.

PLATEA (pl. plateie). In Latin, an open space, as a street; hence, in Roman archrology, a passage in a theatre, amphitheatre, or other large builling.
plate beam. (See under Bcam.)
plate glass. (See under Glass.)
PLATERESQUE ARCHITECTURE. That supposed to resemble silversmiths' work in its ornamental details, viz., a delicate and elaborate tracery or massing of fine sculptured detal. This style is peculiar to Spanish architecture from about 1520. (See Spain, Architecture of.)

PLATFORM. In architecture : -
A. A natmal or artificial raised piece of ground, more or less level and regular in shape ; especially as prepared for the reception of buildings, as the great even surfaces retained by heavy walls from which rose the palaces of the Assyrians. (See Mesopotamia, Architecture of.)
B. A floor raised above or sunk below the ground or the general level of the floor of a mom or hall; as a stair landing, a dais.
C. A grillage, bed of cuncrete or similar construction prepared to receive a pier.
D. A row of beams on top of a wall to support the timber work of a roof. (See Wall Plate.) - D. N. B. S.

PLATFORM RESIDENCE. A house or group of honses of American Indians built on an artificial platform, or terrace of earth. Such platforms in Florida were 20 to 50 feet high and sometimes nearly 2000 feet in circunference, summonted by honses of the chief and his family. The steep sides were ascented by means of steps cut in the earth and eovered with wood. It is probable that some of the mounds of the

PLINTH

so-ealled Monndbuilders were of this nature. (See Mouml.) - F. S. D.

PLATING. In stained glass work, the lining or clonbling of one picce of coloured glass by another piece with the purpose of modifying its colour or diminishing its intensity. (See W'indow.)

PLAZA. In Spanish, an open Hace in a town. The term is being gradually atopted with a similar meaning in parts of the C 'inted States.

PLEASANCE. Anciently a garden or part of a garden intended for ornament and for enjoyment.

PLEXIFORM (adj.). Having the appearance of network, weaving, or plating, as 1 m Romanesque and Celtic ornamentation.

PLINIUS CAECLLIUS SECUNDUS, CAIUS (Plany the Younger) ; writer; b. 61 on 62 A.D. ; d. 116 a.d.

A nephew of Plinius Secundus, author of the IIistorict Naturales (see Plinius Secmondus, ('ains). He is best known by the ten books of his letters (E_{p} istolce). A letter from him to Gallus (Book II., Ep. SVII.) describes his Laurentine villa sixteen miles from Rome, and a letter to Apollinaris (Book Y., Ep. VI.) deseribes another villa in Tnscany. Numerous attempts have been made to reconstruct these villas from his description. In 106 A.D. he succeeded Frontinus (see Frontinus) as superintendent of the Roman aqueducts.

Smith, Dictionary of Frreek and Roman Biography; Arch. Pub Sro. Dictionary; Castell, litlis ui the Ancients; Marquez, Delle ville di Plmo.

PLINIUS SECUNDUS. CAIUS (Pliny the Eliler) ; writer, b. 23 A.D. ; d. 79 a.d.

The Historia Natwolas of this famous Foman writer is one of the chief sources of information regariling antique art, especially the thirty-fifth and thirty-sixth books. He was killed by the emption of Vesurius in 79 A.D.

Smith, Dictionary of Greek and Roman Biography.

PLINTH. A. The plain, continuous surface unler the base moulding of any architectural member, and connecting it with the ground or floor. In the classic orders, the low square block moder the base mouldings of a column, pilaster, or pedestal. The term is extended to include a course of stone or brick in which an oflset is cut, as where a wall diminishes in thickness. The Doric abacus has been called a plinth erroneously and because of its square and simple form.
B. In joinery, interior finish, and the like, a flat and plain member at the bottom of any architrave, dado, or the like: or the broad and tlat part of a Base Board or Skirting.

Sub Plinth. A plinth placed under the principal plinth and of slightly greater projection.

PLINTH BLOCK

PLINTH BLOCK. A jlinth used to prevent the mouldngs of a dour or wimlow frame from reathing the ilour. (See I'linth, B; also Base Block.)

PLINTH COURSE. A eourse of stones, forming a contumuls plintll. Specifically, the first projecting course of stones abuve the unulerpiming, forming the base or pait of the hase of a building. (See Base Course ; Water Table.)

PLINY. (See llinius.)
PLOT (in.). A. A piece of ground, as for building, generally smahl.
B. A map or phan as laid out or plotted.

Ground Plot. Same as Ground Plan; ne:uly obobete and conneeted with Plot (v.) in the sense of drawing phans.

PLOT (v.). To make a drawing of a plot or grouml plan ; to map; specitically, to lay out a map, from a surveyw's notes.

PLOUGH (Sice Plow.)
PLOW (v.). To eut grooves or chamels, as in daloing and honsing.

PLOWED AND TONGUED. (See Tongued and Grooved.)

PLUG (in.). A. A wetlge or peg of woor driven into a joint of a wall of brick or stone and then sawn off tush to affiond a bold for mans, sis that liuring strips or other woodwork may have firm attachment in preparation for interior finish.
B. In phunbing, a branch from a watersupply pipe threaded at the outlet for coupling to a huse. It is generally elosed by a screw cap.

PLUG AND FEATHER. A combination of three pieces, ustally of iron, for splitting stone. lt consists of two half-round bars which are placest in a hole drillen in the stone for the purpose, aurl between the flat sides of which is driven the third pieee having a wedge shape. This last appears to be generally known as the Plug, although Feather would seem mure appropriate from the general meaning of that term.

PLUMB (adj.). Vertical, as shown by a plumb line.

PLUMB (in.). A phummet; hence, by extension, the verticality of a line suppurting a phammet. (See the sub titte.)

Out of Plumb, not rertical ; said of any member or face: and especially of one that onght to be truly vertical.

PLUMB BOB. The weight used for a plumb line; hence, by extension, the plumb line and weight usel together. (See Plumb Line; Plumb Tinle.)

PLUMBING. Formerly the trade and art of working in lead; nowadays the trade of fitting up in buildings the metal pipes, traps, tanks, and fixtures of different materials used for water supply, drainage, gas illumination, and for gas cooking and heating; also the pipe

PLUMBING

system and appratas used for the conveyance of water, seware, and gats.

As implied by the name, plumbers used at one time principally lead in their work. Sin pipes were made from shoet lead robled into cylindrical forms :und soldered at the edges. Cisterns, tanks, and sinks were linet, and roufs of buildings were covered, with sheet lead. Handmade trapm, rain-water leads, gutters, leaders, and flashings were made of this metal. Later on, cast leal fipes came iuto use, and are now supreded by drawn leal pipes, bemls, and traps. The tedious work of hending pipes tyy ham is done away with: drawn traths have no sand holes from casting and to not open at the solitered seams.

With progress in manuaturing, better and stronger materials hecame avalable for the plumbers' work. Cast anel wrought irou bipe, for water, sewage, and gas, and copper and hatsis pipes, fittings, and traps tol the waste and sup. ply system of phubing aphances, have to a large extent replared lead ani given to phombing work an entirely different character. Comparatively hattle lead is used in the modern American phonting, whereas in England and Franee lead soil, water and gas pipes, are still in use. In the case of very solf waters leall ats a waterial for supply pipes should be avouter, as there is some dianger of the water aeting on the leal and sulusing, when used for drimking, lrad poisoning. (See Pipe; Water Supply.) The jonrueyman fhmber of to-day must understand wiying soldered jomts in lead pipe, making strew joints in wronghtiron pipe, lcal eaulken! joints in east-irmpules, and the joining of hass, block th1, and iopper pipes.

Plumbers' work comprises the rumning of soil, vent and waste pipes and house sewers of varinus materials, the tapping of street mains, bringing the water service pipes into luildings, and running supphes to phombing fixtures, tanks, and hot water boilers; the fitting up, of water metres, and the setting and connecting of land lift and force pmmps, hot air pumping ensines, steam and gas pumps, electrie amd fire pumps. Plumbers fit up cooking ranges for eval or gas fuel, and make the commections of waterbacks or pipe eoils, and must know how to obtain perfect hot water supply and circulation. They provide fire protection appliances, such as fire pumps, standpipes, valves, and hose, and fit up water sterilizers and pressure filters. They must know and understand the setting of the numerons kinds and types of phumbing fixtures, such as water-flosets, urinals, sinks, basins, and tubs, and how to comect them with the soil and waste pipes in such a way as to serure the safe removal of sewage and perfect exclusion of sewer air. (See House Drainage.) The plumber also fits up buildings with gas pipes for lighting, cooking, heating, and jower purposes.

PLUMBING

The most important appliance from a sunitary point of view is the water-loset. Numerons types have bem devised, many of which, after at brict trial, have bech abomdoned. The pan Closet was the one to hold out the longest, motwithstanding its miversal condemmation. At the present witing (1900), the pan, valve, and plunger closets are fitst disappearing. Cheap wasli-out chosets and a few of goonl make are still in great demand, although not free from Apects. In well-appointel bath rooms and twilet romes, the all-poreelain siphon and siphomfet closets arr preferred. For institutions, sclools, anm serrants' 'losets, pedestal washdown closets make a thoroughly sanitary fixture, in particular those with deep trap, seal. In some situations a tlushing-rim hopper eloset works satisfactorily.

Wask hasins are mande in a variety of patterns. Thuse with outlet colosed by a plug, and those with stamdpupes or with metal phags operated by a lever, are much better than bowls with secret waste valves, or tip-np basins.

Bath tulos aremade of wood lined with eopper, of solid copper, of steel lined with copper, and of enamelled iron and earthenware. In hospitals for the insune and in people's baths, overheal inclined douches or surays are substituted for tub laths, being more economical and samitary. A great variety of land sprays, needle and shower baths are male, as also foot baths, sitz baths, and bidets for bathing parts of the body.

UTrinals have been improved, and a goorl pattern for single stalls is a flushing-rim bowl, holding water, thoshed by a cistern and emptied by siphonic action. In public places, railroad stations, etc., and for factories and schook, continnous tronghs of enamelled irou, slate, soapstone, or white glazed stoneware, with antomatic intermittent flush, are used.

Wooden washtubs have been superseded by soapstone. slate, and artificial cement tubs for cheaper dwellings, and white or vellow glazed roll-rim earthenware tubs are used in more expensire resilenres.

Slop sinks for emptying chamber slops, ant washing betpans and other sick-room utensils for hospitals, are made in strong fire clay, and have a top Hushing rim supplied from a cistern.

Sinks for kitchens, sculleries, aud pantries are obtainable in painterl, galvanized, or enamelled iron, in copper, soapstone, slate, and white or yellow stoueware. The latter are the best from a sanitary foint of view, and recent improved methods of mamufacture at American potteries have emabled the makers to reduce the price appreciably. In kitchens of large botels and institutions, grease from dish washing and cooking operations is intercepted in grease traps, to prevent stoppages of waste pipes.

While much progress has been made in the art of fitting up buildings with plumbing con-

POCKET PIECE

reniences, the manaal work of the plumber has not advanced as much. Future improvement seems to lie in the direction of more accurate and mechanical workmanship, i.e. رlumbing work should be laid out and fitted in the shop in much the same way as machimists turn ont their work, thus enabling in more rapid and aceurate putting tugether of the parts at the builling.

Gerlard, Itouse Drainage and Sienitary Plumbing. Th el.; F. WI. Tower, I'lumbers' Textbook: Plmmbing and Itwase Drainage Prokems, from the simitary Engineer; Amrrican I'lumbing Iruction, from the Enginesting Rocord (formerly the Somitary Enginepr) ; Gerhard. Recent Practice in the semitary Irainage of Buldings; Senitury Engineering of Buildiugs, Vol. I published. Vol. 11. in preparation; Gertard, Guide to sumtury IItmse Inspection; Waring, Ihne to Druin a House ; Hellyer, Lecturrs on sinnitary Plumbing; Gerhard, E'ntucurserumys-1 luluyou amerihomischer Gebaende (I'art N. of Furtschritte der Architektur of the Handburk).

- II. P. Gerhard.

PLUMB LINE. The line which supports a Plumb or Plumb Bub.

PLUMB RULE. An instrmment for determining verticality, cousisting of a narrow boad with straight parallel edges, having a plumb line attached to one end and a hole at the other end large enough to allow the phomh to swing frecly. The verticality of its erlges is known when the plunb line coinciles with the centre line of the board, as marked on its face.

PLUMMET. Same as Plimb (n.).
PLUTEUS. In Roman architecture, a dwarf wall or parapet : especially such a wall closing the lower portion of the space between the columns of a colommade.

PNYX. A public place of assembly in ancient Athens: known to have had Jittle architectural charicter or formal arrangement. It is generally identified with a bare rocky platform west of the Acropolis.

POCKET. A hollow or recess, as in a wall; generally comparatively small. Specitically :-
A. In a window frame for hung sash, an open space behind a pulley stile to accommodate the weights, particularly the lower portion of such a space to which access is hadl hy means of a movable piece in the pulley stile.
B. A box made of thin boards, and built into a partition or wall to receive a sliding dour when oper.
C. A recess in the interior jamb of a window to receive a fulding sluntter or blind when open.
I). That part of a Hue which is below the oprening into it of a stovepipe or the like, where soot may accumulate and may be remored through a special upening.

POCKET PIECE. A morable part of a pulley style of a window frame for sliding sath; the purpose of whieh is to enable the workman to reach the weight and sash cord within.

PODIUM

PODIUM. I. A eontimums pedestal with die, cap, amb batse, such as is used in elevating an order of columas or a monnment alowe the ground, or a dome alowe the roof. (See ('repidoma; Stylohate.) A lioman temple wats often set unon a poolinm, in contranlistinction to the stepped platfom of the Greek temple.
B. A wall, generally compered of concrete faced with marble, about $1 \ddot{\text { gen }}$ fingh, surrouncling a Roman amphitheatre; upon the platform above this wall the seats of the nobles were plaeed, while the other spertators weenpied the ranges of seats rising behind, to the homidary walls.

PCECILE. (Greek Howí $\lambda \eta$, parti-coloured or painted; applied to a portico in Athens.) A

POINTING

superior kind of mortar, - and also to ohtain a certain detorative tinish, either by the use of montar colom, or ly the partionlar form of mondelling given to the filees of the joints ats leseribed under Pointing (1.).

POINT (r.t.). (II.) To dress stone ronghly with the puint, ly which its faces are longht to aproximately plane sufaces. (See Stone Dressing.

POINTED ARCHITECTURE. That which is distinguished ly the use of the pointed arch. The term secus not to have been used exechit in this semse, though steep roofs, spires, and the like might justify its application to buildings not furmished with pinted arches. It is not unommon to ase the term as synonymons with portico, or ly extension any public buildins richly andumet with paintings on its interior walls. The original structure in Athens has not heen identified in morlern times. It is known that it was close to the Agora. It is thought that there were statues within the building, but the paintings of the taking of Troy, of the war with the Amazons, of the battle of Marathon, are esperially identified with the building, the pietures being by Polyg. notos, Mikon, and Panainos.

POERLAERT, JOSEPH architeet; b. 1816 (in Brussels) ; d. Nor. 3, 1879.

In 1849 he won the competition for the monument of Belgian independence at Brussels. He restored the Graud The-

Puinted Architecture: Hall, Mayfield, Essex.
A building of the kist finthic period, but not intended for raulting, and therefore not of Gothic Architecture in the strict sease. atre at Brassels, and huilt the church of S . Catherine in Brussels and the royal church at Lacken (Belgium). In 1866 he began his most important work, the monumental Palais de Justice in Brussels, which was finishol after his death, and inangurated Oct. 15, 1883.

Meyer, Lionversations Lexicon; Nécrologie in l'Emulation, 1880 .

POIKILE. Same as Pecile.
POINT (n.). Same as Pointing Tool.
POINT (v. t.). (I.) To fill up and finish carefully, and with more or less elaboration, as the joints at the face of a piece of masomy, or about the edges of slates or tiles of a roof. Such finishing may be done during the progress of the work, or -as is more usual in gool work, when greater elaboration is desired - after the completion of the masonry, or other structure. In the latter case, the process is generally understood as including both the operation of raking and of stopping. The purpose of such work is better to preserve the masoury from the effeets of weather, - the joints being filled with a

Gothie : aml it is also not ducommon to disriminate between the Gothic style, properly so ralled, with its elaborate system of vanled construction, Hying buttresses, ete, and that which, having printerl arehes but no Gothic ronstruction, van only he calterl (rothic by a rather liberal extension of the term: such as the morlorm churehes and halls which have woorlen roofs and no provision for vaulting. The term is applied less frequently to builungs of Hoslem styles.

POINTED WORK. -1. The surface finish of hard stone which has been rughly shaped for use ly the pointing tuol or pick, unly the coarscst projections having heen removel. (See Pick Dressing.)
B. Masomy, the joints of which lave been rakel out and pointed with mortar. (Sce Pointing Tool.)

POINTEL. (See Poyntell.)
POINTING (I.). The process, and the result, of finishing a joint or joints, as defined nuder Point (I.).

POINTING

Bastard Pointing : Bastard Tuck Pointing. Similar to, but more simple than, Tuck Pointing ; a portion of the stoppinge being made to project in the form of a filhet along the centre of a thick joint, the sertion heing rertangular. The mortar joint is sometimes colomed ats in Tuck Painting.

Flat Joint Pointing. The simplest form, the mortar leeing tinishent thash with the face of the matsomry. The term is commonly restricted to mean sinth pointing when done during the progress of the masungy. (See Hick Joint l'uinting.)

Flat Joint Jointed Pointing. Flat juint pointing, in which the joints are firther embellished by narrow grooves along their centre lines: or by groveres at top and buttom, next to the bricks: or by both.

Hick Joint Pointing. Pointing with flush joints, but with a superior sort of mortar used as stopping after raking out the joint ; thus distinguished from Flat Joint Pointing.

High Joint Pointing. Pointing done luring the progress of the work, while the mortar is still soft, by first trimming the joints flush with the face of the wall, and then scraping grooves along the edges of the brick at both sides of the joint. Subsequently, the nortar joints are usually grooved along the centre lines also.

Key Joint Pointing. A furm in which the soft mortar is pressed and worked into shape by means of a jointer having a rounded convex edge, so that the face of the joint has the form of a caretto.

Mason's V-Joint Pointing. That in which the mortar is given a projecting profile like a flattened $>$: perhaps having also a flat fillet at tup and bottom.

Tuck Pointing: Tuck and Pat Pointing. Pointing in which the ordinary pointing mortar is finished with narrow grooves along the centre of the joints, this being afterward filled with a projecting ridge of fine lime, putty, or the like, perhaps coloured. This projecting fillet is supposed to be finished with accurately ruled and trimmell elges and faces: and it is common to coluar the rest of the joint to match the brick, so that the joints appear to be only of the thickness of the fillet.

POINTING (II.). The process and the result of ilressing stone as defined under Pumt (II.).

POINTING TOOL. A stonecutter's implement, having a narrow, wedge-shaped, chisel-like edge, and this usually worked upon a solid bar of steel, which is struck directly by the stone mason's mallet. It is used for rough tracing of surfaces which may either be left "prointed" or "dressed with the point," or may be finished afterward with other tools. It is used also to cut across the face of the stone, from elge to edge, incised lines which are bronght into the true plane of the fourarises, and thus help to letermine the future surface of the stone when dressed.

POLISH

POINT OF SIGHT. The position from which anything is observel, or is represented as being observed; the position of the eye of the observer. Also called puint of vision, point of view, centre of projection, eentre of vision, etc. (Sce l'erspective.)

POINT OF SUPPORT. In the plan of a building, a space of small dimensions where the superincumbent weight of structure is gathered together and met. Columns, pillars, and piers form points of support. In a plan of foundations, those places where, by reason of the conditions of the structure abore or of the soil below, it is necessary to concentrate weight, are points of support ; and, in order to avoid dislocations in the superstructure through unequal settlement, the area of such spaces must be exactly adjusted to the weight which each is to transmit to the soil, according to the ascertained capacity of the soil to bear weight.

POLAND, ARCHITECTURE OF. The buildings of the ancient kingdom of Poland, extending, in the seventuenth century, over those parts of Europe which stretch from the river Oler eastwarl to within a humdred miles of Moscuw. These have been so little studied that their treatment as a national architerture is as yet impracticable. The buidings of the earlier states of Lithuania and Poland proper, with the work of the eastern Russians and Cerman military orlers on the Baltic, wonld hisve to be studied, and even the fascinating and picturesque
 city of Danzig Poland: Architecture of would form a jart Krakat (Cracow), Chureh of that fiell. (For of s. Matr. the principal buildings of this region, see Germany, the Eastern Provinces, and linssia.)
$-\mathrm{R} . \mathrm{S}$.
POLICE STATION. The healquarters, or district headluarters, of a police foree. It contains, usnally, sleeping accommodations for the force aml for prisoners, and frequently room for a patrol wagon and stalhling for horses.

POLISH (r. t.). To bring (any surface) to a state of great smoothness. The term is geucrally limited to the prolucing of such smoothness for decorative effect as for bringing out the colour and veins of marble or wool, or by giving metallic brilliancy to a surface. A surface may he polisheal either by simply scraping and rubbing without any application, as where in Japan-

Polychrimy: Marbles of Varied Colocr; Spandril of Doge's Palite, Venice.

POLYCHROXY: PAISTHIG OF HISTORIC.LL SEBJECT YSDER TIE ROOF AND OF IIFR IIDIC SCBJECT ON EACI SIDE OF TIIE TPIPLE WINDOW COMPISED WITH COB.OLRED TREATMENT OF THE HERALIIC ANI OTHER CARVING ASD A SOLIDLY GILDED ROOF ; INSSBRLCK, JIROL.

PLATE VIII

POLYCHROMY IS ENTERSAL, ARCHITECTLRE. CIILRCI OF S. PIETRO, PISTOJA, TUSCANY

POLLAJUOLO

ese interiors delicate wools are left with their natural veining shown ; or by metms of some

Polychromy: Painting on a Flat Celling dif

varnish, as where mahogany and rosewood furniture is covered with a transmarent coat of copal varnish ; or by means of a dressing wheh is put unou the surface amp then rubbed off so that but little of it remains, and that little fills up the hollows of the surface merely, withont covering the whole. It is not enstomary to speak of polishing samlstone, limestone, and the like, as nothing that can be flone to them will bring them to a lustrons surface, but granite, marlle, and hard wood are polished when it is intemled to show the fill beanty of the material.

POLLAJUOLO, ANTONIO. (See Bemai, Antonio di Jacopo.)

POLLAJUOLO, SIMONE DEL. (SCe I] Cromilca.)

POLYCHROMY. Columing with many colours ; elaborate decoration in colunr. It seems to have hern the uniform practice of buiklers in all agw, in Eumpe previsus to the classical revival in the fifteenth century, and in non-Enmoran lands even to the present time. to seek for effects of colnur as well as those of form. There is an apparent exception to this general rule in the practice of the stone-louilding races of Inlia, with whom the play of light and shade serured by deep amd strong modifications of surface exposed to a brilliant sun seem to have taken the phace of chromatic efferts moduced by the direct agency of man. Morlem Europe has retained this taste, or desire, for colour only for interiors, the efforts at external

POLYCHROMY

coloration having been either ronnectal with the almitted revival of some lyggo style of art, or clse spradic amb individat etfurts.

Such exterior colong edects as are produced by koramie painting have heen troater muler that term. (See alsu Tile.)

The nae of matural materials to proulure a contrast or monification of colome in the exterion of a builing is mone rombon in medianal art than olsewhere. Sowerbl important styles of ardhite + - the Femanespue of Frane, the Pomanessure and toothie of Italy, and the Hohammedtur of Egypt and Syria - employed for this furpose the materials with which their walls wore fired. (sice france, Part Vill. ; Hoorish Architeretme: Maslem Arehiterture; Romanesque Architertme.) The Italian buike ings of Veroma have the most rlaborate and most eflective of colomed lrick work combined with marble : those of Lombarly the most sur:cessful terra-rotta enrichments; those of Tuscany the most tasteful combmations of white marble with marhle or wher stones of greenish hark, dark gray, amd the like. The Moskem Work has this peculiarity, that the forms of the stomes in an ard or a horizontal frieze are often elatorate, increasing the eomplexity uf affect.

In the English fintlie revival, beginning about I850, the inthemre of Italian art in this respert was strongly felt, and some of the architerts interested in that movement employed coloured materials with excellent results. It may be considered one of the chararteristios of Victorian Gothic, properly so called, that extemal erlum is used with some fredom.

Pulychromy: Pantivi; on a Plasthr Cehlivg;

Fut the pattern is ievised from the emolless supply of diapers and sowinges in latian and spanish tiles and stencil work.

The most important form of polyhromy is that poulucel hy painting with its accessory,

POLYCLITUS

gilding. This was the practice of antiquity in all those lands where keramic materials were not constantly usel. (Sce Egypt, Architecture uf; (irecian Architecture: Grecer, Architecture of'; and for contrasting use in keramics, see Mesopotamia, Arehitecture of ; Persian Ar(rhitecture, Pirts I. aml Ill.)
ln the Finropenn Midule Ages painting wats applied with less skill than in Europeran antig nity or in the biast, but it was applien continnully. There is very little of it preservel. The famous doorway of Remos cathedral, which hat been elosed, - lxardeld up for centuries, an! which had preservel its painting intact, is the loest single instance we have of mediaval prainting freely applied to an exterior. It is well known, bowever, that large numbers of the Gothic cathedrals were paintel claborately; the poreles with their senpture, and simikur prominent members of the building ; and this was evilently a survival from a Romanesque practice uf still more gencral fulyehrmatic treatment.

As regat the colom theoration of interiors, this has been treated under Nural Panting. (For the proresses employed, see Encanstic Fresco: Fresen-Sero ; Uil Painting.) - R. S.

POLYCLITUS ; sculptor: Hourished hetween 470 an! 400 B.c.

A younger contempriry of Phidias (see Phidias), who was probably born at Sicyone and settled at Argos, Greece, and a pupil of Agelaidas (see Agelaidas). His most important work was the chryselephantine statue of Jera, in the Heraion at Argos, which replaced the old temple destroyed in 423 b.c.

Friederichs, Der Dormphoros des Polyket; Wahtstein. Efthrations at Irgos; Rayet, Ifomaments de l'art - Intique; Collignon, Histoive de la Scentutur arerque.

POLYCLITUS THE YOUNGER; sculptor and architect.

Polyclitus, the som of Patrocles, flomished between 370 and 336 B.c., and built the Tholos (round temple) and theatre at Epilauros, in Greece. He is mot to the contommed with the great senlutur Polyelitus, of Arcus.

Deflatise et Leebat, Epilture; Collignon, Histoire de lu siontpture grectque.

POLYFOIL. Same as Multifuil. (See Fuil.) POLYGNOTUS ; bainter.
He was a native of the ishand of Thasos, in the Egean Sea, amd prolably came to Athens abont 463 B.c. He was emplayed by Cimon (11. 449 в.c.) to deonate the temmle of Thesens, the Anareimm, and the Pipeile at Athens. He painted the so caller Lesche at Delphi. Abont 43.5 B.c. he was engaged on the deroration of the Pinacotheca, on the Arropolis at Athens. He painted the walls of the temple of Athena Areia at Platiea. Polygnotns was contemporaneons with Plidias. (See Phidias.)

Brunn, Geschichte tler Griechischen Kiinstler; Bertrand, La peintare dums l'Intiquité; Girart. Lat peinture antique.

POLYGONAL BUILDING. Masonry laid up with irregular polygonal-faced stones fitted together. This construction was employed in those Meliterrancan lants where the earlior forms of Pelasric architecture hat been previously current. It was a modification due mainly to new implements and improved methods. (See under Pelasgic Architecture where it follows "(yclopean" and "Mycentan.")

> - A. L. F., J.

POLYGON OF FORCES. A graphical representation of the composition and resolutim of forces when there are more than two such forces, and when, therefore, the parallelogram of forces (which see) camot be used. Let

Polýgon of Forces.
O be the point acted upon, ant the different furces be denoted by the lines u, b, c, d, e, the lengths of which lines indicate their intensity. Draw b^{\prime} parallel to b, c^{\prime} in prolongation of $c,{ }^{\prime}{ }^{\prime}$ parallel to l, e^{\prime} parallel to e, the line a itself serving to form the polygon. There is now required to elase and complete the polygon a line connecting the extremity of e^{\prime} with the point 0 . Draw this line m. This line is, then, the resultant of all the other forces, and the force which it represents would maintain the point O in ertuilibrinm if acted upon at once by the forces $a, b, c, l l$, e.

POLYSTYLE. Composel of many columms.
POMEL ; POMMEL. A knob, knot, or boss: expecially a ball-shaped terminal used as a finial for steep conical or pyramidal roofs, piunacles, etc. ; also for the similar decoration of furniture.

PON. Same as Wall Plate ; a local English term.

Addy, The Eralution of the En!lish Itouse.
PONCE, JACQUIO; seulptor.
An Italian seulptor who was employed on the monmments of Frimocis I. and Henri II. in the church of S. Denis. (See Pilon, Germain.)

Lami, Dirtionnaire des Sculpteurs frençais.
PONCET, JEAN ; sculptor and architcet.
Aug. 31, I450, he contracted to build the

PONCET

tomb of King liené, at Angers (France). He probally designed the retable of the church of S. Pierre at sammur.

Lecoy de la Marche, Comptes du roi liené.
PONCET, PONS ; architect and sculptor.
A son of Jean Puncet (see Poncet, Jean.) After the death of his father in 1512 he was ealled to continne the works of the tomb of King René, at Augers (Mane et Loire, Franee). June - 4 , T459, he contracted to lmihl the great altar of the church of the Carmelites at Angers.

Lecoy te Jit Marehe. Comptes ther Roi Rene.
PONS ; monk anl architert.
He rehuilt the abher of Montiernenf at Poitiers (France), which was herlicaterl Jan. DUt, 1096.

Bulletin Monumentul, Vol. IX., p. 291.
PONT. In Frencls, a bridge: sometimes, in combination, forming the proper name of an important linglge which is not eonnerted with the gengraphical name of the place. (bee the lollowing titles.)

The bridges which eross the Seine at Paris are all, or nearly all, of great celebrity and of importance in French history and French art.

- They are very numerous; but the most important are, P'ont d'Austerlitz; Pont Sully in two hranches like the Pont Neul and connecting the Ile Saint Lonis with both hanks; Pont de la Toumelle ; Pont l'Arcole : Pont Notre Dime ; Pont S. Michel ; Pont an Change (the last four crossing one arm only of the Seine); then the Punt Neuf (which see below). Below these are, spanning the whole river, the Pont des Arts, a foutpath only; Pont du C'arrousel, called also anul more frequently, Pont des Saints P'eres; Pont Foyal ; Pont Sulférino: Pont de la Conconle; Pont Alexandre IIt. (milt before 1900 for service during the great exhibition of that year) ; Pont des Invalides; Pont de l'Alma; Pont j’léna.

PONT D`AVIGNON. Same as Pont S. Bénezet, but umber tho geographical name enters into French proverb and song.

PONT DU GARD. An aqueduct bridge across the river Gard, in the sonth of France, and which was bnilt under the Roman Empire as part of the aqueluct of Nemansus (Nimes). A morlern roadway has been built along one side of it.

PONTE. In Italian, a bridge. (See what is said muder title Pont; see also following titles.)

PONTE DEI SOSPIRI. Sime as Bridge of Sighs (which see).

PONTE DI PAGLIA. In Venice; the small bridge spanming the month of the Rio, or small canal, which is also spanned hy the Bridge of Sighs, and which separates the Doge's

PONT S. BENNEZET

palace from the prisons. It forms a part of the walk along the sea front.

PONTE DI RIALTO. The lridge comecting the two great istands of Venice, one of which, known as the Rialto, gives its name to the bridge. This was for very many years the only bridge spanning the C'analazzu, or Canal Grante ; a woolen bulding wats romosed in the seventeenth rentury and replaced by the present most interesting structure. (See bridge.)

PONTE, GIOVANNI DA. (See Giovanni $\mathrm{D}_{\text {at }}$ Ponte.)

PONTELLI (DE PUNTELLIS) or PINTELLI, BACCIO (BARTOLOMEO) ; architect, engineer, and wood worker (intarsiatore); d. after l 492.
lomelli wats a pupil of Francione (see Francione). The earliest notice of him is as intarsiatore at Pisa (Italy), where he was employed in 147. 1475-T475 he made the stalls in the choir of the wathethal of lisa. In 1479 he went to Urbino, where he came under the intluence of Francesco di Giorgio Dartini. (Sce Martimi, Fr. di G.) After the death of Federigo da Montefeltro, duke of Crbino, in 1482 , he went to Rome. Iuly 27,1483 , he was sent to inspeet the work of Giowannino dei Dolei (see Doloi, G.) at Cività Yecehia, and in $1+8+$ himself directed the construction of that citakel. During the reign of Inmocent VIII. (Pope $1484-1492$) he was placed in charge of all the fortresses in the Marches. Nothing is known of him after 1492 .

Müntz, Les Arts ì la comr ifes papes. Vol. 111 ., p. ©f; Muntz, Renaissance; C. Rochi, Buccio Pontelli ela Roced ll Ostia.

PONTE MOLLE. At Fume; the ancient Milvian brilge (Puns Milvius) ; largely rehuilt in morlern times.

PONTE VECCHIO. Literally, the old bridge, a name given to several important structures in ltaly, the most interesting being that which rrosses the Arno at Florence.

PONTIFS, GUILLAUME : architect.

May 27, 1460 , he succeeded Geuftroy Richier as maitre ilrencre of the cathedral of Ronen. Between I 163 and 1467 he rompleted the porfail de la C'alemle and the ton' same Romain. In Itst he built the portal of the cour rles Libraires and in I-185 commenced the lour de Benre, of which be built one story. He built the sereen of the choir and the sacristy.

Deville, Roxue des architectes de la rathédrale de Rourn.

PONT NEUF. In Paris: in two divisions, ealling from the north bank of the Seine to the Île sle la ' 'ité, and from that island to the south bank. It was hegm under Henri III. and finisher? umler Henri 1 V , abont 1610.

PONT S. BÉNEZET. At Avignon ; built in the twelfth century. (See Bénezet ; see also

PONT S. ESPRIT

for the fuller title of the manastic Order of Bridere Bulders, lont S. Esprit.)

PONT S. ESPRIT. (In the Rhône above Arisnon, built lnetween l:65 and lo95; fivecighths of a mile in lengrth with twenty-two arche's. This, like the Pont s. Benezet, has an ansle or elbow in the wider hranch of the river. This was the last brilge of importance built by the Frèes Hospitaliers Pontifes, fomuded by S. B inezet.

PONT VALENDRÉ (VALENTRE). At Cahors in suthern Prance: built ahont the middle of the thirteenth century and still retaining its curions towers of defence.

POOP. same as Poppyhead. - (C. D.)

Poppr-heat: Clifton Cajpville Сhtreh, Staffurdshire; Rude 14th centlery Wurk.

POORHOUSE. A lublic institution for the care and support of the helpless poor ; especially in some states of the United States such an establishment kept up by the towaship. (See Almshonse: Workhunse.)

POOR. RICHARD : hishop.
He was bishop, uf Salishury (England) from 1217 to l요s. He removed the cathedral and its otitices from the uld fortress of sarum to a plot of erround called Merrifield, where, on April $28,1 \% 00$, the formulations of the existing church were begun. On Michaelmas Diy, lo̊-2. the church was sulticiently advanced for the celebration of divine service. In 1228 he was transferred to Durham.

Britton, Cathodrat Antiquities, V̌ol. II.
POOPPELMANN. MATTHÄUS DANIEL: architect: h. 1662: d. Jan. 17. li36.

Pöppelmann held the ottices of Bankoulwhtener (1696), Landbammeister (1;05), and Ober-

PORCH

landbammeister (1718) in Dresden, Saxony. In 1711 he began the famous baroque palace called the Zwinger (Dresten). He built also the Nohloss Moritzbury near Dresden (1722-1730) aud the old Holläuelische Pulast (17151717), which was transformed ly Ton Burlt (see Burt) anll is now called the Juparisolue I'alust (Dresden). Pöppelmam buiłt numerous tine residences.

Gurlitt, Baroque-Stit in Drutshlifand: schmiltSchildbach, Der Ziringer in Lerselen: Schuman, Barok unl Rocucu.

POPPY: POPPY. HEAD. An ornament generally used for the finials of pew or bench ends and other similar pieces of firniture in churches. It is sometimes merely cut iuto
 the form of plain Fleurs- Poppr-hean: All soul's de-lis or in some other Chapel, Oxfurd; c. simple decorative shape, and chamfered, but fremuently it is richly carsed with leares and figures. The name is apparently derived from the French ponprée, the bunch of flax on a staff, not from the flower or plant.

PORCH. A corered place of entrance and exit attached to a building and projecting from its main mass ; it may, when so projecting. be in more than one story and may form the lower

I'ORCU

Purch: Chirch at farnack, Nurthamp TUNSHIRE; C. $12 \bar{J} U$.

YuRch: Church at Belcnieres (Cilvadus); c. IUüU

Purch: Khllingtux Cherch, OxfurdshiRe; c. 1300.
The inner doorway is much errlier.

Purch: All faints, Stamford, Lincolnshire; C. 1500 .

Porch: American "Old Colonial" or Georgian Architecture; Litchfield, Conn.

PORCH CHAMBER

story of a tuwer or the like. In Elizabethan nouses in England the projecting poreh is often extemled to the full height of the main buikling forming a parilion, the uprer stories haviug socalled prorch chambers, the porch proper occupying the lower story.

Historically, the foreh of the carly Christian churches and basilicas was a marthex, finmished for religions uses with piseinas or lavatorio's aml haptismal fonts, and contained tumbs. It was used as a place in which the newly comverted were prepared for entrance into the church proper. Of porches of this charatere, that of the church of Vézelay is jerhaps the most important remaining to us. A conspicnons example of the later Gothic porch is that of S. Germain I'Auxerrois at Paris. The eharacteristic porrh of modern times was fureshathwed in the simpler ronstructions, projecting often from the side duorways of parish churehes, espectally in Englanil, anil not monsual in flomentic wark. . The term "porch" is sumewhat inexuctly applied to an ojen areade ur loggia forming the first story of a builring and giving sheltered entrance to it ; asso to a classic portico with columns. but the reranda of modern Anerican houses, where it serves to give entrance to them by a principal doorway, is a true porch.

- Hevry Van mruyt.

PORCH CHAMBER. In a two-sturied protch or arlvancel projecting buidlins, of which the grommi story turms a porch, the room ocelpying the whole or the greater part of an npper stmy.

PORINOS. (See Antistates.)

PORPHYRY. Any igneous rock contaning combratively large and conspicuous crystals lying in a fine-grained, often dense and compact, gromul or lase.

$$
-\mathrm{G} . \mathrm{P} . \mathrm{M} .
$$

Green Antique Porphyry ; Mormor Lace dremowium riride of Pliny: An igneons rock of the nature of a diabase porphyrite, comsisting of a compact, deep greenish hack gromm, thickly studded with greenish fellspars in all

PORTAL
sizes up to an inch in thaneter, and which are olten cruciform or octagonal in outline and show a zomal structure. Mueh usid by the Girecks and Fomans for parements and general inlatel

Purte Cochìre at Toulouse: c. 1 sofo.
devorative work. The somure of the material is near Levetsova, Laconia, in southern Greece.

- G. P. M.

PORTA, GIACOMO DELLA. (Nee Giacomo Della I'ortit.)

PORTAIL. The same as Purtal.
PORTAL. An entrance or gateway of a mommental character ; specifically, an entrance which is emphasized by a stately arrhitectural

PORTCULLIS

treatment, such as may make it the principal motif in an entire façate.

PORTCULLIS. A strong luor sliding vertically, hsually a grating heavily framed of wood with puinterl iron bars at the hotom. It is arruged su as to le droped suddenly and thes proteret an entramee in catse of a surprise. The fortenilis was a ronstant feathre in menliapal fortitio:ttion, there being sonctimes two or three in the same passiagewity.

PORTUGAL

PORTICO. A poreh or vestibule roofed and partly open on at least one side, as one section of it peristyle or a cloister ; but specifically and more exactly, an ambulatory or vestibule covered by a roof supported by columns on at least one side, such as is characteristic in Greek, Toman, aml Neorlassic architecture. It properly inchules the pronas and epinas of a temple, enclosed by a screen of columms between its projecting side walls (portico in antis) ; any vestibule or pronaos formed by one or more rows of columns standing elear of a cellar and in front of it (see Prostyle ; Amphiprostyle) ; any one side or tace of an ambulatory or pteroma formed by a single row of columns entirely enveloping the temple on the sides and ends (see Peripteral ; Dipteral) ; or any other form of a columuar ambulatory or restilule, whether connected with a religious or secular buidding, or stauding clear (see Columnar Architecture).

PORTICUS. In Latin, usually, same as Portico, but employed in a somewhat larger sense (compare (ryytoporticus).

PORTIGIANI; PAGNO DI LAPO; senlitor and architect of Fiesole, Italy ; b. I 406 ; d. 1470.

Pagno assisted Michelozzo at the church of the Annunziata in Florence. In I428 he worked on the front of S . Ciovami at Siena, and in 1460 made the plans for the Bentiroglio palace at Bulogna. His best work is the monument of Ciovami Cellini, in the chureh of S. Jacopo at S. Miniato al Terlesco, between Florence and Pisa.

Geymüller-Stegnan. Die $A r$ chithitur der Renaissance in Toscena; Vasari. Milanesi ed. (Vita di Michelozzo), Vol. II., 1. 44.

PORTLAND STONE. A light-coloured Jurassic limestone firom the Isle of Portland, off the English coast. U'sed in the constanction of S. Paul's eathedral, Lomlon.- G. P. M.

POFTUGAL, ARCHITECTURE OF. That of the molern kinglom, ocorpying part of the western seacoast of the Iberian peninsula. Although there are a few buildings here which date from the tenth century, it is almost impossible to trace through them any contimuous architectural derelopment, for the mumerous earthquakes and hostile invasions have made

PORTE COCIIERE: REE MENARS, PARIS; 19TH CENTURY

PORTUGAL

havoc. At Brag:, in the extreme northern portion of the comntry, is a cathedral which is the most ancient existing edifice in Portugal, dating from |lle. In phan it consists of a single threeaisled mave with syuare termination and square

PORTUGAL

of Portugal, a courent church which was built in 1222 , consisting iu plan of a very long nave with a row of square-ended chapels and a semicircular chevet which was added in 1676. The church was built from French plans, but in de-

Purte Cochere seen from within; Entrances to the Houses at left and Right; Modern Paris.
chapels and only reŕy slightly marked transepts. The fulan of the eathedral of Oporto is of interest from its square eastern termination, recalling some of the English types, but neither of these structures offers any noticeable extcrior effect. At Alcobacea, a small vỉlage sixty miles north of Lisbon, is the largest religious edifice
sign it does not show a very strong French influence. It is early Gothic in style, carried out in a very severe, subdued spirit, except in the clapel in the south transept, where there is a tomb which is cited as the most beautiful piece of carring in the kingdom. Twelve miles beyond Alcobaça is the hamlet of Batalha, possess-

[^2]
PORTUGAL

ing a monastery and chureh alected in 1385. In phan the chureh suggests Aloolsta, but the design, as firr as refite to the facame at least, was inspired by that of York CatherIral, amel is directly ascribed to an English arehitect, Stephen Stepheason, who went to Por'tugal in the suite of Gucen lhilipra. The west front is in a late Perpemtionkar style, well proportionel and free from vagaties, amb at large octagonal chatpel on the south is in appearance not unlike the exterion of Henry the Seventhis Chapel, in Westminster Abby. Adjoining the ehmed on the morth is a large cloister, with some most marvellously elaborate stone carving filling the heals of the arrhes.

The cathedral of Lishon was built in 114 $\overline{7}$, but has sutfered so repeatedly from earthyuakes and has been remewed at so many thiferent periorls that its original Gothic character has been fluite obliterated, though the same general disposition has always been preservel. This is the Purtuguese chureh which in plan most nearly approaches the perfect Gothic type as it was understoonl in France, and is the only one which possesses the fully developeul circular apsis with rathiating chapels.

The most interesting group of buildings in Portugal is in the sulurb of Belem just outside of Lisbon, comprising an extensive monastery and a small chapel or church tianked on one sitle by cloisters. The church was built in the fifteenth century to commemorate the discovery by Da Gama of the passage aromind the Cape if Good Hope. It is the one buikling in the comtry which in all its details seems to be theroughly Purtuguese. In phan it has a three-aisled nave with square transepts. A small semicirenlar apsis is a late Renaissance alteration. The church is covered by a triple line of vaulting of very daring construction, somewhat om the lines of the English fan work, except that the fans are not cotangent, ant they make complete circuits about the slemter piers, the three aisles leing all of the same height, and the line's of the fan work connected by a species of that doister vanlting. This work is balanced so eleverly that during the great earthouake, thongh the chureh was violently shaken, not a stone was disturged. In exterior appearance the design is Gothic in general scheme, though early lienaissunce in detail. An elaborate side porch, built entirely of beautiful eream-coloured sandstone, has a wealth of excellent detail which is interesting of itself and forms a part of a rery harmonious grouping. The clossters immethately auljoin the church at the north and are in the same style but with details more pronomedly Renaissance in character.

Ahout three-guarters of a mile west of the Belem church, on a bit of sandy beach strotehing out into the Tagus, is an interesting piece of Gothic military architecture dating from the

POSADA

early bart of the sisternth century, consisting of a tower and a wiole terace, the whole forming a part of the military defemes of Lishon. The tower of Behen shows in style a caude (iothir, marked by English intluence in swome of its ohotails. It is ahout the only pioce of military architerture existing in the comentry.

At Thomar, a little town ahont righty miles nontheast of Lishon, is the rebebated Convent of Christ, comsidered to he: the most remarkable in Portugal, after that at latalha. It hates from 1180 , but the interesting part is three humbed years later in late and is a most elaborate example of the pussilhilitios of P'ortuguese alemation. The apsis of the elhatel attached to the church has soulpture of a chatacter which one can only compare to some of the carvings of the Himelus. Inderd, this convent work and the cluisters of Batalha and Belem have a moy strong Havour of the tualities which make the East hulian wonk so attractive, though curionsly minglen with reminders of late English Gothic. The Suanisli clement scems to be strangely lateking in all this work. Another striking hit of detail is found in the chureh of S. Clara at Combra, a town about midway betwen Lisbon and Opurto, which has a pulpit carved from a single bluck of marlbe built into the walls of the church, with an elaborate profusion of details, interesting as a eomposition in both mass and thetail to an extent which entithes this to rank as the chofol'ourre of Purtugnese work.

Eighteen miles to the northwest of Liston is the palace, momastery, and chmoch of Mafra, the Escorial of Portugal, an immense structure erected by the Braganza family in 1717 , in a severe, restrained variatiom of the style of Louis SIV. The catire factade meanes orer 700 leet in length, and the whole edifice is planned on a most magnificeut scale.

At Cintra, a few miles to the west of Lisbon, is an interesting ohd romvent castle picturesinuely gromped on the summit of a steep, rorky hill, and presenting a mixture of Gothic, Moorish, amb early Renaissance. It is a rmmous picture of what a lortified medieval Portuguese monastery might have been.

There is a decomative feature of Purtuguese architecture which leserves mention, namely; the extensive use of wall tiling. Searly all of the honses in Lisbon are faced on the exterior with enamelled tiles, often painted in bright colours, and in sone of the older work, notably at Cintra and at Combra, this specees of lecoration is earred to a comsirlerahm extent with interesting results.

The strictly morlern architecture of Portugal presents nothing worthy of sturly.

- C. H. Blackall.

POSADA. In Spain, or Spanish Aıuerica, a tavern.

POST OFFICE

POST. In general, any stiff, vertical, more or less imbated upright, whether of timber, metal, or stone: whether solid or hollow; whether homogeneons or composite. A post may support a superstructure, as a lintel, or may atford a firm point of lateral attachment, as for a gate or for fence rails, or may stand alone for any purpose. Any main vertical member in timber traming is especially called a post, as in the subtitles, Prich Post, King l'ost. For the specific technical sense of the term, see Truss.

Broach Post. Same as King Post, below.
Crown Post. A rertical post in a rooi truss, whether a king post or a queen post. It is sometimes a joggle piece. These are both rare in the Unitel States.

Door Post. (One of the uprights which enclose a donrway: especially, in framing of wood or iron, such a piece which forms part of the structure as distinguished from the jamb piece, casing, or other covering member. The term is less often used for stone uprights which are at once a part of the structure and a part of the external architectural composition,

Hanging Post. A. In carpentry work, a tie resembling a post, such as the king post and queen post. (See also Truss ; Wood Construction, Part I.)
B. In framing, that post of a door frame which is to receive the hinges of a door.

Heel Post. A. A post serving as a newel or the end support of any partition : as, in a stable, the stout one set up at the end of each partition between the stalls.
B. The hanging post, as of a door ; in this sense, rare and local.

Jamb Post. Same as Door Post or window post.

King Post. In a truss, as for a roof, a vertical member connecting the tie beam with the point of meeting of the two principal rafters. Properly, it is not a post but a tie. The name probably comes from the early medieval practice of supporting the ridge piece by a vertical post resting upon the very heary transverse timher below or upon the top of the stone vaulting. (See Cuts under Roof.)

Newel Post. (See under Newel.)
Pendent Post. In lecorative open timber roof trusses, a short post set against the wall, bearing at bottom on a stone corbel or capital and supporting, generally with the aid of a curved brace, the wall end of the tie beam or hammer beam of the truss.

Prick Post. A secondary or intermediate post: in a roof truss, a side post.

Purlin Post. In a roof truss, a post inserterl at the point where a purlin meets a rafter.

Queen Post. In a truss, as for a roof, one of two vertical members or side posts between the principals and the lower chord. Properly,
it is not a post but a tie, the name being derived from the medirval English roof construction, in which the principals were supported by two queen posts standing on a heary girder which carried directly the weight of the roof. (See King Post, above.)

Tree Post. Same as King Post, above.
Trellis Post. A post constructed of trelliswork between slender uprights; especially in ironwork, where a stitf but light structure is produced by slender angle irons with a trellis of wirework between ; often used to support the roofs of verandas, and sometimes on a much larger seale.

POST, PIETER; architect; b. 1608 ; d. 1669 (at Haarlem, Holland).

The architect of Prince Naurice of Orange. He went with the prince to Brazil. He erected a church and other buildings at Oliuda and rebuilt the fortifications of Pernambuco. Among his primeipal works in Holland are the IMis ten Bosch at The Hague, the Sael rou Orunje, the Swanenburg situated between Amsterdam and Haarlem, the palace at Rijxilorp, the Stculhuis at Maestricht, and the Wung (weighing house) at Gonda. A collection of engravings of his buildings was published at Leyden in I715. (See bibliography.)

Galland, Holläntische Brutrunst; Immerzeel, Hollomlische en I'luamsche Kunstenaars; Pieter Pust, Ourrages d'Architecture.

POST AND LINTEL CONSTRUCTION.
That which is composed of the simplest elements, namely, uprights carrying horizontals as distinguished from Arcuate (which see). (Compare Trabeate.)

POSTERN. A subsidiary don or gate ; in military architecture, such a gate in a part of a work remote from the main gate; in domestic arehitecture, often a small door near a larger one, as a iloor for foot passengers adjoining a porte-cochère.

POST HOUSE. A wayside inn where relays of rehicles tor a journey may be hired, and where horses are kept for the convenience of travellers. Cafled also Posting House.

POSTICUM: in lioman archæology: A. A back door, a postern. B. Same as Epinaos. C. Same as Opisthodomos, in sense B.

POSTING HOUSE; POSTING INN. (See Post House.)

POST OFFICE. A building, or sometimes a room, or set of rooms, devoted to the purposes of the reccipt and delivery of letters, newspapers, and other mail matter.

The sinteenth century marks the commencement of modern postal systems. The coffeehouse or tavern, which was the point of departure and arrival of the stagecoach or post wagon, was often the post othice where private letters were left and called for: but pulilic sorting offices date from the close of the sevententh cen-

POST OFFICE

POST OFFICE

tury in England, aml were established at even an earlier date in Germany.

The first plans of govermnent buildings had little to distinguish them ; but gramally there have been evolved two main types, each with its own modifications, and which may be ealled the European, or Continental, and the American ; for the English post ottice possesses some of the characteristies of each of the other two. The main point of difference between the two types is in the use of the central court or cortile. In the European or Continental plan the mail wagons generally enter the court to receive and deliver mail ; in England and the United States the mail bags are handled from the mail dock or platform at the rear of the buidling, and in certain other respects the cortile is not emphasized in England as it is on the Continent. In Continental cities a great proportion of the central court is given to the puhlic, and the surrounding space is divided into a series of ottices for the administration. In the Unitel States there are exterior corridors for the public, with an interior working room for the employees. On the Continent the cortile may or may not be roofed over with glass, according to the climate; in the United States the fact that the elerical force occupy this space and that the upper portion of the building is generally occupied by other departments of the Federal Government, reguires that this working room shall always be shut off absolutely from other portions of the builling. In Canada and Mexico the general arrangement is more like that of the United States. Throughout Europe, in the English colonies, and in Japan, the telegraph and telephone service is under government control, and is generally boused in the same buililing, as is also the service for the expressage of packages of merchandise.

In the United States the building is generally denoted officially as the United States Post Ottice and Custom House, or United States Post Ottice and Court House, and is occupied jointly with the departments of the Trasury, of the Interior, and of Justice, - offices being provided on the upper floors for the Collectors of Customs and of Internal Revenue, for the Land Ottice, United States and Pension Commissioners ; also in cities of a certain size and population, for the District, C'ircuit, and Appellate C'ourts, but only Federal oftices are entitlel to accommodation in the buidling.

Formerly the ontline of the average post office plan was a rectangle; or a rectangular first story with a bollow sefuare for the superstrueture, in this respect following the precedent of European post offices, - but since 1895 the plan of the hollow square for stories above the ground floor has been modified so as to enclose only three sides of the square, as it affords better light and air not only for those stories, but more
satisfactory sky light for the pust office working romm below. In the hasement is situated the heating and ventilating apparatus, clevator maThmery, and somotimes the elentric light plant, with the necessary coal storage; also the lavatories and toilet rooms for emplosees, and a waiting room, with outside entrance, for the use of mail carriers when not on duty, as they are not allowed at that time in the working room. On the first lloor are the public eurridors, entered from and next to the streets upon which the building fices; in the embrasures of the windows, or in a lobly, are writing alesks for the use of the public; at one end of a corrilor is a lobly or anterom giving access to the money order and registiy division.

The postmaster's private office is placed at or near the eml of another corrinlor, and opens both into the corvidor and into the working room, and is providel with private lavatory: As he is frequently the custolian of the entire building, the stairuase to the upper floors is near by, hut is closed with a grille or gate after the cessation of husiness on those floors.

If the business of the office is such as to warrant the appointment of an assistant postmaster, he is usually also the eashier, and has his rom next to the money order and registry division, and there are safes or vaults built into the walls between the rooms ; the stamp clerks are placed where they may have windows or wickets uron the corrilor, not far from a public entrance, and are also provided with vaults or safes.

Between the corridors and working room is the post-othice screen, the upper part of which is of glass, and the lower, 7 feet, is subdivided for lock boxes (letters ahove, papers and periodicals below), with open backs and metal and glass fronts; drops are provided to receire outgoing letters, papers, and packages; and wickets are placed at intervals for the general delivery of mail, the sale of stamps and envelopes, and for the transaction of other business ; in the most modern buildings the sereen has no loor giving access from the corridor directly into the working room. Within are tables and cases for sorting letters, cancellingmachines, racks (fur papers and periorlicals), and frames (for holding bags while the mail is being marle up), and all the other necessary furniture of the establishment. Wire screens, not solid partitions, are used to separate the varions departments.

As the relative importance of each of these details has been gradually developed by the requirements of the postal service in the United States, the following facts bave been demonstrated: that the space assigned to the clerical force should ho as compart as possilhle, and the space assigned to the pmblic should permit of direct access from, and egress to, the street, aml

POST-RENAISSANCE

of unimperled cirenkation within the building: that the most expelitions and commmioal handhing of the mail is acemplished hy aggregating the rarions sulnlivisions of the service within, or in chase proximity to, a central working roum: and that the puldic can be served to the best adratutage hy it: use of exterion corviders.

- WillinM Martin Aken.

POST-RENAISSANCE ARCHITEC-
TURE. The architecture, if classital in character, of any period succeeting that of the Renaisaluce proper. Thus, in French practice, the term "lienais:ance" loing strictly limited to the efmeh begimning with the reign of Lonis N11. and euding with the wars of religion under Henry IH., all the styles of neoclassic arehitecture which follow the reign of Henry III., and which are commonly called in France by the reigus of the sorereigns, as Lonis Treize architecture, and the like, may properly be called post-Renalisance architceture. In Italy the Renaissance (Rimascimento or Risoryimento) begins nearly a century earlier than in France; and in like maner it is considered ly Italian writers that the epoch of it closes, and the classicismo, or extreme classic, style hegins, ahout the middle of the sixteenth century. Any neoclassic style of architecture belonging to a later date than the limits of the Renaissance in any country, as above given, may property be considered as al joort-henaissance style. (See Baroceo; Cimque Cento: Classi-
 cismo: Decalence: Decadesza; Lombardesque ; Lombardic Architecture; Renaissance; Rococo : see also articles on the architectures of France; Germany; Italy.)

- R. S.

POT CHIMNEY. A
Put Chanay: as roof chimner made of THE N. OK THE L.s. been cut out or broken. Used in Pueblo villages of the southwestern Cnited States. (See Commmal I welling.) - F. S. D.

POT CONSTRUCTION. A method of constructing vaults and domes with earthen pots fitted together in a snccession of rings diminishing in liameter upward to form the concave; this expedient was common in Oriental comtries from the earliest times as a substitute for heavier and more costly materials, such as hrick, stone, and concrete, to diminish the weight upon the supporting walls. Domes so constructed, though thin and apparently fragile. have eudured the ricissitutes of centuries, and have proved as stalle and permanent as fahrics much more massive and mommental. A conspichous example of its use in Romanespre work is in the dome of S. Vitale at Ravenna.

POZZO

POT METAL. Grass culoured thoughout its suhstance while melterl. (See Glass: Window.)

POTSTONE. A soft stone of the nature of steatite or suipstone, used mainly by primitive preple in making pots. - G. P. M.

POULTRY HOUSE. A structure fumished with accummodations for the protection aud rearing of fumltry ; a benhouse or chicken house.

POUNCE. A fine powder of dark or pronomucel colomr, which is used to transfer a drawing by being forced through holes pricked in the original uron the surface which is to receive the transfer.

POUNCED. A. Decorated with indentations or perforations. (See Pomer] Work.)
B. Nade as a transfer of a drawing by means of Pounce.

POUNCED WORK. Orvamentation exeeuted by weans of a punch, which might have its point cut into a unit of a pattern, as a circle, cross, or the like.

POURTOUR. In French, a circuit ; a gatley ur pasiage allowing of murement around a central hall or the like; especially, in churches, the aisle which nearly surronnds the apse or chevet, passing along the north and sonth sides aud curing around the east end. (See Deambulatory.)

POWDERING. A. A surface enrichment produced hy sprinkling one colour upon another, as gold or silver upon a tinterl bickground. In heraldry, a surface adorned with powdering is said to be semé.
B. By extension from the preceding definition, the ornamentation of a surface by the frequent repetition thereon of a small figure or pattern, as a rosette or star, not connected, as in a dialer, but isolated and regularly or inegulary dieposerl.

POWDERING ROOM. In the eighteenth century a chamber or anteroom especially adapteu to powdering perukes, and, later, the hair.

POWER HOUSE. A building in which steam power, water power, or the like, is generated, and from which it is consered for the operation of machinery or other purpuses, as to the other buildings of a large factory, or to the rehicles on a trolley or cable railway.

POYNTELL; POYNTILL A pavement. generally of tiles, formed of small pieces, but differing from mosaic in that the pieces form a set pattern rather than a picture. Also written pointel or pointal.

Pozzo. A. A well: the Italian term. Not usel in Enclish except in combination.
B. In Venice, a cistern : one of the numerous water-tight structures below the pawements of courtvarls, public and private, in which is stored the water brought from the mainland. This water is drawn from the natural stream of the Brenta, on the western shore of the lagoon, and in other places. (See Vera da Pozzo.)

POZZO

POZZO, ANDREA : painter and architect; b. 1619: 1. TOU.

His real name was probably lbunmen (I'utens in Latim, lozzo in Italian). His work was in perspertive illusions, and his chied mommment is the recoration of S . Ignazin at limue.

Ilg, Der Moter unt -trehitekt. I. . I. del Piazzo.
POZZUOLANA. A volathic s:mid, first funull at Pozzuoli at the fint of Momet Vessuvins, whence the name ; and also in almulane in the neighbouhood of Finme, ant extmaively disseminaterl throughout Europe. When pulrerized and mixed with slaked lime, the conpromd will harden undre water like the more energetic hydralie rements. lafore the introdaction of the so-milled Roman ame the Portland rements, it was extensively nsed in sea works. Trass, a similar voleanis: protuct fouml in the valley of the Rhine and in Holland, pessessers the same qualities. Loth juzamhana and trass are composed of silic:a and alumina, the former largely in excess of the latter.

The snbstanes compusing these mortars, which mutnally reart, lieing separate, camot he brought into contact execpt by the use of a sutficient guantity of water. - W゙. R. Hutton.

PR\&CINCTIO. Jn a Fimman theatre, a passage rumning lamallel with and on a level with one of the steplike sats of the carea. Generally the slope of the lower ranges is hroken at the irracinctio by a wall, from the top of which the seats slope upward to the outer wall of the theatre. This wall of the procinctio contains doors giving aceess to the vomitoria, or passages of exit and entramer. In the Flavian Amphitheatre there was an intermediate zomu or passage, purallel with the seats, between the arena and the procinctio. It is sometimes called baltens, ami is equivalent to the Greek dicuomu.

PRATORIUM. That part of a lionan eamp or garisoned post in which the quarters of the general were placed; the ofticinl residence of the pretor on governon of a Roman province; a hadl of justice, presided over by the pretur.

PRAYER CHAMBER ; ROOM. In a mosgre, that part of the roofed and enclosed building which is used for the prayers of the faithful and for listening to the exhortations from the mimbar; (I) in the sense of the whole large building, perhaps several hmired feet in every direction, which is distinguished from the galleries and ambulatories whid connect with it and surrond the court; and (o) the whe sereened off by a partition and espectally reserved to those who are engaced in devotions, and forbidhen to others, culled Maksurah, though this term has other signifieations.

PRECEPTORY. A subminate religions establishment of the Order of Kinghts Templars; a place of residence, instruction, and Uiscipline, presided over by an officer calld a knight preceptor, one of the more eminent members of the

PRELIMINARY STUDIES

fratemity. The edls in the Temple, or chief homse of the Kinghts in Landwh, whe called the frecepotics. (tompane (immmandery.)

PRE-COLUMBIAN ARCHITECTURE. That of the United States, Mexict, and neighmoming comatries, sometimes of South America,
 SLee United States, Arehitwture of, 冬 I., amd the references given mader lophistoria* Arehiterture.)

PREDELLA. . I. The footpace of an altar. (Sice Altar.)
B. One of a series of seats or stops raised one above another ; a gratim or gradine. (See Altar ; Altar Step ; Footpare muler Pice.)
(. An altan leige; ome of the series of ledges or shelves smmomating an altar to acommonlate at crucitix, amullestichs, vases, etc., or a painting. (See Altar Ledge, Jetable.)
D. liy extension, a painting, mosaic, or hasrelief, forming the front of $($?

PREHISTORIC ARCHITECTURE. 'I'hit of eporlis which on arcoment of their relative anticuity camot be reterminer; that is to say, whose apporent date goos back ul all rertain records of the comutry or distriot in which they exist. (bre Pre-Culumbian Arehitecture: Communal Uwelling : and also, for further information, Aztec; Etrusemn ; 1nca: Maya; Megalithic: Mexion, Architerture of, S I. ; Toltee; United States, Architecture of, § 1.)

PRELIMINARY STUDIES. Drawings and morlels malle by artists in the way of preparation for claborate work. Acrording to the schedule of charges apmoved by the Amerian Institute of Arehitects, "Drawings, surh as ground phan, one upler foor phan, and chevation or perspertive bew of exterior," as distinguished from "l'reliminary drawings, which include the alrove, and such additional elevations, flans, and sections as are necessary to illustrate the general scheme withont working drawings." (Ser Drawing.)

Beyond this purely commereial nsage, the phase is employed very generally to describe the technieal methor arlopted by the architect in the formulation of his thonght, and the forms which he employs to represut to himself his designs as they are at first eruldy comeeved, and to fix them provisionally, so that his imagination may have full phy in detemming the final arrugements of phan, propurtion of parts, etc.

A large part of these preliminary stutios are made, for comvenienoe, in pentil un paper, by the employment of plans and elvations and sections "in projection" (see Projection). These are translated in the mind of the artist as he studies, so that they represent to him the building whieh he intends to comstrurt.

As he procededs with his work he fimls it desirable to enlarge his use of the methons thos intronined, for the instraction of the artisans whe are employed moler his supervision in eon-

PRELIMINARY STUDIES

strueting the lonildings he designs, geometrical projections of plans and sections and elevations being invaluable in comection with the work of the buikler.

No one, however, who thinks at all of the subject will question the fact that the architect is able to use these geometrial methorls only as realy means of representing in a practical manner what the drawings do not in any way express in themselves: in all cases these drawings must be translated in the artist's mind into other terms if he is to gain from them any conception of the way his buld ding will look when it is finished; they must be translated in imagimation into terms of solid form and colour mass, and it is the constant and serions concern of the thoughtful and experienced architect to assure himself that he is making this translation correctly; it is the constant, and too often the false, assumption of the tyro in architecture that his translation is perfect and exact. Note, for instance, the clever designs "in elevation" one sees in our exhibitions and illustrated arehitectural journals - designs which too often make the heart of the experienced practitioner sink within him, as he considers how certainly they would prove unsatisfactory if they were built. One finds often, for example, the geometrical projection of a dome, or of some other massive central motif, which, in the constructed louilding, could not possibly be seen together with the facarle, used, nevertheless, as a unifyiug element in the composition of this façale as it is presented in elevation.

The architect is wont to assume that these geometrical projections, so useful to the artisan who develops the artist's denigns, are necessary tools for himself also ; aul although, in fact, it must be agreed that in all probability they will always be used becanse of their conrenience, yet it is evident that architecture, even in this day, could, on a piuch, get along without them. This is clearly shown hy the work of the architects of past ages ; for, althongh we know little of the methods of design employed by the earliest architects, it is reasonably certaiu that, had they marle as much use of geometrical projections as we do in our time, more record of this use would appear than has been discovered by the arehieologists. But even if it he assumed that the ancient masters did employ these geometric tools exactly as we do, we must note that the matter of tools and of methods is of insignificant import. The great architects of the past have been those who have thought and studied in masses - in colour masses; it is this fact that has made them great architects, whatever has been their methol of work, otherwise they would not be louked upon by us as masters of their art. A really artistic architect is one who constructs well-proportioned and properly decorated masses ; if he fails in realizing this end, he has failed to do more than bull.

PRELIMINARY STUDIES

There is much reason for believing that the greatest danger in comnection with molern architectural practice - the gravest error in modem architectural teaching, the cause of most of the motern failures to produce really beantiful louidings - hies in the fact that so much time is given by the architect to the study of those geometrical tools of his. He coustantly is tempted to forget the translation into solid form, and to think only of the thing he sees on the paper before him. It requires a touch of real genius in a man to enable him to make the translation from the drawing to the solid form correctly in any event, and men of ordinary talent and indolent habit soon learn to forget to make the attempt.

The architect's prosition in this respect is not unique, for every artist finds himself subject to special limitations determined by the character of the material in which he works - limitations which compel the invention of methods and tools, and the alloption in each case of a special technique which is highly complex and difficult of acquirement. Thus, every artist who is in eamost is compelled to spend a great amount of time in preliminary training, which consists in little else than the process of familiarizing himself with the techninue of his chosen art the learning how to use his elahorate tools.

Here technical skill thus becomes a most important acquisition for the artist, and, in the effort to gain it, in proportion as he is in earnest, he must necessarily fiml himself deeply interested in mere technintie per se - in the mere tools he is to use. The human mind is so constituted that when a man becomes deeply interestel in any given subject he is likely to overestimate its importance, and thus it happens that all artists are subject to one and the same danger: they run the risk of becoming so much interested in their techninue - in the tools of their art - that they are led to overlook altogether the end they should have in view, led to forget that their aim should be the proluction of works of beauty.

In music we see this danger exemplified in the trimmph of formalism, against which Wagner preached so eloquent a lesson in his masterly Meistersinger. In literature we see it in the faihure of writers who bend their efforts overmuch to the formalism of, or to the perfection of, style : or of others who aim to express some doctrine, - realism, for instance, - instead of endeavouring to prodnce perfeet works of healuty. In painting we see it in the devotion to partial ends, in the exclusive attention which the artist gives perhaps to " values," "areless of the necessity of comprosition, and of perfection of drawing, and of the other elements which go to make the painter's masterpiece.

Architects are especially prone to err in this way. Their art prorlucts are buildings, and

PRELIMINARY STUDIES

PRELIMINARY STUDIES

these buildings nowadays cannot be erected withont preliminary processes which involve the construction of the most elaborate of tools. They must make representative sturies, and constructional drawings, and large seate details, and then fill-size developments of these details. All of these, however, must be recognized to be mere tools of their guild, means to an end, that end being the production of a work of beauty in solit form. But the mere making of these tools themselves requires so much of their attention that they are all too likely to concentrate their interest upon them rather than upon the work for which they are created.

The danger is greatly aggravated by a discovery we have made, - the discovery that the same teehnieal geometrical drawings of which we are speaking, as applied to the representation of the ontside of a buikling, do actually give a very fair conception of the bubleng as it will appear if it can be seen from a very great distance, and provided the , ohserver can stand exactly on the midule line drawn perpembicular to the plane of its facade. Furthermore, we have devised a scheme of colouring and of terhmical shatows, by the use of which we deceive ourselves with the belief that we ean thus equally well coneeive the appearance of the future building, whether it is to be seen from a great distance or from a short distance. And, behold, his method saves the architect a great amount of time and trouble: no longer is he compelled to bother himself with attempts to stuly parts that are not shown on projections, to sketch such perverse things as reëntrant angles, for instance: no longer does he have to go through the tedious process of drawing in perspective; no longer is he compelled even to think in perspective.

All this carelessness as to the actual effect to be producel is of eourse unconseious to most architertural students, but it cannot fail to he a faet for most of them, when so much time in their offices and so very large a proportion of the study in the architectural shools is devoted to the consideration of these mere drawings on plane surfaces. That this hahit of thinking in surfaces rather than in solid form is one which is very apt to be aequired camot he doulited; for the architect in judging a linilding naturally finds himself tempted to eonsider it, not as it appears at all, but rather as it would appear if he could translate what he sees back into terms of the working drawings with which he is so familiar ; he fints himself asking how the building really appeared in "elevation" in the architect's studio. He is likely to think, and even to formulate, the thought in words, "This efferet is not satisfactory as it exists, hut it is produced by such and sneh compositions and proportions which must have appearel well in elevation;" and on this ground he all too often condones
ugliness, or actually cumments at design which fails of all beanty as it really appears. One hears architects, young and wh, constantly expressing julgments baserl upon such translation ; and one of the learling architectural jomrnals has lately not only arknowlelged editorially that the majority of architerts julge huildings in this way, but has actually uphehl the wiew that on the whole it is the hest way to judge them.

It is self-evilent, however, that a buiking which is beantitul mily to the technically trained architectural tramilator, and not to the average highly enltivated man, is not a work of architectural art at all; at most it can elaim to be no more than the means of suggestion of beatiful forms to those who are skilled in this species of translation. Similarly, the skilful musician is able, by easting his eye upon the score of an opera, to get the greatest delight ont of the mere realing apart from imagined produetion : but no one for a moment wouk] think of consinlering the printed score as a work of art in itself; it is luked upon justly by the musician ats a means to an end, as a mere tool. Modem architects, however, have become so infatuated with their took that they actually treat them as works of art in themselves. The arelitects spend a great amment of time, which might better be given to the study of sulids, in the perfecting of drawings in "elevation," whieh they gather together and exhibit as though they were promd of them. But if these drawings have any value as works of art, it is surely a most ephemeral one. There is nothing in them that ean appeal to the world at large, nothing that can stimulate permanently the sense of heanty in men. What is properly demanded of the architect is that he make a heautiful building. He, however, seems too often to overlouk altogether the propricty of this demand, aml is content to treat his drawings in a way in which the painter would treat his brushes did he earve their handles delicately and then ask $12 s$ to admire these carvings as part and parcel of his work as an artist painter.

All this points a moral to which careful heed should surely be given. If it is true that architects tend to overemphasize the importance of geometrical projections, and thereby teml to lose the capacity to think in the solid, evidently it should be the aim of the thoughtiul men amongst them to break down all methods of instruction which leal to this overemphasis, and to minimize all halits of practice which enermurage it.

The exclusive use of drawings "in elevation " and the liscuragement of studies in perspective, as this discouragement is seen in the liest of the schools of architecture tu-lay, is nothing less than an artistic seanlal. Of course elevations must he used for preliminary eompositional studies, as well as for working purposes; but surely no great adrance in the instruction of

PRELIMINARY STUDIES

young men ran he hoped for under a system which reliberately discourages the hal hit of thinking in eubie sale ly enommang the exthsive use of sturlies in superficial seale.

Theoretically this trouble may be obviated by the arehiteet if he will make his preliminary studies in perspective. (Sere l'erspertive.) But it mast be acknowlenged that there are dificulties in comection with such use of perspectives, although they are sliftoulties which are in all rases instructive to the clesigner. The work involved in the construction of a perspective, if it is to be true to fuct, is very telions, and even when the greatest care is taken the danger of error in its production is very great. On the other hand, although the perspective dranghtsmant may cheat his client, if he wish to do so, he can scarcely cheat hinnself if he be a serions worker, unless he is a loggerhead ; and the great dithiculty with the current method to which objection is here made is that it tends systematically to instruet the architect how to eheat himself.

The great dithoulty with the use of perspectives for preliminary stuly lies in the fact that few architerts in active practice have time to develop the perspectives themselves, but must trust to their assistants to work ont the problems for them ; they are thus liable to fail to detect serious errors which are easily made hy the perspective dranghtsman. Furthermore, each perspective gives us but one point of view, and to gain a proper notion of the aprearance of a future building so large a number of perspectives would be reguired that no architect could afford to give the time or labour necessary for their construction.

There is, however, a better way to avoil the dangers which we are discussing than by the use of perspective drawings, and one whidh is particularly adapted to stuly purposes, viz., shetch modelling. The architect's artistic protuct is to be presentel to the world in solid form as much as is the scolptor's ; why shonld he not study in the solid as the sculptor does? Imagine the scon that would be heaped upon the sculptor who never monelled in his studio, lmt who, instead, gave drawings to artisans who, from these drawings, prepared the fiuished work. Yet the architect all too often contents himself with the preparation of technical geometrical drawings, and thinks his duty done when lie turns these Irawings over to contractors of reputation. Have we any right to expect truly artistic solids to be constricted su long as this practice is common? It must make of us a race of commonplace builders ; it camot make of us a race of artistic architects.

Sketch morlels, such as are referred to above, are rery simple to ronstruct. They may be made in paper or wond or wax or clay: but the disalrantages of working in these materials

PRELIMINARY STUDIES

are considerable, amd this fact loubtless goes fiar to account for the little use that has feen mate of them in daily pactice. Of late, however, certain clay preparations have been discovered in which inexpensive moklels cau be made which do not easily lose their form, and which do not need to be kept wet during preparation or afterward. After they are fully formed they can fe given cuatings of shellac, and then painted in wil with the colours which are to be given to the finished buldings. They can be I laced in the sun from time to time during the process of the work upon them, anl properly orienter], so that one can sturly in them the real shadows to be east by roofs and projections, and not merely the forty fise legree shanows of eonvention; and furthemore, they may be photographed from many points of view, the photographic prints being used in place of, and much better than, elaborately "rendered " drawings, to explain to clients the appearance of the buillings they propose to ereet.

The writer of this article has used such models in his practice for many ycars, and with the greatest satisfaction. He fimls them less expensive than properly prepared persuectives, and much more wsefnl to himself and to his clients, becanse they give an inlefinite number of perspectives as the result of only one process. They tend to remler self-deception on the part of the architect impossible. They enable him to study his lights and shadows and colour masses with great accuracy, and to see instantly, and to alter and amend easily, forms which do not appear at all upon geometrical projections, and which few, if any, practitioners have time to stuly in perspective drawings.

It is, of course, conceden that it may be best, and to some extent necessary, to use geometrical drawings in conjunction with the models to aid in one's study; but the great alvantage uf the model lies in the fact that it keeps the designer constantly thinking in the solid, whereas drawings in projection keep him constantly thinking in the flat. The alvantage connected with this use of models in presenting a definite jmjert to one's client are of course self-evident; su selfevident, indeed, that we often see earefully prepared models of proposed huiddings mate for the public gaze after they have heen studied in projection, and determined in form by use merely of the deceptive stuly "in elevation"; but it is the use of monlels for purposes of preliminary sturly which is here urget upon the profession.

It is a most siguificant fact that during the time of the Renaissance in Italy the great architects, to whom we Jouk back with admiration and reverence, are known to have used sketioh molels very freely. Geometrical or pictorial drawings were not felt to sutfice in the proper study of a projecterl building. These

PRELIMINARY STUDIES

sketch models were uften mallo in wons, and some of them are still extant, e.y. that of the Strozzi palare in Flormere. Michedagela is said to have montelled his buillings, in all cases, in clay. (Minntz, Rencissunce, Vol. 1I., p. :320; alson Vol. H1., p. 301.)

The working drawings of most impurtant buildings of that age, as we know from many examples still existing, were aften little more than figured sketches, sufficient to indieate to the workman what he was to do, hut entively inaderfuate for purposes of such stuly as must have becn given to the designs ly the artistarchitects.

But for the difticulties emmected with the use of clay, which have happily now hecn removel, there is no chubt that the use of geometrical drawings would never have becone as miversal as it is to-day ; could the habit of their use be overcone, there can be no domlta that the model would, to a great extent, take their place.

To lue of value to the arelitect in determining the forms of his constructions, these sketch monlels must of comrse he made to a definite scale, so that the difterent paits may be measured lyy draughtmen in preparing the necessary geumetrical working drawings; but it will be pereeived that the process suggestent is the reverse of that now nsually andopted in practice, which is to prepare the geometrical itrawings first, determining the design in comnection with study of them only, and then, after all is determinel, work out from them such perspectives as are demanded ly the client, or such morlels as are occasionally made for the fascination of the public.

For ordinary buildings the seale of the models may be relatively small, as they are especially valuable to the artist in enabling him to see clearly and quiekly the masses of his proposed work. Ordinary letails can usually he worked ont direetly in projection, although it will often be foum to be most advantageons to the arelitect, economically as well as artistically, to model these details also on a large scale. In larger, more munnmental buildings, models on a large scale may well be male, being lmilt up in the first instance by mere mechanical enlargement of the smaller motel by unskillecl hands. Having been thas enlarget, the whole scheme can thon lee restudied with ease, and the important details of architectural ornament and sculpture ileciled upon in a manner which is likely to produce hetter results than are usually obtained by the methods now employerl. This process, it will be notel, corresponds acourately with the practice of the architect's eoworker in the arts of solicl form, the senljutur, who haluitually sketches in peneil, then makes a small stale monlel, which, being enlarged, is stulies in greater detail; this enlargement, finally repror

PRESERVATION

dued almost mechanially in full size, heing again reatudicu in the clay hefore leeng "ast in lurnze or cht in marble.

> - Mearir Lutgens Maramali.

PRESBYTERIUM. I. 'That part if a church in which the high altar is plateel and which forms the eastrin termination of the chnir, atuve which it is gemerally raised ly a few stepls fir distinction, and so that it may he risible from the have; it is oermpied exclusively ly those whon minster in the servies of the altar, and its westem bounlary is the end of the rhoir stalls of choir proper. The use of the worl "rhoir," ats including the pesshyterium, is common lant inexact.
I). The duclling of a clereyman; rare.

PRESBYTERY. Same as l'reshyterimm.
PRESENCE CHAMBER A rereption room ; expecially, in molern usage, the principal hall of ceremony or state in a palare, containing the throne; an apartment for the formal reception of those entitlem to admission on certain oreasions.

PRESERVATION. In building, the protection of Imilling materials from sheh fures as woukd tend to destrey them, as woul from rutting, stone from disintegration, plaster from seprarating from the key and crumbling or falling in larger piecess, and iron from rust. This may be of two kinds, cither the corering of one material by another, which is considered proot against the destructive force which is feared; or the filling, partially filling, or cuating a material with some application which will make it much more resistant. The preservation of stone and lrick from moisture is generally attempited by eoating the material with a liquid applieation which permeates its substance to a greater or less depth ; in the latter ease a fat of some limb, usually liquefied by heat, is allowed to soak into the surtace of the finishol masonry; and there are eontractors who unlertake the preservation of finished lrick walls and stonework, apllying the fat in a semilifuid condition, and then bringing a high degree of heat to bear immorlately upon the surface so fillet with the fat, which in this way is sulphosed to find its way more frecly into the pinres of the material, and to he more firmly fixed there. The preservation if woord ly means of chemicalx, which are allowed to soak into the ressels of the wood, is mot very much in use, although many phans have heen propusel, some of which are known to lee efticacions. It is necessary to dry the wonl very thoroughly, and this fact is in part the canse of the reluctane of lmilders to use thesse prepared wonls; for it is well known how little thoroughly seasmed wool is to be whamel, the constant and constantly increasing demame for it preventing the sturing of large quantities in adrance. It, however, sasomed wond is plared in contact with hot oil, or the like, it will

Abstract

PRESIDIO absorb it rapilly : and if the wood is placed in a receiser and the oil is foreed into the receiver with considerable prossure, the rapidity of the provess is increasel. The practical use in building of woml prepared in this way is almost limited to the firepront woud which came into use toward the close of the nineteenth century ; but eren this is, as yet, very musual in buildings. Its fireproofness dues not reach the degree of absolutely resisting combustion: but the combustion is slow, and the wool chars and crumbles without bursting into flame, and therefore without tending to spread the contlagration.

- R. S.

PRESIDIO. A frontier fort of Spanish America. This was generally the beginning of a town. A ditch was dug making a rectangular enclosure of about 500 or 600 feet on a sille. A rampart was built around within the diteh, enclosing church, quarters, barracks, dwellings, storehouses, ete. -F. S. D.

PRESS BED. A bed permanently built in a recess and more or less enclosed by woodwork, as frequently in the houses of peasants in Holland and Germany ; so called from the outward resemblance of the structure to a press or cupboard. (See Bed Place.)

PRESSED CLAY CONSTRUCTION. (See Alluhe: Cajun ; Pisé, etc.)

PRETORIUM. Same as Prætorium.
PRICKET. A vertical spike or joint on which a caudle is stuck and held upright; hence, such a point together with its base or stand ; a candlestick: often called pricked candlestick. (See Candle Beam.)

PRICKING UP. The first coat of plaster in three-coat work on laths, sometimes called the rough coat, scratch coat, or scratching, from the custom of scoring it in various directions before it is dry, so as to afford a better hold for the second coat. (See Hard Finish, under Finish; Plastering.)

PRIEST'S DOOR. A door by which the priest enters the chancel or nave trom without, or the chancel from the robing room or vestry. Any small, low door in the Hank of the church, especially on the south side, is ofter called by this name

PRIEUR, BARTHÉLEMY; sculptor; d. October, 1611.

Prieur was probably a pupil of Germain Pilon (see Pilon, G.). He made the monument to the Constalile Anne de Montmoreacy (d. 1567), fragments of which are now in the Louvre. He worked on the château of Ecouen aml carved the figures in the spandrels of the arches of the Petile Gulerie dn Lourre. In 1573 he made the vase containing the heart of Jontmorency, and its supporting column, now in the Lourre.
Lami, Dictionnaire rles Sculpteurs: Berty, Topogrophie, Lourre et Tuileries, Vol. II.

PRISON

PRIMATICCIO (PRIMATICE), FRANCESCO: pinter, sculptor, and architect ; b. 1490 (at Bologna, Italy) ; d. 1570.

Primaticeio was associated with Giulio Romano (see Pippi Giulio) at Mantua, and in 1531 was called to France by François I. and was employed at Fontainebleau. He was at first associated with Il Rosso (see Rosso), at whose death he assumed sole charge of the decoration of the palace. In $155 \pm$ he was made abbé of S. Martin de Tours. Aug. 3, 1559 , he replacel Philibert de l'Orme (see De l'Orme, Ph.) as superintemient of the roval buildings. About 156 2 he assumed direction of the construction of the monument of Henri 1I. at Saint Denis (see Pilon, Germain). The construction of portions of the palace of Fontaineblean is ascribed to him. In 1562 he assumed the title commissaire général des batiments du roi, and had large power over the artistic productions of his time in France.
Pfnor, Monographie du palais de Fontainehleau; Pfnor, Guide artistique au palais de Fontainebleau; Guilbert. Description de Fontainebleau; Haynes-Williams, Funtainebleau.

PRIMATICE. Sane as Primaticcio; the French form of his name.

PRIMING. In painting, the first laver or coat of paint, size, or other material applied to any surface as a ground in preparation for succeerling coats. (See Painting.)

PRINCESS. (See Slate.)

PRINCIPAL (the aldjective used substantively). In a framework, floor, or the like, one of the main members as distinguished from a less important anl subordinate one ; especially one forming, wholly or in part, a main support as distinguished from a similar intermediate piece. Olten one truss of several, as in a roof.

PRIORY. A religious house governed by a priur or prioress. (See Abbey and references.)

Alien Priory. A small monastery dependent upon a larger one which is in another country.

PRISM LIGHT. Prisms of glass, either made separately and set collectively in iron frames for parement lights, or made commectedly in sheets and placed vertically or at an angle in or over window openings, or the like. The angles of the prisms are so itljusted as to intercept the rays of light from the shy, and to direct them into rooms otherwise imperfectly illuminatel.

PRISON. A buidding for the detention of persous duly couricted and ordered by law to untergo this form of punishment. The detention of persons awaiting trial and of witnesses is not generally in a prison in the proper sense.

Ancient prisons were not commonly built for the purpose. Even where the imprisomment was itself not the punishment inflicted, but a mere detaining of the prisoner until his pumishment should begin, or until his judgment should

PRISON

be declared, the buildings used were mowhotesome and unfit for habitation. The dungeons of anticuity (see Mamertine Prison, below) and thuse of the Midfle Ages (see Dungeon; (Wubliette) are interesting to the buililer only as forming part of the strong fortitied buildings in which they are placed. Molern prisons hardly diate back of the closing years of the eighteenth century, and in the nincteenth century very great changes were male, first in one direction and then in another, as differing ideas of prison disciplime and prison management succeeded one another. On the whole, the cell system, with either solitary comfinement or separate confinement, the prisoner being in every case isnlated at hours of mouls and of repose and of exercise in the open air, has gained acceptance ; and the prison buikdings which are of interest are those in which tlie arrangement of the cells, the corridors which comect them, the yarts in which exereise is taken, aml the like, are elaborately arranged according to some definite theory. Workshops and yards in which work is done ly convicts in each other's presence, but under the close suluervision of foremen, wardens, and sentinels, are not very different from ordinary yards and sheds.

That which is desired is easy access to the cells and a complete supervision of the interior of each, white the opportunities of escape are reduced to a minimum. With a view to this the cell itself is commonly a single small room with a window in the outer wall, anl the door at the other end opening upon a narow open balcony. Any mumber of stories of cells, each with its own balcony, may be built one upon another ; but the balconies all open upon a single great corridor the whole height of the huilding. In some prisons of the United States the reverse of this plan is tried : each cell las a window and door, side by side, opening upon the balcony, and the balcony is between the prisons and the outer wall. This is brought about by building one very large hall with lolty windows, and by erecting within this the pite of cells in any mumber of stories, thas leaving on either side of the walls a long open corridor of the whole height of the building, upon which corridor the balconies project. The only objection to this system is that the window of the cell does not open directly into the open air; but this objection seems not serions in view of the ease with which a perfect system of forced ventilation may be adonted and of the abondint light obtainable.

The Panoptikon is much used in prisons in different parts of Europe: the system is apphied not merely to the long corridors from which cells are entered on either side, but also to the yards of exercise. The system is carried even into the chapels and the rooms in which the persons in authority may address
the prisoners ; cacls prisoner having a scparate enclosed seat so contriced with a partial roof that his next neighbour in the rear, lowking over the top of his cuclusure, will be mathe to communcate with him except by rising entirely out of his own compartment and of necessity attracting notiee: and these enclosures being so arranged as to ratiate from a point oceupied by the priest at the altar or by the speaker.

The question of whaning conveniences, baths, water-closets, window sashes or easements, and their fastenings, and of the fitting up of each cell with bedstead only availathle at might, table, chair, shelves, cupham, and the like, is of extrene interest, and somewhat complex, so very many different expelients having been tried under so many different intluences and to meet so many diflerent reguirements. (See cut, cols. $215-216$.

Ifoudluch der Architektur (I)armstadt), I'art IV, Halb-band 7, Kapitel (Chapter) II, and the full bibliography appenderd. -R. S.

Mamertine Prison. A very ancient dungeon in Rume, at the northernmost corner of the Formm and near the Cipitoline IIIl. The name is mot antique ; it appars to have been derived from a statue of Mars near by.

PRISON RUSTIC WORK. Rustic work of which the larger surface is more or less deeply pitterl, with the purpose of producing an effect of rugged strength.

PRIVY. A private or secluded place. Specifically, a water-closet; a latrine.

PRIZE OF ROME (French, Prix de liome or Grand Iriv de Rome). The highest prize given to competing students of the Ecole des Beun. Arts. (See School of Architecture.)

PRO-CATHEDRAL. A chureh used as the catherlral church of a diocese while the proper churd remains unfinished or is under repair.

PROCOPIUS OF CESSAREA; listorian.
He accompanied the canpaigns of belisarius in 527 A.D., and held high office at Constantinople under the Emperor Justimian (b. about 483; d. November, 565). The described the wars of Justinian, and wrote a hook on his architectural undertakings, the Tilismatu or Procopi Cresuriensis de Edificiis Domini Justiniuni libri sex.

PROCURATIE NUOVE. Tu Venice, on the sontli side of the Piazzit di S. Marco. The two lower stories were built by Scamozzi, and are a continuation of the Library of S . Mark (which see). These are now the lower stories of the Palazzo Reale (see Procuratie Vecrhie).

PROCURATIE VECCHIE. In Venice, on the north side of the Piazza di. S. Marco; leegun in I 196 by Pietro Lomhardo; served as pmblic offices until the Procuratie Nuove were built, and are now private property.

PRODOMOS. A lubly of entrance, a vestibute, usually the same as pronaos.

PRISON: RLE LE LA SANTE, PARIS; ONLY THE MORE MPORTANT(?) REFEREXCES ARE HERE GIVEN.

[^3]32. (One in each winy) romin for legal counsel.
33. Storelouse for clothing.
34. Parlonr with separate ceth for prisoners.
35. Altar at which divine service is held : 34 and to command 3. .
36. Cells of the accused and corridors

3n. Wells of the accused and corridors.
41 . Wately tow at centre of separate courtyards for exercise
42. Itall where condemned prisoners can see divine service
49. Entrante toc prison of the condemned.
51. Halls for Jewish worshiz,
55. Protestant oratory.
56. Lihrare

5\%. (Four large balls) refectories.
66. 66 . Sinks with rumniug water

6i. Workshops.

PROFILE

PROFILE. An ontline, expecially such as is revealed by a transverse section. Speeifically : -
I. 'The ontline of a moulding, group of mouldings, or the like.
B. The outline of the surfiaes of the ground as shown by a remieal spetion (sere sky Line).

PROJECTION i. Tha sallience or por trusion of a purtion of a buihling from the general surface, as of a pavilion, a cornice, or stringcourse, from the mass of fursade.
B. The art, and the result, of projecting on throwing ; as the projection of a shanlow upon a bright sufface, the width, depth, and character of the shadhw varying with the object which casts it and the nature of the smifice urom which it is east ; henere,

In mechanieal drawing, the graphical representation of such a process. The projection of any point on a given surface is olstained by drawing a straight line through the point to the surface, the print of intersection so obtained being the projection of the given point. Surh a line is called is projector. The projection of an whject upon a surface is the figure olstained by means of straight lines Irawn to the surfare, accoriling to a fixed law, from points of the object or from the preatennined points of an imagimary object. The surface is supposed to be a plane unless speeified to the contrary.

There are three systems of projection in common architectural nse ; namely, (1) Perspective, - sometimes called conical projertion, where the projectors diverge from a single joint, and in which the surface in question is sometimes rurved (see Persuertive); (2) Parallel Projection, where the projectors are parallel to one another (see Sharles and Shadows) ; (3) Orthographic or Right Line Projection, where they are parallel to one another and perpenticular to the plane of projection. The term "projection " is commonly understood to mean that system of orthographir projection which makes nse of a vertieal and a horizontal plane, forming a diedral angle, which is turned toward the observer. It is this system which is treated here (compare Descriptive Geometry, below').

The complete presentation of a solid oljeet repuires its projection upon two planes, since upon one plane muly two of its dimensions ean be shown. In practice, these are taken at right angles to cach other, whe being horizontal and the uther vertical. They are denoted by $/ I P$

Projection: A Byzantine Gruined Vault shown in Isometric Projection.
(JP). Upon I / P let any object, such as a rectangular block, be placed, and let lines be drawn thrungh all of its points perpendicular to I / P, giving its plan, and other lines perpen--licular to I'l', giving its elevation.

If now the paper be pressed out flat, the plan and elevation of the block will apmear, as shown in Fig. :.. This is the conventional method of representing the planes of projection and the projections upon them.

The plan of an object is seen by looking at it rertically dowmmarl; the elevation, by looking at it lervizomtally formarl (Figs. 1 and :2). In Figs. 3 and t are shown the plan and two elevations of a block house. Fig. 5 shows an ohlique elevation and plan. The dotted lines are the projectors.

Section. It is often necessary to determine more than the simple plan and elevation of the ontside surfaces of an object. When, for example, it is desired to show the internal arrangement and construction of a buitding, walls, doors, staireases, etc., - several plans amb elevations are neeted. These are ohtained by using supplementary planes of projection, parallel or perpenticulat to $I I I^{\prime}$ and V'P. Figs. 6, 7

220

PROJECTION

and 8 , show vertical, homizntall, and ohlique sections of a culical bux. The purtion of the box between the supplementary planc and the cye is supposed to he removed. The projections upon these planes are ealled Sectional I'lans and Elevations, or, briefly, Sections.

Intersections. When two oljects intersect, it is sometimes desirable to know the character of the line of intersection common to their surfaces. If any auxiliary plane perpendicular to $I P^{\prime}$ or $I^{\prime} P$ he passed through both ohjeets, it will determine two linear sections of their surfaces; the points where these lincar sections intersect will be points of the required line of intersection. Figs. 6, 7 , and 8 show the intersections of a solid by a plane; Figs. 9 and 10 show the intersection of one solid by another. In every case, it is not the line of intersection itself that is obtained, but its projections. The auxiliary planes are generally taken jerpendienlar to $M P^{P}$ and $I^{\prime} P$, so as to get the easiest and simplest sections of the objects. Sometimes the same result is obtained by rewolving the section until it is parallel to one of the planes of projection.

Descriptive Geometry. This is a more elaborate lorm of projection; also a branch of practical geometry in which the shapes and dimensions of lines, surfaces, and bodies are determined hy means of two planes at right augles to each othar, one horizontal and the other vertical. These planes, called planes of projection, by their intersection form fonr right diedral angles, called the 1st, ond, 3rd, and th angles. Their line of intersection is called the gromd line.

The process of investigation in descriptive geometry is an extension of that employed in the more clementary work of "projection." It employs all four diedral angles, and consequently four planes of projection, while in projection only one angle and two phemes are used. It is thus a branch of orthographic projection, although practically unnsed in arehitectural practice.

Isometric ; Isometrical Projection. A methon of projection based upm the following principle: If three mutually perpendienlar lines, such as edges of a cube, he equally inclined to a plane of projection, their projections on this plane will be three lines making equal angles with one another (120°) : moreover, the lengths of these projections bear a common ratio to the given lines $(\sqrt{ } 2: \sqrt{ } 3)$.

Strictly speaking, only such objects as are rectangular can have isometric projections; int since it is always possible to refer an object bounded by inclined or curred lines to three mutually perpendicular lines, any object may be said to be drawn in isometric. In this case, the measure of all lines other than those lying in the three prineipal directions is obtained by

PROPORTION

referring them to lines in their own planes which are truly isometric.

The isometrie drawing of a building when taken from alowe, as is usinal, produces an etfect resembling what is populaly known as a birl'seye view ; but the representations of parallel lines do not approach one atother, as in perspective. As the name imports, equal oljeerts are shown of the same size in all parts of the drawing.

Farish, Isometrical Perspertive, 8wo, Cambridge. 18:3) ; Jopling, Practice of Lsometrical Perspertioe, London, 1835 ; Sipwith, Treatise on Sometrical Draning. London, 18?4; Church, Eloments of Despriptiop lifometry; Niller, Elements of Descriptice lienmetry, London, 1878 ; जhegne. Cours de gérmitrip ileseriptive et de yétmétrie intinitésimale, l'aris, 1806 ; Watson, Course in Descriptire fiemmetry for the Lise of Colleges tend scientific, bchools, London, 1880 ; Gillespie, Elements of Ierpendiculur Projection, 1597.

PROJECTOR. (See Projection).
PROJECTURE. The same as Irojection, A.
PROJET. The original design or scheme of a building. In the system of the Sohool of Fine Arts at Paris, the projet is the first sketrh of a design, portraying its specific character in outline or general terms, to be after developed in detail in the final study.

PROMENADE. A place suitable for walking for pleasure, as a sidewalk, a terrace, a portico, or mall, with a more or less elegant or attractive enviromment.

PRONAOS. The open vestibule in the front of the nans or cella of a temple; usually opposed to epinas, but if the treasury or rear part of the temple is moder consideration, the vestibule leading to this is sometimes eallerl the pronaos to the treasury, though it remains the epinas of the whole strueture.

PROPERTY ROOM. The room in a theatre in which are kejt the stage properties, smeh as costumes, furniture, or any other accessories of a dramatic performance.

PROPORTION. In an architectural composition, the relation of one part to another and to the whole, especially in respect to size and position ; the relative dimensions and arrangement of pirts, as of a room in regard to its height, width, and length ; of a pavilion in regard to the whole façade ; of a capital in regard to the shaft ; of an entablature in regarl to the column; or of the different members of the entablature in regard to one another. Good proportion in a design defends upon the relative importance given to its sululivisions, or the degree of subordination of its parts, not only in respect to dimensions, lut in respect to comparative emphasis of architectural treatment, according to the just value of each in the general scheme, and upon their mutual disposition, so as to secure harmony and balance by agreeable contrastis. Thus, in the proportions of the

PROPORTION

classic column and its entablature, the stuely of suceresive generations of great artists upon the problem finally brought the Greek orders to surl perfertion of poportion that they constituted a sensitive orgamism, whin could not be valled in any essential particular without in shock to the whole system.

W"ith the conviction that correct pronortion in arehitereture, as in music, should be the result of sume seientific method, rather than of artistic feeling alone, many attempts have been made to discover some arithmetical formula or geometrical figure uf such properties that, when applied to an architectural composition, the proper remative dimensions of its parts, and their proper hamonic relations to the whole, might be determined and proved. Among these attempts, those of Viollet-leDue lave been pursned with more sympathy for purely artistic conditions than the rest, anl with more diligence and ingemity. Like Cresy and Hay, he based his somewhat empirical investigations on a geometrical figme ; ancl, assuming the triangle, or vertical jyramidal section, to be the expression of stability, he persuated himself that in the erfuilateral triangle, the isosceles right-angled triangle, and the triangle of which the base has 4 parts and the vertical $2 \frac{1}{2}$ parts, were concealed the true generative principles of proportion. In his Entretiens and Dictionmaire Raisom \quad é, be publisherl diagrams showing the application of these figures to varions monuments of Egyjt, Greece, Rome, and the Mildle Ages, whose proportions had long challengel the admiration of mankind; taking care, howerer, that these applications should not be made in a spirit so mathematical and umeompromising is to prevent the artistic instinct from correcting the results in certain details, especially where such corrections were obriously needed, in view of the phenomena of perspective. These experiments exhibit many coincilences so remarkable, as to make it appear that the dimensions and details of each of these monuments have inleed certain mutual hamonie relations, resulting in general harmonic unity, dependent on some other laws than those of statics, aurl established on some definite principles which harl protected them from the aberrations of caprice, taste, or accident.

PROPYLAEA

But while beanty, in lite and mass, may sometimes seem to lee curionsly confirned by such tests as these, it may be doubtful whether it can be created by them ; for elasticity, life, and frectom seem to be the essential qualities of true art. - Henry Van Beunt.

PROPOSAL. In building, the offer made by a contractor to firnish certain material and lahour at a certain price.

PROPYL届A: PROPYLAIA (Протídaz; also orcasionally in the singular, Прomúdatov;

PROPYLAEA

were never fully carrial ont. Its central portion contained the portal proper, a wall piered by five openings, of which that in the mikfle was wide enough to permit the pas:age of thariots, the others being for perlestrians only. These openings were proviled with grates. Facing the open area of the Acropolis, to the eastward of this wall, was a Doric hexastyle purtico of ahmirable proportions, but with a rentral intereohmaiation, which, for the same reason as the midale doorway, was of unusual width. 'lo the westwanl of the wall containing the gates, and therefore hefore, or outside of it, was a covered hall, walled on three sides, the marble rowf of which, so greatly almired hy Pausanius (I., ㄹ.2), Wals carried by six Jonic cohumns of great beauty, arranged in two rows, between which ran the roadway leading to the central entrance. The

PROSCENIUM

'The ehief work especially devoted to the build. ing is Bohn's Dir I'omplaten dor I Ikropolis zu \& lhora. 18xき. with emnplete drawings and eitation "f earlier authorities. Dr. Dorpteld"s masterly disenssion of the oricrinal plan of Nutsieles, and of the mombications which it underwont in execution, will be fouml in Mitthpilungen der deutschen arkhoolnfisches Instituts all dehen (168.j), pp). :38-st; and 1:S1-14. Ilis itroment is given in Miss llarrison's stmoime Ithros. and in frazer's Puhsamias. Vol. It. , !. こjo. The lrawings of the trupyliea in l'monse's Principles of Alhenian Architecture are of meat aecuracy.. An excellent acemunt of the strueture, wilh plans and elevations, may be fonml in lBumeister's Ibenkmäler der klassisehw illerthms, pp. 1414-142.2.
-Frank Miles Day.
PROPYLON. In ancient Egyptian architecture, a monumental gateway, preading the main gateway (see Pylon) to a temple or sacted

Propylala at Athens: Perspeetive fectiun showing Nohthfrx Hilf Restored (see Plas).
western front of this hall was formed by a portico similar to the one which faced eastwarl on the Acropolis. To the nom th and south of this portico, and at right angles with it, were smatler porticoes, of three columms in antis, the northem one of which hat behinl it a nearly square chanber, which was jrolahly the rom containing the pictures deseribed by Paisimins (I., 22), and now frequently called the pinakotheler, or picture gallery.

This building belongs to the highest type of Athenian architecture. In ancient times, just as to-day, it was esteemed a work of equal interest and importance with the Parthenon itself. The structure seems to have remained nearly as Mnesieles left it, until about the year 1636 , When an explusion of gumpowler cansed its partial destruction. Even in spite of such an aceident and the subsequent neglect of almost two centuric's, the greater part of the builling is still standing.
enclusure. The isolated masses of masonry on both sides of the passage were built in the Egyptian manner, with battering faces, so that the whole was of the general form of a truncated pyramil, the whole being crowned with a massive cavet to cornice ; or in some rases, the gateWay was flanked by two solid amd umpierced masses of buildings of that form, as in the fylon itself. These stoml singly, or in a series of several, before the actual entrauce or pylon of the temple, in orter that the approach should be invested with dignity and ceremons:

PROSCENIUM. The platform or logeion of an ancient (ireek theatre, upon which the acturs enarted their parts, in front of the rear watl, which was treated like a fuçate forming the backuromul, the skipne. It corresponds with the motern stage and the lioman fulpituem. In the modern theatre, that part of the house which lies between the curtain and the orchestra, including generally the proscenium arch.

PROSCENIUM ARCH

PROSCENIUM ARCH. . 1. In a theatre or similur bulding, the arch above the onming in the buscenimen wall, at the firme of the stage. In the United states, as manally ronstmoted, the arch is a relieving areh above a lintel composed of irnu heams ; hemere, -
B. The imitation arch formed by means of furring, or the like, hemeath such a lintel; the opening, of whaterer form, which allows the pertimamoe to ho spen be the andience.

PROSCENIUM BOX. In a theatre, or similar holilins, a box in or near the prosenimm,

PROUT

PROTO-IONIC. Of a style apparently introubtory to the lonice style; sain of any building or feature ot a building which is considered to have contrihuted anything towarl its evolntim, is the footings of the columms of Nineveh in relation to the Iomic base, the Assyrian hedix to the Ionic volute, the characteristic Oriental lintel of palm timber to the Greek epistyle, etc. The capital discoverel ty the American archeeologists at Assus in Asia Minor is an excellent example of Protu-Ionic style. (See Ionic ; Gre(itur Architecture.)
as a listingnished firom thuse more removel from the stalge.

PROSCENIUM WALL. la atheatre, or similar building, the Wall separating the stage and the anditorimm : nsiatly of masoury and very solicl. It is in this wall that the proscenimen arch is uqemed.

PROSTAS. An anterhamber: a vestibule : according to Vitruvins, the portion of the front of a temple included botween the antie or parastales of il portien in antis.

PROSTASIS. That which is put before a place to conceal it ; a screen.

PROSTOON Sime

 as Portico.
PROSTYLE. In

Greek architecture, having a columnar purticu in front, and not on the sides or reas. (See Amphiprostyle: (olmmar Architecture.)

PROSTYLOS. A prostyle building (Vitruvills).

PROTHESIS. In church buildings of the Greek C'lureh, a Chapel immediately comeeted, gemerally on the north side of the bema. (Compare Parabema.)

PROTHYRID: PROTHYRIS. Same as Ancen (Vitruwius, IV., 6).

PROTHYRON: PROTHYRUM. In Greek, something before the dowr. It is stated by Titruvins (VI., IO) that the Greeks used the term for a restibule, but the Latin writers for a railing, or perhaps for the gate itself, like the Greek word Diátrpa. Commonly usel in the plural, prothyra.

PROTO-DORIC. Of a style apparently introluctory to the Doric style: said of any buiding or feature of a building which is considered to have contributed anything toward its evolution, as the Proto-Dorie columns of the tomb at Beni-Hassan in Egypt.

Proto-Dorefe Tonb with Colemins at Beni-Hasedn, Nebla.

PROVES

PROVES. (See Brorbes.)

PRYTANEIUM. In att anciont frpek city, the hall in which the makistrates took their meals in state at the pmblice eharge veceived foreing embassios, catertatimed strangers of histinetion, honomred citizens of high fuhbir merit, and in generab exerrised the rites of ofticial hospitality. It was ronsecrated! to Vesta, atml in her homour a ferpertaal dire Wats mantained in it, which, in the colonies, wats origitally hrought from the fanmas Irytancimm of Athens, the mother city. - II. V. 1 .

PSEUDISODOMUM. In anticnt masomy, composed of layers or conuses altermately think and thin (Vitruvins, $11 .$, Ě). (Siee ladmmum.)

PSEUDOCLASSIC ARCHITECTURE. That phase of wordassic arrhitecture which marked the most stilted protion of post Pemaissature art, when, under the intinence of Vitrusims' writhgs and those of his momern disoiples, the

PUEBLO HOUSE

Wilth of : m interolmmiation from the front Wall, wrober actually engengel in it.

PTEROMA. In clasibe arehitecture, the passage along the side of the rella of a temple or ather builhing, redering gememally to the spare behind its screen of cohbmas, or pteron. la mondorn practice, often mase fon this space on the front and rear as well ats at the sibers.

PTERON. Inclassic architecture, that which forms a side we thank, the the row of columns along the side of a temple, or the side wall itself.

PUDDLE (in.). Same ats I'uddling, 13 .
PUDDLING. I. "the art of filling a carity with clay mixed with water, with or withont sand, and rammed or tamped in sureessive bayers to a certain mombion of solinlity, esperially to prevent the iutiltration of water, as behind sheret piling in a wherlam, against the back of a retaining wall, ctu.

B. The material

 used in such operattions.PUDSEY, HUGF ; bislou).

Il, wals Bishop (if Wwham from 1153 to 1194 , and built the unique (chapel called the Galilee at the western ensl of that cathodral, an interreting specimen uf late Sorman arclitecture, erected for the wise of women, who hate been
most formal imitation of Fimnan architesture prevaliled, and it was the aim to revive the whole art of liome. (See Neochassic Arehitecture.) - W. P. I'. L.

PSEUDO-DIPTERAL. In classieal architecture, having ath arrangenent of columns similar to dipteral, but with the essential ditference of the onission of the inner row, thas leaving a wirle passage around the cella.

PSEUDO-DIPTEROS. A pseudo-lipteral builling (Vitruvius).

PSEUDO-PERIPTERAL. In classic architecture, having a purtion in front or with jurticoes in front and rear, lant with the rolumns on the sides engaged in the walls instead of standing free, as, in the ease of Greek temples, that of Olympian Zens at Girgenti, ruins of the ancient Akragas, or the nine-columned edifice at Pustum, or, in the cases of homan temples, that of Fortuna Virilis at Rome, or of the Maison Carrée at Nimes.

PSEUDO-PROSTYLE. In dassic arthitecture, prostyle, but without a proper pronaos, the columns of the portion being set less than the
hithrito excluded from the charell. It was altered in the carly English and perpendicular periots.

PUEBLO. In Spanish, a town or village; especially in the United States, an Indian village (and its inlabitants) of the Southwest, Arizona amb New Mexioo. Village Intlians have existed in many parts of the United States ; inleed, exeppt that their commmal houses were of frailer material, and porished as soon as they were abandonen, the Indians of the more eastem parts of the comitry amb of the northwest coast were as completely settleal in commonities as those of the so-palleal l'ueblis. (see the following titles.)

PUEBLO ARCHITECTURE. That of those Ancrican Imlians who are called Puehlo Indians, Pueblos, or Puebloans. (See Pueblo; Pueblo Honse.)

PUEBLO HOUSE. A (rommonal dwelling of the villare ludians valled Pueblos. (See l'ueblo.) These houses were, and still are, built of stome, adobe, fiacal, ete., sometimes un the mesas, or tups of clitlike hills; sometimes in

PUEBLO HOUSE

clefts or hollows of the clitf face; sometimes excarated in the solid material of the diti; somstimes on a plain or in a valley. In this article it is propused to treat unly those which are built imkepemdently of natural add, reference being made under Commumal Dwelling to other type's.
the Pueblo ilwellings eonsist of a group of that-roned chambers combined in a single strueture that resembles a pile of receding fracking cases. Several of these piles, with spaces and conrts between, furm a village. These villages were not absolutely permanent, but were trequently abandoned, and others huilt elsewhere, though in some instances the same site has heen lorilt on for senturios. Rains of these conmumal dwellings extend northward in an ever narrowing region as tar as the foth parallel, and the known area dwiulles to a mere point along fireen River. Sunthward it wilens, to embrace nearly the whole of Arizona and New Mexico, and seatteringly vanishes in the mocertain knowledge we have of northem Mexiro. Within this immense tract permanent eommonal dwellings were built almost everywhere. on phain aml momtain slope, in valleys and cañons, and even in the bottom of the (rram C'anon of the Coloralo. Single honses are common, but the majority are buiddings of a semifortress type: lower stories without en trance on the gromnd, and teraced upper stories reached by ladders easily remowed. There was also, sometimes, a defensive wall. Before the accurisition of horse aml gun, assand on one of these strongholds by predatory tribes or by a neighbouring community was difticult.

The inhabited dwellings of to-day consist, as did the ruins, of mumerous rooms built in juxtaposition, or superimposed, the upper opening on terraces formed by the roofs of those below. There is generally no prearrangel plan. The beginning is in one ar two single-rom strutures, to which others are added as reduired. This seems to have been a freynent method, even in many of the elaborate lmildings of the Mayas and the Aztecs. Formerly the grommfloor rooms in Arizona and New Nexico were entered only by a hatchway in the roof, a method still in vogue at Oraile, which, with the other towns of the Moki, exhibits the nearest armoach to pre-Columbian comlitions. Frecuently the honse group, formed a barrier arouml a court opening to southward, the rear wall insurmountable, and without entrance, the houses being terraced down inside to the court, and this proterted by a detensive wall or a line of one-story luildings. Fortresses of this kind are seen in the ruins in Chateo C'anon, in northwestem Ňpw Mexien, anl at other places. The court was always a feature, and is so still. It generally has one end clused, or at least entered through a covered way or passage beneath buildings. Where adobe was not used the builling

PUEBLO HOUSE

material was stone slabs, usually sandstone. The arid nature of the country not only compelled the use of other materials than wood, but smpulied these materials, ready to hand in profusion in the disintegrating diffs and in the enormons reaches of argillaceous soil.

The Moki, in building, fixes the four corners by placing at each a prayer feather under a stone. A doorway is marked by placing tood on each side of it. Other ceremonies are performed hefore the dwelling is occupied. The walls are of the usual stone slabs, roughly sutuared, and raised to a height of 6 to 8 leet. They are generally plastered inside and ont with adobe mortar, and the inside is lurther finished by a cuat of whitewash. This wash is smmetimes applied outside as well. At the pueblo of Zunii, and throughont the Fio Grande valley, adobe is largely used as luilding material, but at the Moki towns the material is almost exchaively stone. Doorways were originally of the notched variety (see Noteled Doorway, umer Donway), where they opened on a roof, and there were hatchways through the roof, as mentioned ; but now, in Zuñi and the Rio Grande pueblos, and even in most of the Moki towns, there are commonly entrances on the gromud. Fomerly blankets or curtains formed the only doors, but now there are woolen doors liung to wooden frames, the doors heing usually merely boards roughly nailed together. The Moki use frequently the old wooden latch with the string ruming through a hole in the dwor. On one side of the frame an opening a few inches square is left, through which the door may be securely propped inside, and the hole then plastered up till the return of the owner. Frequently the sill is rased a foot or more, while over the top is often an open transom, probathy a smoke outlet. Windows were rectangular opening*, barely differentiated from doors. No glazed windows existed motil morlem times, thongh miea and selenite were used early at the suggestion of the Spaniands, but only to a rery limited extent. Small windows are now slazed to some extent in all the pueblos. At Zuni there are also hatohways in the mot used as skylights. The masonry work is wally done by women, thongh the stones are bronght by the men. A woman will sometimes work singly and alone in a desultory way that almust escapes observation, as no tools are used. Plmmb line, level, and square were aprarently not known to aboriginal Americal. The hand was the trowel and the thumb was the rule ; get some of the angles and corners are quite regular, and appear to be vertical.

North of the Dlaya region the roof was always what may be called typical American constrmetion, becatuse it was nsed in principle by widely different tribes. The principle was simply a

PUEBLO HOUSE

PUGIN

support of boughs ur poles, which were finally covered with tarth. In the Puehlo construetion tree trunks without lark and 6 or 7 inches diameter are laid across the tops of the walls. Outer enuls wien too long are promitted to project beyond the walls, sometimes beine finisheal into a kimb of portico. Smaller poles are laid across the first, somewhat separated, and then comes a layer of slender willows or reeds, with nest a layer of twigs or grass, though in sume old buikling.s the grass was omitted. In one of the Chaco ruins thin, narrow, split boards took the place of the layer of small poles. On the grass layer a quantity of adobe mortar is spreal, amb then earth laid on and troditen down. The final finish is another layer of adobe mortar: Sutficient shope is siven to carry off water, but not enongh to create a current that would injure the surface. The walls are built up to the level of the top of the root, and frequently somewhat above it, and a coping of thin slabs put on with their outer enges Hush with the wall face. Throngh this parapet ontlets are made for the rain, and drains are put in to carry the water clear of the walls. In the ordinary storms of the arid region these ronts answer well, but continued wet weather saturates them and canses dripping inside. Fhoors are constructed in the stme way, the floor of one chamber being the ruof of the one under it.

There are no stairways within, all monnting being done outside by latulers and by steps built on end projections of walls. The lathers are easy for the inhabitants, who go up and down, even with a load, withont touching the sides or the rungs with their hands, and the dogs find no barrier in them, running over the roofs at will. The original ladder, used also by other tribes, was a notched log. There was, too, another form made of a Y -shaped tree or branch. Present ladders are similar to our orlinary kind, exeept that they have very long ends rising above, and held together by crosspieces. Floors are sometimes pared with irregular slabs of sandstone, and this feature has been noted in rery old ruins. When of adobe the fioor is kept in repair ly occasional applications of very thin alobe mortar, but moccasined feet do not injure it much. A hole is left at one corner or one sido of the chamber for a ehimney, which is a modern athair, having been unknown before the appearance of the Spaniards. The chimney top is stone, adobe, or broken earthen pots placed one above the other. Within there is a hood across the coruer built of sticks plastered with adobe, which begins abont 4 feet above the floor where the hearth is laid. A mat of reeds or a slab of sandstone forms the covering for the hatchway, when necessary, and in coll weather a sheepskin is frequently placed over the top of the chimney when the fire las died out, and
held there ly a large stone. The end of a terrame is often rooted over, forming a sort of pord, where cooking is fretuently carried on, at tireplace being built in one corner. At Zunii, the dome-shaped oven in use is witen built on the rout. 'The nonse walls vary in thickness from 16 to $2: 2$ inches, but some of the ohl walls were much thicker. The roons are generally small, some msed for baking leing no more than 7×10 leet; 12×14 leet would be a fair average. 'The interior height is barely 6 feet, and often less. In going southwarl rooms increase in size and in leeight. - F. S. Dellenbaugh.

PUGET, PIERRE ; seulptor, arelitect, and frainter ; b. U.t. 31, 162.2; il. Dee. 1, 1694.

Puget was hom at Marseilles (France). He was apprentised to at shiphuilder, and wats at first employed to decorate galleys. He cane especially under the intinence of Pietro da Cortona (see Berretini), Jean Bologne (see Bulogne), Algardi (see Algarli), and Bernini (see Bernini). In $16505-1650$ he malle the famons caryatiols of the portal of the Hôtel de Ville at Tonlon. In 1060 he settled in Genoa, where, among other works, he made the colossal statues of S'. Sebastienand S. Ambrose in the church of the Carignan. His practice as an architect was considerable. About $166 t$ he was wecupied with the Arsenal, the IIGlle de lu Ibissommerie, the Chopelle de l'Mospuce de lu Charité, and the Portuil des Clurtreaus at Marseilles, and the Hôtel d' Iigrilles at Aix, and with the decoration of galleys at Touton. Some of these derorations of ships are in the Lourre. He is best known as a sculptor of full statues and grouns.

Lagrange, Pierre I'uget : Gonse, Soulpture Formçaise; Rionx-Maillon, Pirme I'uget, Décorateur.

PUGGING. A. Coirse mortar, or similar material, used to fill the spaces between beans, studs, and similar phaces, as in partitions and floors, intended to act as rleafening.
B. The operation of filling with elay or purtille.

PUGIN, AUGUSTUS ; architect and ardheologist ; 1). 1762 (in France) ; 1]. Dec. 18, 1832.

Pugin went to England during the French Revolution. He was elncated at the Royal Academy and began to exhibit there in 1799. He was employed for over twenty years in the uttice of John Nash (see Nash, J.). For Ackerman the publisher he illustrated Microcosm of Lomblon (1808-1811), Vieus in Islingtom and l'entonville (1813), etc. He pmblisheal Specimens of (rothic Architecture: selected from I'trious Ancient Edifices in England (Lon(lon, 1821, 2 vols. 4to), Extmples of Gothic Architecture (1831,2 vols. 4to), Gothic Oimaments (London, 1831, 1 vol. folio); with John Britton (see Britton, T.), Illustiations of Public Buildings in Lomton (1825-1828, 2 vols. fto): with Le Keux, specimens of the Architectural Antiquities of Formandy (London,

PUGIN

 tomblation for murla that hats been acomplished in the rewal of the（ruthic style in England．

Ferrey，Remollomions uf A．N．13＂olb，！Pugin and

PUGIN，AUGUSTUS NORTHMORE WELBY；architect aml lesigncr＇b．l8I－； （1． 1 だった。

He was taught to draw by his father，Angus－ tus Pugin（see Pugin，A．），and wats，like him，an enthusiastio admirer of medieral ant．At the age of tiftecn he wats empluyed to make designs for furniture amb gollemith＇s work．At the age of twenty he took up the stuly of ardhiterture， and interested limself in stained glass，metal work，embmbinery，and the like．He built many （＇itholie churches and the rathedral in Saint George＇s Fiekls，Lonion．At Liamsgate，Eng－ land，he built much；ant le worked on the houses of Parlianent under Sir（＇hamles Bary （soce Batry，Sir（․）．He published Comtrasts， ＂P＇uralle betwen the Noble Edifices of the Founternth amd Fifteenth Cemtmries aid the I＇resent Ihey（1836，I vol．tto）：The I＇resent N＇ute of Enclesinstionl sorkitectmre in Eng－ hum（1843，1 vol．8ro）：Desigm for Irom and Bross Honth in the vigle of the XI ．and XII．Centerios（ 1836,1 vol．4to）；Itetuils uf Alucient Timbor Honses of the Fitleenth cull Siateenth Centnries（1836，1 rol．tou）； The Trone I＇rinciples of Pointed or Christiun Architerture（ 1841,1 vol．Hto）；Gilosseri！y of Erclesiastical Ornament and C＇ostrme（1848， 1 vol．4to）．

Ferrey，Recollections of A．V．Helloy Patinn； Redgrave，Jictomary uf Artists；Atery Architec－ tural Litrary Cutulogue．

PUG PILE．（See imiter Pile．）
PULL．A fixture to be grasped by the hand，and to receive the fingers in opening or shutting a door，shutter，or Irawer．Generally used in composition，as thor pull．

PULLEY．In arenitectural practiee，the simplest form of wheel with a grooved or hol－ lowed surface；used especially to receive the cord or chain which supports at one end the rounterpoise of a vertically sliding sash，auch is secured at the other end to the sash itself．

PULLEY CASE．（See Casel Frame，under Frame，I．）

PULLEY MORTICE；STILE．（See under Mortice；Stile；also C＇ased Frame，under Frame， I．）

PULPIT．A stand，espectially an enclosed stame，prepared for a speaker，generally limited to such a stand in ar attached to a church．The pulpit is especially the place for the preacher of the sermon，as distinguished from the officiant who reals the Gospel or the Epistle（see Ambo； Lectern；Realing Desk）．

Pulpits in the open air are sometimes built upou the church wall，as in the famous example

PULPIT

of the eathedral of Prato in Tonseany，the bean－ titul lesign of Donatello，and sometimes a separate platform，as was common in England

Pulpit：s．Miniato．near Florente；Inlay of Black and White Mandee：Imesisi Plob－ ABLY OF 1：TH CENTURY．
during the sixteenth and seventeenth centuries． In the interior of a church the pulpit may be

Pulpit：Entrance from Stairway in the Wall，Beaulieu，Hints；$(\cdots, 120$ ．
on one site，as is most common in Roman Catholic churches，or at the end directly oppo－ site the andience，and comected in some way

PULPIT

with the reating desk, as is most common in Protestant churches. In the former ease the pulpit is commonly built upon one of the pillars between the nave and the north aislo, and these are often of extrandinary richness and heantr, sucla as the beantiful marthe ane at s. Crove in Florence, and the richly carved wooden pulpitis in the churohes of Belgitun. When such phlpits are entirely inlcpemlent of the structure,

PUNCHEON

churches and some others, and esperially in the Inited States in recent times, the pulpit is a large platform with a solid parapet in front, combinet with a reading lesk of sonne sort, and is orrmpied by the elergyman thrmghout the service.

PULVINAR: PULVINATE, -ED (It].j.). Roumlal convexly, as a Cushion, or as in Pillow Work.

Pulpit: ('hereh of S. Giovanxi at Plstula; c. 1270. 'The sculphures by Nieculo Pisano or his fupils.

PUMP (1.). A mechanteal appliance for lifting liguids. For ralising water for purpuses of water supply to buillings, many difterent forms of pumps are in use, sueh as ordinary suction, hand lift and force pmus, chain promps, pumps driven by animal power, hot air aml gas pumps, winlmill aml steant pumpe, clectrie ןumps, hydranlic rams, waterwheels, and turbines. Steam and clectric pumps are cither of the rotary or the plunger type. (For electric pump, see Electrie Appliances.) - W. P. (:

PUMP (II.). A large timber set vertically unter the walt or pier of a buiding which is to be liftet or altered in its lower parts. (See Shore; shoring.)

PUMP ROOM.
In England, in connection with a mineral spring, a room in which the waters are lrumk; it is sometimes an open
and stand on columns as at Siena cathelral, in the Pisa baptistery, or s. Lorenzo at Florence, they may be still more magnificent in design and still richer in sculpture. The pulpit at the end of the church, and facing the andience as they are seatel, is often in Great Britain, until recent times, a two-storied structure, the lower story being occupied as reading desk and the upper as the pulpit proper: or it had three stories, the lowernost story being occupied by the elerk, the secoml as a reading desk, and the third as the pulpit pruper. In Congregational
pavilion, and sometimes, as in the famons exauple at Bath, an assembly room of a more or less monumental character. (Compare Kirsaal.)

PUNCHED WORK. Sime as Pomeed Work.

PUNCHEON. In carpentry, a short piece uf timber, especially: -
A. In framing, a stud, queen post, or the like. and which is unusually short for its thickness.
B. A pirete of split timber, as a slab or hewn plank roughly dressed as by the adze, such as is used in the absence of sawed boards.

PLLPIT IN FRAUESKIRCHE, NCREMBERG: 1łth CENtury.

PUNTELLIS

PUNTELLIS, DE. (L'ee I'ontelli, Baccio.) PURFLED. Ornamented with a fine ilecoration like lacework or embrumbery, especially as applied to borders or margins. 'The tem is transferred to any lacelike effect in stone or woodwork, as in tabernames and shrines, treated profisely with miniature pinnacles, finials, buttresses, amd tracery.

PURLIN. In carpentry, a horizontal timber laid across the principal ralters or trusses to support the jack rafters.

PURLIN BRACE and other connpunts. (See the special noums.)

PUSH BUTTON. (See Electriral Appliances.)

Pulpit of Ohk: Fotheringay Chitich, NorthAMPTONSHIRE; A.D. 1410 .
PUT LOG. In scatfolding, for building walls of masonry, one of the horizontal pieces of timber four or five feet long, set at right anglus with the wall, and bearing on it at one end, while the other rests mon the ledges or ledgerboards which form part of the upright temporary framework of the scalfoht or stage; mpon the put logs are laid the floor planks uron which the masons work matil they have tarried the wall ont of reach, when a new line of put lugs is lail at a higher level. (Called also put lock.) - H. V. B.

PUT LOG HOLE. One of a horizontal series of holes left by the masons in a wall to receive the wall ends of put logs. These holes are supposed to be fillet up when the scaffolding is removed; but in many brick bnildings of Italy they remain open, anl their dark checker adrls to the picturesque effect of the plain, square campanili.

PUTTY

PUTTY. A. A plastic composition made of whiting and linsed oil, sumetimes mixed with

Pulpit: External, Adjonning Donkway of Baptistery, Pistola; c. 1350.
a small amount of white lead, worked together until it has a tough pasty consisteney; in this state it is usct hy glaziers in setting panes of glass in the frames of windows, and by painters

PUVIS DE CHAVANNES

in filling or stopping aceidental lobles and eracks in woodwork prelininary to painting it. It has the duality of growing hart by exposure, and of not shanking. A composition of this surt is sometimes nsed in decoration after it has been formend in moulds into momental shapes fit to

Pyramids uf Gizeh: Plan uf the Mudelin Cundition of the bite.
be glued to the surface of woolen panels or friezes. Suel decorations are ealled putty ornament.
B. A mixture of gypisum and lime, used for the finishing roat of fine plastering. Usuatly called lime putty or plaster putty.

PUVIS DE CHAVANNES, PIERRE;
painter and decorator; b. Dec. 14, 1824; d. Oct. $\because t, 1898$.

The greater part of his education as painter Wats received from Hemi Scheffer, a brother of Ary Schefter. He studied for hrief periods with Delaeroix and Thomas Couture. His life was oceupied with a series of mural paintings, the most important of which are scenes from the life of S. Genevieve at the Pantheon of Paris, the derorations of the museum at Lyons, of the museum of Amiens, of the Surbome (Paris), and of the Pulalic Library, Boston.

Gaul. Previs de Chavannes; Vachon. Putis de

PYRAMID
(Upper figure.) 'The three near Gizeh, seen from the southwest. The third jyramid, that of Menkaura, is in front next the seennd pyramid, that of Schefren, and the (ireat l'yramil, that of Cheops or Chmfn, is the most distant and seems the lowest.
(Lower figure.) That which marks the tomb of

Caius Cestius outside the walls of Rome and close to the Porta Ostiensis, or gate which leads to Ostia. The casing is of white marble; the mass of the building of solis rubble masonry in which is reserved a lmrial chamber once richly decorated. The height is given as 118 feet.

PYLON

PYLON. In ancient Fgyptian arehitecture. the portal of a temple. Characteristically, it was composed of two lofty wall masses hith in the usial manner of the Egyptians, with hattming wall surtaces profusely covered with commersumk bas-reliets amb hieruglyphics, the dommay heing a lower structure between these two masses. (See Propylon.)

PYRAMID. Primarily, an Egyptian tomb of the well-known shape, fint-square at the hase anl tapering upward nearly to a point : the tem being Greek and signitying pointed like it fane of tire. In modem times any oljecet of the sume: shape. A very small pyamisl, esperitly when terminating a structure, is ralled pramintion (see that term and also (Obelisk).

The pramils of Eqyit are, in the first plare, the tombs of kings. The use of this type has been alleged to cease with the 6th or $\overline{\text { oth }}$ dynasty (3100 or 3000 E.c.) ; but it exists if a much later thite and probably this form of royal tomb remained common until the complete establishment, for all classes, of the grotto tomb during the Midule Empire. Even at a still later time the same form was used on a small sale for private persons.

The royal pramids are numerons; hut nome have been made the subject of architectural study exeept the larger, which are also the more ancient buiblings. That of Iledun (probahly 4000 B.e.) seems to have berm buitt ujon and aromel a mastaba; hut it was shathed with masonry and brought to a pyranidal form. The pyramids at Gizeh are nine in momber, lut the six small ones are so much less important than the three large ones that they are commonly disregarded. The great pyramids of Cizeh have heen supposed to have gainest their great size from continmal enlarging and reasing during a long reign; but this is improbable. At the same time it is not clear how a pyramil, begun on a great scale during the author's life, comlil have been finished in ease of his early leath. Suleed, the great pyramid of Khufin (Cheops) ean hadly have bees laid out at first on a smaller scale than as completed ; for the inclined passages (see below) would nut halve reached a proper place of opening to the onter air had the building been much smaller. Noreover, the care evidently lestowed unon the angle with the horizon of the sloping exterior points to a carefully plamed result. This slope is very nearly 14 vertical to 11 borizontal, and when the limestone easing was in place this slope must have been very exactly maintainel throughout the exterior surface. In the north face, amt about 50 feet rertieally above the site lerd, is the only known entrance. This was probably concealed altugether by the easing. The passage is less than t feet high or wide, and gross fown at an angle with the horizon of $20^{\circ}+1^{\prime}$ for about 300 feet, to an unfinished chamber
cut in the rock, but at ahout 50 feet from the entrance another passige goes off from it and ascemels at nearly the same angle. From this aspotheng passage al horizontal passage gues uff to another numsed ehamber, white the upwad sloping passige contimus to the tomb chambrer above. That upward sloping passage increases suhlenly to nearly 28 leet in height, and it maintains that height motil at the very entrance to the symare tomb chamber, which itself is not su high. It is known, hewerer, that alowe the square room are several chambers, dividend trom one another vertically ly hage stones, the whole series being intemded apporently as a diseharge for the surerinembent weight. 'This chamber contains a sarophagus whidh was put into place before the rooms were ronted. The passages and the three rooms to which they lean are the whly opu spaces known to exint in the mass of the pramil, exeept two air thes which go of from the tomb ehamber very nearly perpendionlar to the sloping sides of the structure. So far as is known the rest of the huiding is a solird pile of limestone lilocks ronghly suared.

The pyramids are all mainly rairus, i.e. they are solid masses of stme, or of bripk masonry; hut each has a chamber or sevelal chambers with long passages lealing to them, which passages were always rarefully eumeatelt; while false passages, intended to deceive phonderers, are fomm in the larger momments. The sarcophagrls, or mummy ease, was placed in the tumb chamber before this was built, and the superstructure carried on. The pryamid of lashur has a broken slope, that is it ronsists of a smaller true pyramid raised upon the frustum of a much larger one with steeper sides. That of Sakkara is huilt up in six huge steps.

The latest of the pyramids which are known are far in the sonth, at Napata where they are of the seventh century b.c., ant those at Meroe, which are thought to be for the most part of the time of the Ptolemies (306 to 30 r.c.). They tue comparatively high and shender, and they are also small, the largest of them measuring about 65 feet horizontally on each sile. The pyramid at Illahun (see below) is built mpon a mass of natural rock which hat been previously freed from the surrounding soil of a hill, and stone walls were built upon the native rock apparently to support and surround the brick pyranid which was faced with limestone. The chambers of this pyramil are exeavaterl in the native rock and are reached by a well outsite of the building and on the south instead of the north side.

The great prramids at Gizeh are those of the Kings Khufn (Cheops or Chufin), Schefren or Khafra, and Menkara (3969-378t b.c.Flinders J'etrie). The latest very large one known to n is is much less perfectly preservel ; it is near the Fayum, at the place called Illahum, and is clescribed above.

PYRAMIDION

A still later one, huilt hy Amenemhat III., at Hawara in the Fayum, wat of lyick, cased with limestone: it enclosed a tumb, chamber hollowed in a single block of 'ghartzite and ronfed loy three horks of the same material. This brings the history of the larger pyramids to the $1: 2$ th dynasty and atont $\because 600$ b.c., and with this the now ascertained history of the more important royal tombs ceases.

The pyramid form was used for tombal structures elsewhere than in Egyit, such as the tomb of Cains C'estins luilt into the eity wall of Rome. In motern times it has been indicated in tombs huilt against the walls of churehes (but see Obelisk, B.). - R. S.

PYRAMIDION. A small pyramid, especially when completing a larger form, as the apex of an obelisk; it was often sheathed with metal.

PYTHIUS ; architect and seulptor.
Vitruvius meutions Pythins as architect of the temple of Pallats Athena at Priene in Ionia, built abont 329 m.c., and as one of the architects and sculptors employed on the Mansoleum at Halicarnassus in C'aria, begun 348 b.c. He made the four-horse chariot with attemant figures whiel crowned the Mausoleum.

Vitruvius, ed. Marini ; Brunn. Geschichte der Griechischen Fïhstler.

QUAD. In the University of Oxford, a eollege court ; one of the large open spaces upon which front the college buildings, which enclose it on all four sides with usually one or two gateways of entrance. The term is extended to the ferr eourts which are not completely enclosed. The term hardly extends to C'ambridge, in which university the word Court is used.

Tom Quad. A great court of Christ Church College (which see under College).

QUADRANGLE. A rectangular or nearly rectangular court, usually large and surrounded by buildings of some importance, as in a college, a roval palace, or governmental building (see the abbreviated form, Quad).

QUADREL. A square tile, or the like; a quarrel.

QUadripartite. Made up of four; fourfold. Qualripartite vaulting is the commonest form of groined and also of ribbed vaulting.

QUantities. (See Bill of Quantities.)
QUARREL. A square or lozenge-shaped piece of material. Especially a piece of glass of such a shape, set liagonally, as in a latticed sash. By extension the opening left or prepared for such a siquare, as in a window.

QUARREL PANE. (See Quarrel.)
QUARRY (I.). (See Stone.)
QUARRY (II.). Same as Quarrel.

QUATREMERE DE QUINCY

QUARRY BED. (See under Bed ; see also Masoury.)

QUARRY-faced. Having a rough face as if that obtained by splitting from the quarry; salil of stone.

QUARTER. In British usage, same as stur.

QUARTER CUT. Same as Quarter-sawed.
QUARTERED. (See Quarter-sawed.)
QUARTER HOLLOW. A concave moulling or cavetto, of which the transverse section is an arc of. ahout ninety degrees ; the converse of a quarter roum or orolo.

QUARTER Partition. Same as Stud Partition (which see, under Partition ; see also Quarter).

QUARTER ROUND. A convex moulding or orolo, of which the transterse section is a qualrant, on appruates a qualrant; the conrerse of a cuarter hollow or earet to.

QUARTERS. Places for lodging taken colleetively, or any one such place; especially :-
A. One of solliers of any rank ; more often usel with regard to commissioned officers, as in such phrases as, "You will find the captain in his quarters."
B. The eabins of the negroes on a Sonthern plantation during the time of slavery, and, to a certain extent, since the emancipation of the slaves, the term heing applied rather to the whole colony or village of cabins than to any honse or mumber of honses taken separately. (See C'alin.)

QUARTER-SAWED. In lumber working, sawed into 'ruarters longitudinally:- said of a \log so cut in preparation for the subsequent making of boarls which are cut at 45° with the first cuts, and hence more or less parallel with the medullary rays. By extension, boards eut in sucls a manner or by any system of approximately radial cuts. Boards so produced have a rich grain, esprecially in oak, when it is called the silver grain, and are less sulject to shrinkage and warpiug.

QUARTZ. Crystalline siliea. A hard, brittle mineral breaking with a glasslike fracture, and usually transparent to translucent, and colourless, or of a white, pink, and ametly'stine hue. - G. P. M.

Quatrefoil. (See Foil.)
QUATREMERE DE QUINCY, ANTOINE CHRYSOSTOME: ardheologist and writer on art : b. 175.) (at Paris) : d. 1850.

In 1785 he won the prize of the Acadimie des Inseriptions et Belles-lettres (Paris) by an essay on the influence of Egyptian upon Greek art. In 1:91 he was elected to the Assemblée legislative. In 1824 he was made dramatic censor and professor of arehrology at the Cabinet des Antiqnites of the Bibliothèque Nationale (Paris). He published many works on arehæology and art. Among the most im-

QUATTRO CENTO

QUOIN
portant are Cumbru et ses Ontruges, atco. (l'aris, 1834, 8wo) : De l'Archilecturp E!!!ytimene consillerée dhens sum origine. . . et compurtép sums les mèmes rumpurts it lamblecture (rremque (Daris, 1803. Ito) ; Nictommaire historique "A Ardileflure, ate, at first forming part of the Euryoloperdie Mithodique, and published separately in laise (3 rols. Ito) ; Mistuire de la rie et des ourrogess des plase celiblues ardio. tertes, wn l'strt te le scmlpture antimue comsidésésens un mouretel point de renp (laris, 1815, fillo); Restitutiom des dem. firm itoms du temple de Mineree it Imenes (laris, 18.05, foho).

Larousse, Dictionmire; Vaperean, Dictionutire des Liltertatures; British Dtusemm, Catulogue of I'rintm Brokis.

QUATTRO CENTO. In Italian, the fifteenth century, or, more striotly, the years whirl have fonrteen in their muber, viz. from 1400 to 1499. (Sce Cinctue ('ento.)

QUAY. A. The marginal space aromed or along the water front of a dock on still harhom, a river lanling, a canal, or the like, and gemerally supported hy retaining walls, pavel, lighted, dratined, amd nsed for the lowding, matoaling, storage, and shipment of merchambise. The quay of an inportant port genorally retaires a large equipnent of marhines for unloathing and handling eargo, storehonses fir its care, and generally a system of railway tracks for the prompt reshipment of intand freights.

In New York the fuays are largely yeplaced by piers rovered with sheds, for the receipt and temporary storage of gools, warehomes for lowal freights being built off the immediate water front.

Quay walls, which must resist the pressure of the earth behiml them, ant of the weight of structures and gonds upon them, vary with the conlitions of each case. (See Fmmmation: Retaming W'all.)
I). A permanent landing place or lamling stage of any sort, as at the side of the tracks at a railway station. - W. IV. Ilutton.

QUEEN. (See Slato.)

QUEEN ANNE ARCHITECTURE. The architecture existing in England lhoring the short reign of Ame, 1702 to 1714 . The more important structures of the reign were generally the completion of resigns fixed in all of their parts before her aceession, and but little that was monmmental was hegun in her time. Wren's work upon Greenwich Hospital amd Hampton Court was still going on, and he built many churches in Lomlon anul elsewhere, of which S. Bride's, Fleet Street, is a guol example. The most claborate single buidding begun in Anue's reign was Blenkeim, the palace by Sir John Vambugh, built by the mation for the lluke of Marlborough. The buillings which are especially assuciated with the style
the the minor country houses and many honses in the suburls of London, built frequently of rad brick, and characterized liy seupture in relief, monkled or carved in the same material. A certain pioturesurness of treatment, like a revival of Elizabetlan, or aren of melieval styles, in mass, in sky line, and in such details as chimneys, gables, and chrmer wintows, is noticeable in these; and, althongh all is on the same morlerate solle, and nothing is very massive or imposing, the style has comsiderathe attraction when applied to dwalling houses. It was this character of the middings of Anne's reign which catnsed their areeptance by some arrlitects of the gears fom 186.5 to 1885 , in England, as types for modern designing, and conntry houses of this character were built in considerable mumbers. A feeble imitation of these modern buidings was also attempted in the United States, hut nsmally on a very small seale, ame with such inapropmiate materials as those used in the ordinary frame construetions.
— J. S.
QUEEN CLOSER. (Sep Closer.)
QUERCIA, GIACOMO DELLA. (See
Giaumus In bla Muercia.)
QUESEVEAU. (Sre Cuysevox.)
QUESNEL, FRANCTOIS ; arrlitect and painter.

With Clande de Chastillon be marle the plans of the hospital of S. Lomis (laris), which was built in 1607. Quesnel was the authur of the first geometrical plan of the city of Paris.

Banchal, Pictionnctire.

QUESNOY. (See Dmonesnoy.)

QUINCUNX. An arragement of five points, four of them being at the corners of a stuare, and the fiftl in the centre. A pumemxial arraugement is a series of frimeluses forming collectively equally spacel points at the intersections of crossing liagonal lines, used especially in tree planting amd gavlening.

QUINTEFOIL. Same as Cinquefoil. (See Fuil.)

QUIRK. A. A piece taken out or set aside for some sperific purpuse, especially from one corner of a room or plat of ground. In some old English honses, aud in the Hutel de C'lmy, an enclosed vestibnle propecting into the room, allowing of passage lutween two other rooms by motting nif a corner.
B. Ln English provincial use, a cuarrel or lozenge of glass.
C. A groove in a group of monldings, as on either side of a mountersink or thush bead in matched and beaded sheathing, or in a beaden angle or arris. (See also Quirk Moulding, un(ler Mouling.)

QUOIN. I. One stone helping to form the corner of a wall of masmory, especially when aecentuated by a difference in the surface treat-

RABBET

ment of the stomes foming the corner from that of the rest of the wall masis ; one of the stones forming such a corner.
bi. A werge to support and steady a stone; a pinner.

Rustic Quoin. A quoin or corner treated with sumk joints, the fice of the puans being generatly ronghened, and raised abure the gen-

Quols of fit Stone furming the Angle uf a Wial of smaller Materials.
eral surfare of the masonry su as to from a contrast with it and give an alpearance of more or less rugged strength to the angles, comers, or reveals su treater].

R

RABBET. A continucus small recess, generally understood as having a right angle inchudeal between its sides, especially one whose sides enclose a relatively restricted area ; one formed by two planes very narrow as compared with their length, such as the small recess on a door frame, into which the edge of a door is made to fit, the recess of a brick jamb to reccive a window frame and the like.

RABE, MARTIN FRIEDRICH ; architert; b. 1775 ; 4. 1856 (at Berlin).

From 1801 to I804 he was employed on the Schloss at Weimar (Germany). In 1810 he was anpointed professor at the Acalcmy of Architecture in Berlin, and from 1829 to 1842 was architect of the Schloss in Berlin.

Bormann, INenkmäter ron Bfalin.
RACQUET COURT. A wort or area in which the game of racquet or racquets is played ; also written raquet and racket. (Compare Tenmis Court, Fives Court.)

RAD AND DAB. In England, a coarse substitute for brick nogging letween the studs or quarters of partitions; formed of clay and chopped straw filled in upon a rough lathing. Also tallerl rab and tab.

RADIATING PRINCIPLE. In plaming, a system used especially in prisons, and, some-

RAFTER

times, to a certain extent in hospitals, in which, from a central guard room or alministration luilding, gallerits radiate in fun or more directions. (See Panopticon; Prison.)

RADULPHE (RAOUL) ; abbots and architerts.

The name of several abhots of the monastery of Mont Saint-Michel (France). Raululphe (I.) huilt four pillars and the hase of the tower, between 1048 ami 1060. Radulphe (II.) built three bays of the nave and the proreh, between 1160 and 118 t. Hadulphe (III.) (1. March 18, 1218), contimmed the Merteille abont 1212.

Héricher-Bonet, Vout Saint-1/ichw.
RAFFAELLO DA MONTELUPO ; sculptor : b. 150.5 ; 1. 1555.

A fragment of Montelupos Autobiography is published hy (taye (op. bit., Vol. Ill., 5el), aml translated ly Perkins (Tuscan Senlptors, Vol. II., p. 7\%). Montelnio is hest kmom as one of the chief assistants of Michelangeln Bumarroti (see Buonarroti). He marle, unler his direction, the statne of S . Damiano in the new sacristy of S . Lorenzu in Florence (for the statue of S. Cosmo, see (xiovami Montorsoli). Feb. 27, 1542, he contracted to finish three statues for the tomb of Julius H., by Michelangelo. He made several bas-reliefs for the Casa Sinta at Loreto. Monteln! 10 assisted Bandinelli in the rompletion of the tomb of Leo A., at the chuch of S. Daria Sopra Minerra in Rume, and designed the momument of Baldassare Tumin at the cathedral of Pescia. He assisted in defending the Castello di S. Angelo thring the slege of Pone in 1527 . He died at Orvicto while assisting Sammicheli (sce Sammicheli, M.), and Simone and Francesco Mosea in the construction of the altar of the Magi in the cathedral.

Mïntz, Remaissence; Vasari. Milanesi ed.; Perkins, Tuswon Nrulptors; Gaye, Carteggio ; Fumi. Il Inome di Orcieto.

RAFTER. A roof beam; one of those which are set sloping, the lower enl bearing on the wall plate, the upper end on the ridge piece or its equivalent.

Angle Rafter. In Englisli usage, strictly the principal rafter under the hip ratter ; it carries the purlins, on which rest the jack rafters and hips.

More commonly, in the United States, any rafter at the angle of a roof, whether principal or secomilary.

Auxiliary Rafter. In a truss, a rafter used to stiffen the principal rafter as by doubling it, or, as in a queen post truss, to go from the tie heam to the queen post, thus doubling the sloping chord of the triss in that place.

Binding Rafter. A timber to support rafters at a point between the plate and the ridge. It may be a purin.

RAFTER PLATE

Common Rafter. A rafter to which the root sheathing is nailed, as distinguished from the main ratters or truss rafters, sull from hip, valley, amil other speetial rafters. In traseed roos they are ordinarily carried by the purlins, and spaced 16,20 , or $2 \cdot 1$ inehes on centres: their soantling varies greatly acoording to the character of the roof.

Compass Rafter. In an ornamental roof truss, or the framing of a gable, a rafter cont to a eurre, either at both elges (imer and outer) or on the inside only.

Crook Rafter. Same ans Kince liafter.
Cushion Rafter. Same as Auxiliary lafter.
Jack Rafter. One raching from the angle rafter to the plate, aml therefore short.

Knee Rafter. One taking the place of a Knee, i.e. of a brace fitted into the angle between a principal rafter and the tie beam or collar heam.

Kneeling Rafter. Same as Kinee luafter.
Principal Rafter. The diagonal member of a roof triss or principal.

RAFTER PLATE. (Sce Plate.)
RAG WORK. liough masomry built with umbersed flags or flat stones.

RAIL. In earpentry, ay horizontal member mortise $/$ or otherwise secured between or upon two posts, forming a frame or panel, as, first, in fencing, whether the closure is made by sereral parallel rails or by only two to give nailing to palings; seconl, as a coping to a lalustrate, when it is called a hand rail ; third, in panelling, doors, and the like, being the horizontal member of the frame in which the pancls are set, the vertical members being the stiles. The rails of massive stone, elaborately sculptured, which form the ceremonial enclosures of ancient Bulhhist topes, temples, etc., in Iudia, are among the most characteristic and important featmres of Budlhist arditecture.

Clamp Rail. In carpenter work, a piece receiving the euds of a momber of hoards in a piece of ceiling, a platform, trapuloor, or the like. The clamp usually has a groove run along the edge into which the ends of the hoards fit with tongues or tenons. In the United States, called more often Cleat or Batten.

Frieze Rail. In a framed door or the like, that next below a frieze panel.

Hanging Rail. In a dour, window sash, or slutter, hung with hinges at the top or bottom, that rail to which the hinges are attached. (See Hanging Stile, muler Stile.)

Lock Rail. In a framel door, that rail which comes nearest to the place for the lock, and, therefore, generally about three feet from the ground.

Meeting Rail. (See muler M.)

RAILING. Primarily, any structure or member composed mainly of rails : in common use, a parapet, enclosure or the like mate with

RAINALDI

slemer bars and of no great size. Sucll a parapet, whether consisting of halusters (see lialuster) or of a trellis of wire or laths, or of irm bars equal or nearly so in thickness, or parallel or nearly so, is called a railing, hat the terns toes not commonly include balnstrades or the like of stome.

RAILWAY BUILDING. Auy structure especially prepared for the business of a railroad or railway : espucially such a building as is uf pecoliar fashion and construction, as fit for that service only, or chictly: S'ce Baggage Room; Dépot: Enginc House: Rummlllonse; Station; W゙aiting Room.) Freight sheds and car sheds are not perouliar in design.

In adilition to these the central oftices of railroals require a great number of rooms, which are eontained in very large and costly builtings; hut these , liffer in no important respect from wther large nttice buildings. There are, in some cities, hotels cumbined with terminal stations, hut these, also, are merely ordinary hotels huilt between the car sheds and the street.

RAIMOND (RAIMONDUS) : architect.
Fiamond, motire dowere of Carcassmne (France), plamerl the cathetral of Lugo (Sjain), and commencel its construction in 1169.

Bauchal, Dictionncire.

RAINALDI, CARLO: architect; b. I61]; d. 1691.

Carlo was a son of Girolamo Rainalili (see Rainaldi, G). He was the leading architect of the great ehurch of S. Agnese, in the Piazza Narona, Rome. One of his best buildings, and a tine example of the barorue style, is the church of S. Haria, in C'ampitelli (166.). Het also built the fateade of the church of S . Andrea delle Valle (see Pietro Paolo Olivieri), and the twin churches of S. Maria de' Miratoli and S. Maria di Monte Santo, in the Piazza del Popolo (about 1666^{2}). All the works mentioned are in Rome.

Gurditt. Geseluchte eles Burochstiles in Itulien; Ebe. Spüt-Rimatissuce; Strack, Butudenkmäler Roms.

RAINALDI, GIROLAMO ; arehitect; b. 1570; d. 1655.

A pupil of Domenico Fontana (see Fontana, D). He was much employed as engineer, especially in laying out the harbour of Fano (Italy). About 1623 he built the ehureh of S . Luca at Bulogna. Ramaldi was one of the many architects called upon to make designs for the faccade of the chmrch of S. Petronio (Bologna). He was also employed by the Farnese and Este families, at Parma, Modena, and Piacenza. He retorned to Fome in 1650, and built the Palazzo Pamfili, in the Piazza Navona.

Gurlitt, Geschichte des Barockstiles in Italien; Ebe, s'pät-Renaissance.

RAINALDUS
RAINALDUS ; arelitect.
One of the architects of the eathedral of Pisa: the facule finished ahout 1100 .

RAINERIUS (RANUCIUS) : architect.
He mante the central window of S . Silvestro in Capite, Rome. Works of his sons Nicolans iund Petms are dated 1143 and 1160.

RAISER. Same as Riser.
RAISING. A. In the technical sense, the process of lifting a building, or part of a building, by menns of screws, the hydraulic press, or other mechanical appliances. The subject is treated at length under shoring.

RAMP

RAM. A. A large weight for driving piles, and the like.
B. A machine for raising water. (See Hy draulic Ram, below.)

Hydraulic Ram. A mechanical derice, operating automatically, for raising it suall quantity of water by utilizing the force obtained by the fall of a large body of water, the height to which the water is raised being often many times greater than the fall. The water lifted may be either from the same source which furnishes the power operating the machine, or from a different source, and the ram is called either single or double-acting. The

Rampart carrying an INNer ann an otter Crfinelated Parapet, allowing of Twu LiNes of BuWMes, etc. Wales uf Punpeif, Caspasia. Italy; Probably c. du e.c.
B. Same as Rearing.

RAISING PIECE. In carpentry, a piece of timber like a wall plate. (See Bolster.)

RAKE. Inclination or slope, as of a roof or of a Hight of steps in a staircase. (See Pitch.)

RAKE: RAKE OUT (\%. t.). In masomry work to remore, as by scraping, the mortar joints at the face of the work to a slight depth, in order that they may be finished by pointing. In masonry intended to receive very heary pressure, such raking is lone during, or immediately after, the completion of the wall or pier, in order to relieve the outer edges of the stones or bricks from the subsequent strains which might otherwise canse the material to spall at the face. (See Point.)
raising power is given by the elastic reaction of a confinet volume of air, which is compressed by the falling water.

RAMESSEUM. A group of luildings in Egypt, anong the ruins of Thebes believed to serve as a memorial to Pamses (Rameses) 1I., and inchuling an cnormons gateway with pylons, two great courts surrounded by colonnades, and one large hypostyle hall, with many smaller though still important rooms.

RAMP. An inclined plane, as of a floor rising from a lower to a higher level, taking the place of steps; specifically, a concave connecting sweep in a rertical plane, as on a coping or hand rail, where it turns from a sloping to a horizontal direction, or rises from one level to a higher level.

RAMPART

RAMPART. A wall of defence. In ancient and moliaval tortitieation, a wall of masonry, thick and solid enough to resist the ram or the piek for a long time, amd to affort a broad platform on the top for the cletemers: and high enough to give these a great alvantage over the assailants; (sce liattlement: Hoard; Machicolation; Parapet). In modern fortification, a bank of earth, showing grasserl slopes to the assailant, but often fared with masonry below. The top of the rampart is always faced with a parapet, which, in this sense, was crenelated before the use of gunpowder, then broken by embrasures, and finally left with a uniform horizontal top.

RANCH; RANCHE (from the Spanish Runcho). In the western United States, a tract of grazing land, including also the house upon it ; also an ordinary farm not devoted to stock raising. The forms rancho and rancheria have also been usel. - F. S. D.

RANCHERIA. A collection of herdsmen's luts or an hdian village of a temporary nature in the sonthwestern United States and Spanish America: not applied to stone or ablove structures of the Pueblo type, but to clusters of frailer shetters like those of the Gilia Pimas. The term "rancho" had a similar application. (See Ranch.) - F. S. D.

RANCHO. (See Raneh; Rancheria.)
RANCONVAL or RANGUEVAUX, JEHAN ; architect.

A son or pupil of Henri Ranconval, mattre des autrres of the city of Metz (Lothringen, Germany). In] 468 be was architect of the cathedral, and about 1473 succeeded his father as mâtre des ounres of the city of DLetz. In 1477 he designed the tower of Lai Mnette at the eathedral. In $1+81$ he commenced the church of S . Symphorien at Metz.

Bauchal, Dictionnaire.
RANDLE BAR. An iron har built into the jamb of an open fireplace, and projecting so that pots may be suspendel from it for cooking over the fire. (See Chimney Hook, untler Hook.)

RANDOM COURSED WORK. Masonry laid in regular courses, which difter one from the other in height.

RANDOM RANGE WORK. (See under Range.)

RANDOM TOOLED. Wronght to a surface with irregular tonling; said of stone work.

RANDOM WORK. Same as Random Range Work.

RANGE (I.). In masonry, a row or course, as of stone. This is an attributive term, used alone or in composition, to express the amount of regularity of the face work.

Random Range Work. Masonry of rectangular stones not lain? in regular courses, but broken up by the use of stones of different

RAYMOND DU TEMPLE

heights and widths fitted clusely; otherwise called broken ashlar or random work.

Broken Range Work. Masomry of stones laid in courses, but mot continuonsly, the eourses being of different heiglits, and any one conrse being broken at intervals into two or so that there comses correspoml with two, or the like.

RANGE (1I.). An apparatus ly which cooking is done, having une or more compartments in which fire is maintained, one or more ovens and arrangements for the arommodation of the varions cooking ntensils, pots, sancepans, ete. In their simpler forms, ranges are latadly to be distinguished trom cooking stoves, except as being more permanently installed.

RANUCIUS. (See lianerius.)
RAOUL. (See lialulphe.)
raphael. (See Santi, Raffaello.)
RATH. A primitive fort, of whieh many remains exist in Ielind, ennsisting of a rude rampart of earth or stone, or both, enrlusing, generally, one or more huts.

RATHHAUS. In Cermany, a buikling for government purposes, expecially of a municipality; a term corresponding nearly with Hutel de Ville or Mairie, City Ilall, I Palazzo Communale (sce those terms). Since about 1880 generally Rathaus.

RATHSHAUS. A building belonging to the municipality of a eity or town, to whitever purpose it may be put. Since about 1880 Ratshaus.

RATHSKELLER. Primarily, a cellar of the Rathhaus or Rathshaus: hence, as the term was taken as a name for places of ponlar resort, a beer honse; a German restaurant or Kneipe when ocrupying a basement.

RAUCH, CHRISTIAN DANIEL; senlptor; b. Jan. 2,1777 ; 1. Dee. 5, 1857.

Ranch was a pmpil of J. G. Schatow (see Schadow, J. G.), in Berlin, anu of Ruhl, at Cassel. In 1811 he made the rechining statue of the Queen Lonise for her monmment at Charlottenhurg. He marle, in 1815, statnes of the Generals Scharnhorst an\} Bithow, in Berlin, and in $18 \div 6$ statues of Blueher for Breslat and Berlin. He designed also the Diurer momument at Nuremberg, about 1829. About 1833 Rauch made six statues of "Victories" for the Walhalla, near Ratisbon (see Klenze). His most important work is the monument to Frederick the Great in Berlin.

Eggers, Christion Daniel Rauch; Cheney, Life of Christiun liauch.

RAYMOND DU TEMPLE; architect; l. about 1404 .

He seems to have heen employed on the ohd Lourre (Paris) as early as 1.364 . At that late he built a stairway on the sonth side of the north wing of that buiding. He marle extensive additions to the palace in the reign of Charles V., which ineluded the Tour de lu

RAYMOND

Litrairie, where the king's mannscripts were storerl. Within the palace he built the Sulles de roi et de le reine. In $13 \overline{0} 0$ he appears as maitre maçon of the cathedral of Paris, probably succecding Jehan le Bouteillier (see Bouteillier) ; in 1370-1385 he buitt the chapel of the college de Beaurais. He was emphoyed, in 1387, on the royal palace on the lle de la Cité (Paris). In 1401 he mate a visit of inspection to the catherlral of Troyes (France). Du Temple is undonbtefly the author of the château and chapel of Vincennes, near Paris, which was built for Charles I . about 1379.

Berty, Topographie; Christine le Pisan, Faits et bonnes Vfeurs du s'age roi Charles; Bauchal, Dictionnaive.

RAYMOND, JEAN ARMAND; architect ; b. April 9, $17 t^{2}$ (at Tonlouse) ; 1l. Jan. 29, 1811.

Raymond was a pupil of Jacrues François Blondel (see Blondel, J. F.) and Leroy, and in 1766 won the Grand Prix de Rome in architecture. In 1787-1788 he was appointed architect of the province of Languedoc. He went to Paris after the Revolution, and was associated with Chalgrin (see Chalgrin) in olesigning the Arc de Triomphe de l'Etuile. His design was accepted at first, but was afterward replaced by that of Chalgrin. Raymond retired from the association with Chalgrin Oct. 31, 1808. He was employed on the Lonvre, the Bibliuthèque Natimale, amil the Opéra.

Thierry, Are de Triompike de l'Étoile; Lance, Dictionnaire.

RAYONNANT. Radiating; referring, in decoration, to any system dependent upon the radiation of lines from a centre. The term is specifically applied to a eertain character of tracery prevalent in French (rothic from the eml of the thirteenth century to the end of the fourteenth.

READING DESK. In ecclesiology, that which is used to support in a proper position the hook of the Gospels or of the Epistles, or, in some forms of worship, the lectionary, the antiphonary, anl other service books. (See Ambn: Lectern.)

READING PEW. In Protestant churches, a pew appropriated to the realing of a part of the service; used insteat of a lectern. This term is sometimes extendel to the clerk's desk below the pulpit. (See Pulpit.)

READING ROOM. A ruom in a clul), library, hotel, or public institution, especially adapted and appropriated to reading. In a library, often wholly separate from the rooms usell for the storage of books.

READING STALL. A clancel pew for the use of the priest, situated letween the choir stalls and the chancel rail, and from which the lessons and notices are real.

REFECTORY

REARING. The process, now almost ohsolete, of erecting a buikling by raising the separate frames of the walls, etc., each of which has been previonsly framen, wholly or in part, in a horizontal position. Fomerly, an occasion of ceremony, Hence, a frame biniding was rommonly known as reetrel, to listinguish it from those of masomry. In the United States, the operation and the oreasion is known as Raising.

REBATE. Same as Rabbet.
RECEPTION ROOM. An apartment especially adaptel for the formal reception of gnests. In a small establishment, the partour or draw-ing-room serves this purpose; lut in a club, large residence, or the like, these apartments would be distinct, and, frequently, on another flonr.

RECITAL HALL. A hall intended for the giving of concerts with a few perforners, soloists, quartettes, and the like. (See Concert Hall: Music Hah.)

RECREATION PIER. A waterside pier or wharf, part of which is set apart for open air recreation and entertainment. In the castern United States such piers have usually two stories and a rouf, the lower story, level with the street, being used for wharfage, and the upper part open to the public.

RECTORY. In Englant, the residence of a rector. (See llanse; Parsonage.)

RED ANTIQUE PORPHYRY. Same as Rosso Anticu.

RED BRICK. (See umler Brick.)
REDUCT. A small piece, as a quirk, taken ont of a larger piece for the sake of conformity, symmetry, or lalance, as in a room, a corner replaced by a diagonal wall to correspond with a conner fireplace or window.

REED. 1. One of the members in reerling. 13. Same as Cable, 1 ?.

REEDING. A seric's of small, similar, convex or bouleul moultings used to ilecorate a plane surface, as a panel or frieze, or a curved surface, as a column ; a surface ornamentation the reverse of fluting ; cabling. The lower portion of the flutes in a series is frequently orenpied by reeding set in the concovities. (See Cable, B.)

REEL AND BEAD. A heat mouhling broken into short lengths, so that one clongated section or piece of the bealing, from two to five diameters long, alternates with two or three spherieal, nearly spherical, or angular sections. 'lhese pieces are sometimes represented as strung together by a much more slemter rounded moulding.

REEPER. In the East, a piece split lengthwise trom the fibrous trunk of a pahn tree, used for haikinge purposes. By extension, a wall or screen marle with a succession of such sections.

REFECTORY. An eating room: sperifically, a hall in a comvent, monastery, or public

REFERENCE LINE

secular institution where the meals are eaten, or one building of a group of buildings appropriated to this use.

REFERENCE LINE. On a drawing, plan, or the like, a line used to indicate the direction and limitation of any measurement or dimension which may lie noted in figures.

REFERENCE POINT. In drawing, a point showing the limit of a measmement or dimension, as inelicated by a crowfoot at the end of a lieference Line.

REFINEMENTS IN DESIGN. Intentional deviations from mechanical exactness in architectural design. ${ }^{1}$ These refinements do not relate to such general disposition of the masses nor to such shaping of the details as come muler the head of architectural composition : they are elaborate clevices, temding to give sulatile artistic variety and interest to the arditecture, ly delicate curvatures of apparently straight lines, by slight differences in sizes of correspouling parts otherwise presumably equal, and by a great mumber of variations and moilulations too slight to attract attention as irregularities and yet sufficient to produce an agreeable effect.

The engineer's point of view, as it may be called, is that in a building straight lines should be mathematically straight and vertical and horizontal surfaces and lines actually vertical and horizontal: also that apparently parallel surfaces and lines should be actually parallel: in a worl, it assumes mechanical or mathematical accuracy of construction is a standard of excellence. The artist, however, is intluenced in his ideals hy what he sees in nature. His is the primordial or natural irleal and is fumlamentally dependent upon tree-hand work. The rery irregularitics insejaralle from the most perfect free-land work hecome agreable to the trained artistic sense, and just so far is the dull monotony of machine work repellent. The painter will prefer for a subject an old house with picturesque variations and delicate molulations given by time to a new villa freshly painted, which is, of course, lacking in such modulations.

It is interesting to note in Greek ornament how ravely any form is exactly repeated. The opposite leaves of an anthemion will not be duplicates, one tum of a scroll will be almost invariably a trifte larger than another, and even in the most perfectly finished serolls, breaks in the exact contimuty of curves will occasionally lue noticed. The Greeks unquestionably designed their buiklings as well as their decorative patterus from the artistic standpoint, and shaped them with the free

[^4]
REFINEMENTS IN DESIGN

hand; hence their work was full of animation and interest, their walls, their spacing having a charm and grace which is utterly lost in the dull ropies of classical porticoes made a generation ago in ignorance of the higher qualities of Greek art.
lf, then, these peeuliarities are hardly obsersed in modern architectural practice or in the instruction given to the modern architect, it is to lee observed that such practice and instruction are so largely based upon drawings that, first, the stulent is a student not of Greek building, bnt of drawings of it, in which the refinments could not be given, even if the draughtsman eared for them; and, second, that the architect's career is more dependent upon the agreeable effect of his drawings non his employer than upon the effeet of his completed building. The architect to-day does not carry his free-hand design into execution, but passes it throngh the urdeal of mechanical dranghtsmanship; wherely, as every practitioner knows, it loses immediately almost all its charm and the freshmess of the original sketch, and temels to become hard and minteresting. This tendency existed to a great extent in the time of the Renaissance; and still more generally luring the Cingue Cento. The fifteenth century student of art studied and measured the remains of antiquity, and this unquestionably brought new ileas into architectural design, but he slid not acquire the age-long traditions of the earlier art. Neither did he always retain the traditions of his own mast, of the merliæval art in which his masters hat worked. Such traditions would, with the natural decadence of art, become confused, misunderstool and overlaid with eccentricities: and it is but natural that when the rich and alluring vista of classical art opened before men's eyes, they shonld hasten to discarl all hampering traditions, the good with the barl. In this way, while the traditions of the Greeks or the GrecoPoman builders were not to be recovered, those of the Middle Ages were of course neglected.

As to those traditions which classical antiquity cherished, it is only since exact measurement has proved the existence of a great number of refinements in classical work that the statements of Vitrurins (III., 3) conceming the horizontal curves have been appreciated and generally believed. Stuast and Revett measured the Parthenon in 1756, hut they observed no refinements, not even the entasis in the columns, which, indeed, was first discovered by Cockerell in 1810. Lord Etgin did not notice the curves in the entahatures when he had the senlptures removed in 1801. Donaldson in 1829 discovered that the axes of the columms were inclined inwards from the rettical, anl later measurements of the drums showed that the slope of 1 in 131 was provided for very

REFINEMENTS IN DESIGN

exactly in the stone cutting. In l心3T Pemmethorne discovered the convexity of steps and entablatures; and at the same time Holer and Schanbert reached similar conclusions indepeulently. Penrose, in lis45, 1816 , aml 1847 , observed a great number of refinements which, with later discoveries, form an imposing series; thus, of two neighbouring capitals the abaci are not of the same size, no two aljacent columns are of equal diameters nor any adjacent metopes equal, and no two adjacent intereolumniations are equal. The faces ot the entablatures and even of small fillets are rarely vertical, the architrave, frieze, and tympanum lean back ward, the antefixes and faces of fillets, forwart. The side walls have a slight batter, the choor jambs and the pilasters at the angles lean forward, the main, apparently horizontal lines are all curved, and the four corners of the building coincide perfectly with the free-hand hahit of work. Most of them are too delicate to he visible at all on the architect's customary scale drawing, and they woukd probably never have been thought of if the Greeks had workel under the disadvantages of the modern methods of architectural designing.

Most of the Greek buidings, particularly temples, show analogous refinements. The temple at Piestum has rertical curves in the comice under the pediments, but the comice on the side is curved ontward on the horizontal plane. The Maison C'arrée at Nîmes has horizontal curves in the cornice; and the hase is also curved horizontally, but in a less degrec. In Egypt also the courtyard of the temple of Medinet Habou has horizontal curves in the comices, which curves are undonbtedly of original construction.

After the discovery of these refinments in Greek art and before their cxistence in later work was suspected, various attempts were made to suggest an adequate motive for their introduction. Perspective illusion, that is to say, a desire to give an apparently inereased size to the building; the desire to correct that delusion of human sight which makes a horizontal cornice under a gable seem to sag; artistic preference; all were suggested, but a closer examination of the evidence seems to show that the third is not an accitental but the principal motive. It would seem that the theory of perspective illusion has very little to support it, and the theory of visual correction even less. If, however, we can give a satisfactory reason why a colunn should have an entasis, that same reason will suffice to account for all the other refinements as yet kuown to exist, at least in classical work. The only satislactory explanation of them is that the entasis and other such refinements were introduced from artistic preference, from delight in the abstract beauty which results from their use.

REFINEMENTS IN DESIGN

With regard to mellieval builhings, the existence of apparently deliberate irregularities in measmement was pointed out by Ruskin in The secen Lomis of Architecture, published in 1849, and in The stones of IVenice, pullisherl in 185l; and Viollet-le-Duc in the Dictionnuire de t Achitecture Framsuise, s.v. Truit (Vol. IX., first fublished 1868), deals with the same subject. There has been, however, no such comprehensive investigation as that unlertaken by Professor W. H. Goodyear, ol which the results were published in part in the Imothectural Recurd (Vols. IV., VI., VII., 1N. ; New York).

In such investigations great discretion must be exereised. It is evident that thrust and settlenent may produce mexpected results; masonry is, moreover, plastic to a certain extent, and stone may be appreciably disturted by long-contimued pressure. There is, too, the element ol mere carelessuess and incapacity for accurate work to be consilered. The casc is further complicated by the fact that these refinements are not universal in medieval buildings. They are usually present in direct ratio to the amount of Byzantine influence visible in the work. Where they exist it is generally in larger and richer churches rather than in the poorer ones - and this has evidently some bearing upon the guestion whether they are the results of carelessness or of design. Where the same irregularity occurs on both sides of a ehurch in corresponding $1^{\text {laces, }}$ where a comice has an even and regular curvature, and examination shows that the stones were originally eut to fit the curve, where a eurve in phan is regular from the base of the walls up, with no opening of joints, or where a striking irregularity of arrangement is found repeated in a large number of instances, the conclusion seens irresistible that these particular deviations were intentionally put in. The objection that one feels to the belief that the leaning tower of Pisa, for instance, was intentionally built with so marked it slant does not hold in the ease of inconspicuous irregularities, and this idea of inconspicuousness is jart of the essential character of refinements in design. It is evident how inconspicuous they generally are when we consider the surprising fact that irregularities so large as some which hare been pointed out should have remained unnoticed by thousands of visitors until revealed by careful measurement.

Mr. Goodyear cites many cases of schenatic variations in spacings of nave arches, of converging walls or piers, of distorted plans, of cross arches set at different levels, and of sloping floors; the instances are to be counted by scores; and all this in Italy alone. No individual cases in medieval work are known where all the means tending to produce false perspec-

REFINEMENTS IN DESIGN

tive are usel at once. For a churel interior, these means would lee, first, planing the ehoir un a dilferent axis with that of the nave: secumb, an upwarl slope of the floor toward the choir: third, converging walls or piers: fourth, a lalling line of the capitals and of the nave arches or of the ceiling; fifth, regularly diminishing spacing and size of columns in the nave areale. All these tevices never oceur in any one example; lout several are combined in some cakes. Thus, in the basilica of s. Pietro at Assisi, the mprard-shoping floor is accompanied by the rairly regular drop of the levels of the capitals. Many other churches have also upward-sloping flours; such are S. Maria in Ara Coeli, S. Saba and S. Sabina at Fome, and the cathedral of Cenoa. Convergence toward the choir is shown in S. Stefano at Venice, S. Antonio at Piacenza, and S. Giorgio in Velabro, at liome, where the nave narrows about a foot toward the erossing. Curvature in plan is seen in the fronts of S. Mark's at Ravenna, where the uave colmmos are set on paralle] curves six inches off the straight line; this curve being consex to the uave on the right hand and concave on the left, and the curvature extends up through the clearstory wall upon which are the original mosaics. The divergences in Pisa catherral are most marked and striking: note the last item in bihliography. Eren in the fourteenth century, and in the elaborate Guthic church of S. Onen at Rouen, both walls of the church and loth lines of piers are set on a curving plan; and the late cathedral of Orvieto has both gallery walls curvel concave to the nare. Refinements in the spacing of nave areades oecasionally take the form of suecessive increase of dimemsion towarl the choir.

It is probable that further research will show that, thronghout the Middie Ages, and as long as traditional methods prevailed in any conutry, such devices were employed by masons and by roufers, working without direction from professed arehitects. Thus, the slater or roof tiler, who diminishes the size of his tiles or slates as lie approaches the ridge, is evidently carying out a simple old device for securing a propurtion or balance between the toj and the hottom: just as the scales of a fish diminish with the girth. So the stone masons who put up, a tall pole in the axis of the spire they are building, and who dininished the height of this pole from day to day, building always so that the slope of the spire was directed toward the upper end of the pole, were giving the same entasis to the slope that a Greek artist gare to his sluafts. (See Entasis; Grecian Architecture ; Leaning Tower.)
(See Bibliography under Grecian Architecture ; especially the works of Cockerell and Penrose.) Pennethorne, Geometry and Optics of Ancient Art,

REGISTER

1878; Hofer, in Wiener Bauzeitung for 1838 ; Schaubert. Die Ahrojolis ron Athen marh den Anuesten Iusgrabungen. I88u; The Architectural Pecomd, as mentioned in the text; Thiersch. Oplische Täuschungen aut dem Gebiete der Architectur, in Zoitschryt für Lamresen, r. 23, p. 9 ; Boutmy, Le I'urthénom et le Génie Grec, originally issued as Ihilosonhie te l"-1rchitecture en Grece; Ilauk, G.. The subjective jerspective und die horizontalen Curen les Durischen sityls, stutgart, Isis; Ruskin, Seren Lamps of Architecture, 1849; Stomes of J'enire. 18.33; Gooriyear. A Lost Art, in srribuer's Monthly, Iugust, Isit; the same (The Field of Art), september, Js98; Smithsonian Report for Is!tt; J. H. Middleton. in The Nineteenth Century, about 1sm; C. J. MacCarthy. some Intentimul Irreqularitips in Italian Mediezal Architerture, in The Irish Builder, Feb. I. 1s!g: a Lecture before the Royal Institute of the Architects of Ireland: George Coffey, in Archaological Journal, December, 1900 . Lecture before the Royal Arcbæolosical Institute of Great Britain and Jreland. Alsn, soon to Le published, Memoirs of the Museum of the Brooklyn Institute of Arts and Scieners.

- George Louls Heins.

REFLECTION. (See Lighting.)

REFLECTOR. A. In acousties, a sound-ing-board; a hard surface behind and above the speaker or orchestra, serving to gire an immediate instearl of a more distant reflection of the sound to the audience. Its service is twofold: that of streugthening the sound, and that of preventing distinct and disturhing echoes. It is sometimes flat, as illustrated by the great reflectur over the orchestra in the present Boston Music Hall. When the source of sound is localized, as in a pulpit, the reflector is generally conease. Howerer, its exact form, splerical, ellipsoidal, or parabolic. is a matter of but little importance, especially for the lower notes. The extremely high notes, being less diffracted, obey more definitely the ordinary laws of reflection. (See Music Hall ; Soundingboarl.) - W. C. S.
B. In lighting, a jolished surface of metal or glass arranged to reflect or give any desired direction to rays of sunlight, as mirrors, or to rays of artificial light by the use of plane, parabolic, elliptical, or other concave or conrex surfaces.

REFRACTION. (See Lighting.)

REFRIGERATOR. A hox or chest, whether portable or fixed, a chamber or apparatus, designel to keep its contents at a low temperature, being provided with a compartment for ice (or receiving coll air currents from an ice or freezing machine) and other compartments readily accessible for the storage of perishable provisions.

REGISTER (I.). A contrivance commeeted with a duct, arrangel either to control the inwarl passage of warmed air or fresh air, or to allow fond air to escape. It is usnally a pierced screen, behinl which slats are arrangel, rotating or sliling, and controlled by a handle in front of the sereen.

PLATE XIII

RENAISSANCE

Interior of S. Lorenzo in Florence; the first church built by Brunellesco after his declarations of principles with regard to the revival of classical architecture. He felt obliged to set an entablature upon the capital of each column, although the en-
tablature itself was to carry the abutment of two arches; but he reduced the entablature in every dimension so that it is in fact a secondary or upper capital. Brunellesco's comnection with the church dates from 1440 .

REGISTER

REGISTER (II.). Same as Metre.
REGLE. In Juitling, a groove or chanmel by whicls the movement of anything, as that of a shisling or lifting door or sash, is gnided.

REGLET. In architecture, ilny fillet or small flat-ficed prujection, such is is used in a fret monkling, or to coser the joint between two boarls ; a batten.

REGNAULDIN, LAURENT ; sculptor ; l. about 1570.

A senlptor of Flurentine origin, whose name figures in the accoments of the chatean of Fomtaineblean from $15.3 t$ to 5550 . In $15+1$ he was associatell with Pierre Lescot (see Lescot) aml Jean Goujon (see Goujon) in the constroction of the choir screen (jube) of the church of S. Germain l'Anxerrois in Paris. In $156 t$ he was employed on the monmment of IJenri II. at S. Denis.

Lami, soulptours de l'École française.
REGRATING. In masonry, re-ilressing or taoling the onter surface of an ohd stone to give it a new face - a treatment which when practised on an ancient architectural monument has destroyel many a venerable weather stain, and has mined the historical significance and value of many an ancient moukling and hit of carving.

REGULA. In the Dorie entablature, one of the series of short fillets beneath the timia, each corresponding to a triglyph above. Bith regula has a row of guttee on the muder sile.

REIGNIER WORK. Delicate woodwork of the nature of Marguetry, rating from the reign of Louis XIV. and named after a cabinetmaker of the time. It is not dissimilar to Boule Work (which see).

RELEVÉ (part.). In French, taken off, made up from observation; especially in the talk of ateliers, olstained from measurements, as a drawing made from an existing building. Used sulstantively, the result in mrawings, with or without a written treatise, of careful measurements made from an anciont buikling or part of a building. Humireds of such sturlies are preserven by the Eeole ales Beanx Ants; many have been pullisherl, as in the two works called Aichices de lu Commission. des Monuments Mistoriques.

RELIEF. That which is raised or embossed on a more or less uniform smface ; raised work. A bold embossing is called high relief, culto rilieco; a low embossing is called low relief, or bas-relief, basso rilievo ; a middle or halfrelief is called mezzo rilievo. In high relief the figures or objects represented project at least one half their natural rotumhty or ciremmference from the backgroumf, parts of the figures sometimes being unferent and solid like statues, as in pediment senpture ; in low relief the prosjection of the figures is but slight, no part heing entirely detached; a very flat relief, surh as is scen on some coms, is called stiacciato rilievo.

RENAISSANCE

An Egyjtian form of relief is comiter sunk, i.e. it dors not project albove the general surface uron which it is wrought. This is known as cteco rilireo or intaglion rilectoto; ako hollow relief or extanalyphic sculpture. The sutlines are incised, and the reliof is thas contained in a sunk panel no bigger than itself. Relief work executed in thin metal may be done by repuenssé work, or loy chasing ; or may be copned by the electrotype process. Other relief in metal is done ly casting. Fielief work of the best periods did not represent its subject pietoriahly, and the surface upon which subject and action were depicted was recognized as the actual back ground, no attempt having been mate at perspective illusions. lout in later art, this proper conlition of relief work was less miformly resprecterl, and as in the panels of the arch of Titus, anel in thuse of the bronze gates of the liaptistery at Pisa, actual pictorial subjects were attempted with distant backgrommls.

RELIEVE (v.). To assist any overloaded member ly any device of construction, as, in the case of' a lintel, by building over it a discharging or relieving arch to transfer the burden to the piers or beams of iron or steel to receive the imposel weight, or by plaring between the lintel and the suppurting pier a bolster or raising piece, or by the use of a hrace, ete. ; or, in the case of a pier or section of wall, to sprad the weight of a girder or beam bearing upon it over a larger surfice by interposing a phate of metal or wool ; or, in the e"se of a beam or girder in wool construction, learing a worlen partition or any purtion of the frame, to lonild? in the partition or frame a fruss with suspension rods or suspension timbers to transfer the weight to the piers or walls ; or, in the case of the soil unler a foumbation pier, to ease it from the great coneentration of barden by broad levellers of stone or concrete, by inverted arches connerted with other piers, etc.

REMIGIUS ; hishop; d. I092.
Remigits was a monk of Fécamp in Normandy who was appointed lishop of Dorchester, England, in 1067 , by William the Compleror: After 1075 the see was removerl to Lincoln, where it coull be under the protection of the eastle then heing constru•ted. He begim at once to build his cathedral, which wats completerd in 1092. Of this origimal Nomman buthling almost the entire westem front remains and the luwer stories of the western towers.

Wild-Britton, Cuthedral (hureh of Lincoln.

RENAISSANCE. .l. A new lirth ; espe"ially snch a change in the state of learning, of literature, of fine art, or of all these things together, as is assumed to he a great improvement and alvance, carried on arcorting to principes fomerly existing, long neglected, or supposedly lost. The term has been apulied for many years almost exclnsively to the ant-

RENAISSANCE ARCHITECTURE

rance in classical leaming in ltaly and the contemporatheous changes in forms of fine art during the carlier years of the fifteenth eentury, together with the years immediately following ; and, by extension, to the corresponding epoehs in other parts of Europe, which epochs, however, are later by many years than that of the Renaissance proper in Italy. It is, however, customary, in the critical writing of our "ザn time, to speak of the thirteentheentury Renaissame, of the eleventh-century Fienaissunre, ete., each of these denoting an important allwaee in learning, thought, and fine art in one or another nation of Europe. It is extended in like manner to non-Enropean nations; thus, an adrance in the art of painting or architecture in China or Japan is spoken of as the Renaissance of such and such a century, or of such and such a reign.
B. (Used adjectively.) Belonging to the Renaissance; and. when the term oecurs alone (as in the phrase, the Renaissance of Venice shows Byzantine influence), that absolute use of it is to be taken as meaning Renaissance Architecture (which see). This is to be discriminated from Italian Architecture in the special sense given under that term, and from the styles described under Baroceo Architecture; Hemri Quatre: Lonis Quatorze ; Louis Quinze; Louis Seize: Lonis Treize ; Pigtail and Periwig; Post-Renaissance; Rococo; Zopf. The nature of the distinction is described under the special terms ; but it should be kept in mind that the term "Renaissance" denotes the beginning of a change and that alone, and that the development into high perfection can be included only by forcing its meaning, while all times of degeneracy are of necessity excluded. (See, besides the terms griven above, Cinque Cento; Classicismo; Decadence; Decadent; Decadlenza.) - R. S.

RENAISSANCE ARCHITECTURE. A. That of Italy from 1420 to about 1520 (for which sce Neoclassic Architecture; Renaissance; Italy, Architeeture of).
B. That of France, of Germany, Spain, and other nations of the continent of Europe, which was based upon or suggesten by the Italian Neoclassic style above alluded to, but which hegan generally at a much later period. In Spain, indeed, some buildings with Neoclassic feeling date back to the secoud half of the fifteenth century, but in France and Germany nothing of the kind ajpears before 1510 , except, indeed, in small tombal monuments or similar pieces of decorative work which are generally thought to have been made by Italian artists. (Sec France, Architecture of ; Germany; Spain.)

There ean hardly be found a Renaissance style in England, (See Elizahethan ; Jacobean ; also England, Architecture of.)

The reader shomhl note that in this, and in other articles of this Dictionary, the term "Renaissance" is used in the limited sense employed by the French critical writers for the same word, and by the Italian writers for the correspouling terms Rinascimento and Risorgimento. It is more usual for English writers to speak of Renaissanec architecture as of the whole epoch from the begiming of Neoclassie

Revaissancf. Architecture, Fig. 1 : Facade of S . Zaicaria, Venice; c. 1490. work, at least to the outhreak of the French Revolution ; but the same writers would hesitate to eall these centuries, taken together, the time of the Renaissance in anything except architecture. A building is often said to be of Renaissance architecture cren if bnilt in the later years of the ninctcenth century, and under purely classical influences; but such usage is to be avoided. In exact writing it is as erroncons to call the front of S. Peter's at Rome (1605 and later) or S. Paul's Cathedral in London (1675 and later) Renaissance buildings, as to call Tassoni or Newton Renaissance authors. - R. S.

RENDER. A. In building, to apply plaster directly to brickwork, stonework, tiles, or

RENDERING CEMENT

slate: said especially of the first coat, the application of the final coat being deserihed by the term to set, and an intermediate, when used, by to flout (which see). Two roat work is bence often called render and set, or renderset work : while three eont is known as render float and set.
B. In drawing, to give to a mechanical drawing, as an elevation, a more or less com-

RENNIE

RENNIE, JOHN, F.R.S., F.S.A. ; engi-

He was born in scotland and edtucated in Edinburgh. In 1 -80 he remored to London. Remuie built in Lomlon the Waterlon lirilge, begnu Oct. 11, lisll, and dedicated on the seend amiversary of the battle of Waterloo, June 18, א゙li; whence its name. IFe luilt the Sunthwark Bridge, London, begun 1814,

Rexaissance Architecture, Fig 2: The Manor House of the Merchayt Ango, sear Varergevilde, Seine Inférielre, France; r. 1030.
Early French Renaissance manifested in simple country buildings.
plete indication of shades and shadows, whether in ink, colour, or other medium.

RENDERING CEMENT. A tough and strong cement jlaster, taking the place of lime aud hair mortar in the plastering of walls and ceilings, not liable to crack or swell, eapable of being applied directly to a surface of masonry or laths, and not needing fimish coats ; it has the property of drying and hardening rapidly.
and designed the new London Bridge, which was built after his death by his son Sir John Rennie (see Rennie, Sir J., and Peter of Colechureh).

Smiles. Lixes of Engineprs: Knight. London; Kinight, Cyrlonacelin of Landon; Cresy. Treatise on Iridge Buidding.

RENNIE, SIR JOHN, F.R.S. ; engineer ; b. Ang. 30, 1794; d. Sept. 3, 1874.

Renalsance Architecture, Fig. 3: Chîteau Busny-Rabutin, Arcade on Court; c. 1010.

Rexaissance Architectere, Fig. t: House at Beautais; c. 1 ă60.

RENNIE

REREDOS

Son of John Remnie．He was associated with his father in the construction of W aterloo
in 1831．Remnie was employed in many im－ portant works．

Rennie，Autoliogrophy；（Dituary in liuld－ iny News，Vot．NX゙VII．， 1871.

RENWICK，JAMES；architect；b． 1818 in New York；1． 1895.

He graluated from Columbia College at the age of seventecn，and devoted himself to engineering and architerture．He wats employed on the Erie Railroad amd the Croton Agnednct，and built the reservoir，Furty－ second Street and Fitth Avenue，New York City：He built Grave Church in New York， and designeal the Smithomian Institute and Corcoran Gallery in Washington．His plams for a Catholie cathelral in New York City were accepterl，and Aug．15，1858，the cor－ ner stone of that huidling was laid．It was dedieated May 25,1879 ．The spires were added in 1887．He plamed and built mumerons other buillings of importance in New York．

Americen Architect，Vol，XLVII．，1．125．

REPOSITORIUM．A place for the this－ proition or storage of anything ；especially， in a loman temple，a phace of votive offer－ ings and treasure ；in a church，an Ambry．

REPOUSSE WORK．Relief work in thin motal wronght hy heing beaten up with hammers on the reverse side；the art of moxlelling and decorating the surface of plapues or vessels of golil，silver，copper，or other thin malleahle metals，by hammering the metal on the umlerside with special tools so as to bulge it in pattems of any desired ornamental character，forming relirt＇s on the upluer sile．In fine work the pattem this raised is modifiet，dressed，and finished by placing the metal face uppermost upon a yidding bed and heating it hack so as more dearly to define the subject and correct its outlines，ant by chasing and emgraving it．

REPTON，HUMPHREY；lamscape gardener；b．May－，lise；d．Mareh ごt， 1818.

He was the first to alopt the title of Landscape dardener，and published numer－ ous works on parks and garilens．A great part of this material was republished in ome volume by Loudon（see Loudon）in Reptomis Lambsape Giamleninty and Lambertye －brhitertme，l vol．Bro．， 1840.

Biographical Notice in Loudon＇s Repton．
REREDOS A screen or wall at the bate of an altar，more or less ormamenterl，either forming part of the rotable or stauling by itself．In the Modile Ages it was sometimes called a postabula，retrotabulariom，and retro－ altar．The reredos was not in use to any groat

REREDOS

extent before the elevonth contury, and when first introduced was a movalde object: morewer, it could not have been used in connection with the ligh altars of cathedrals imtil after the change in their orientation, which dial not hegin much before the twelfth century, as it would have hidden the priest from the people : nevertheless, there is wo reason to suppose that

REREDOS

eiborium. During the later Middle Ages this hanging reredos was changed with every change of the sacerdotal restments, so as to conform to the colour requirements of the various castes. Whem this form gave way to something more substantial, the reredos was movable, and was only used on great solemnities and the prineipal festivals of the ecclesiastical year. Such is the

Renaissance Architecture, Fig. 6: Holse at Amens, 1sg3; see Fig. 5.
it was not employed at a very much earlier period with side or secomdary altars, and with the altar of an cratory. The earliest form of the reredos, outside of those in the catacombs and erypts, was probably that of the dossal, a hanging of silk, damask, or textile fabric ; this curtain was suspended, above and back of the altar, from hooks in the wall or ceiling of the sanctuary, and in some cases from the arch rod of the

Pala d'Oro, the reredos of the high altar in S . Mark's at Veniee ; another, the golden reredos of Bale, now in the Cluny Museum at Paris. Toward the end of the sixteenth century the movable reredos went almost entirely ont of use, fixed ones taking its place, even in conjunction with the high altars of cathedrals. These reached their finest development in Spain, many of them extending across the entire east end of

RESIDENCE

the sanctuary, in some cases following the wall line of the apse, and often attaining a height of over fifty feet ; as a rule, they are a mass of the most intricate, at the same time lelieate, Gothic carvings, endless in atail, with mamerons figures of angels and saints, scenes from the hife of

RESPOND

is called akso Irer Kïntigsbueu. So, in Braunschweig (brunswick), in Schwerin, and in Neu Strelitz, the palace of the reigning or formerly reigning (Grand Duke is called hesidenzschloss. The eity in which one of these pataces stambs is called otheially Die Ilunet und Residenzstult.

RESIDUAL SOUND. The vilration of the air in a confined space that continues after the source has reased, until absorbed by the walls, the furniture, the drapery, and the clothes of the audience. (See also Aconsties.) - W. C. S.

RESISTANCE.

The power ut any substance, as building material, to resist forces, such as Compression, Cross Break-

Christ, and symbols. The fixed reredos in Italy and France usually formen a frame or setting for a painting, a bas-relict, or a group of sculpture : in Germany and the low countries it was usually in the form of a triptyon ; in England it was largely architectural, mate mp of niches, tabernacle work, buttresses, crockets, and pimacles.

Rohault de Fleury, La Messe, 8 vols folio, Paris, 1888 ; Mar. Barbier de Montault. Construction ale l'Ameublement pt de la Dícoration des Eplises, 2 rols. 8 vo, Paris, 1878; Transactions of the S. Pat's Erclesioloyical Society, Vol. IIT., l'late IV., London, 1884; Articles by Caryl Coleman in the Architectural Record, New York, 1895.

- Caryl Coleman.

RESIDENCE. A
place of resilling or abode; a dwelling; a habitation. The oftieial home of a Eritisin resident at the court of an Indian prince is ealled The Residency

RESIDENz. In German, a residence, especially that of a sovereign : applying equally to a royal or other palace and to the rity in which it is situated. Used also in combination in each of the above senses. Thus, in Munich, the royal palare or Königliche Residnzzebiumle consists of two chief parts, Dip rite Residenz, or old palace, and Die Veue Residenz, which
borly, has a frequency agreeing with the natural rate of vibration of the boly. In architectural acousties, the inereased loulness of a note whose vibration frequency agrees with oue of the natural rates of vibration of the air contained in the room. (See Aronstics.) - W. C. S.

RESPOND. A pilaster, anta, or lalf pier taking the place of a colmmm in a colonnade, or of an impost pier in an arcade at the point where the colonnade or arcade terminates and

RESPONSIBILITY

is connected with the wall, as in a portico, and at the east and west ends of the nave arches in a church. In hemaissince architecture, every colnmm having relations with a wall has a respoul in the wall in the form of a pilaster.

RESPONSIBILITY FOR ACCIDENTS. (See Legislatiom.)

RESSANT. Sane as liessatut.
RESSAUT. In Freuch, a pojection, as of a pilaster, a chimmey breast, or any other feature, from a wall, of of one moulding from anuther. A projecting member is ent ressaut.

In English, eslrecially, a decorative device in Roman aml neoclassic art : the breaking out of a certan length of an entablature, with two returns, with a pilaster, a colmm, or a pair of columns sulporting the projecting part. (See cuts, S. Fantino under Neoclassic: and Seuola: also Plate 1 V., Vol. I.: Plates XXVIII. and I.NIX., Tol. II. The larger projecting pieces of entablature, as in Plate XXXII., Vol. I., and Plate XXVIII., Tol. II., are not often calleal ressants.)

RESTAURANT. A place where meals are served; an eating room or house. Specifically, in a hotel, an apartment where meals are served, at any hour to orler, in contradistinction to the dining room, where guests are serred with regular meals at stated hours.

RESTING PLACE. A landing; a half- or quarter-pace in a stairease.

RESTORATION. A. The process of renorating a building so that it shall wholly or in part regain its original character. Such work was never undertaken until the present century. When admiration for ancient buildings became common, and their nature and character began to he studied, there was also manifested a strong desire to remove from them such alditions as were of a different character from the general design of the original structure. Thus, it was natural to remove from a ehureh of the thirteenth century an organ loft which had been jut up in the eighteentl century, and pews of the nineteenth century. It was also natural to scrape off plaster in hopes of finding painting underneath; and when such painting was fomsl, it was natural to seek to repaint the parts which had suffered the most grievously, or had disappeared almost altogether. When works of fine art of considerable importance were found in a building of an earlier date, it was often hard to decide what should be done with them; thms, a seventeenth century monument in a mediseral church had an individuality of its own, and a rested right to its place. "On the other hand, singing galleries, altars, and similar accessories of the church itself had a less powerful hold upon the respect of the anthorities, and many of them were removed, some hastily and earelessly, others with some respect, in order that they might be sold to muselms.

RESTORATION

Some of the restorations undertaken during the years following 1850 were very intelligently managed, with great respeet shown to the original structure and a strong desire to retain all its existing parts unimpaired. Other such undertakings were reckless and destructire, and consisterl in an almust complete rebuilding of the original structure accorling to what the ardiitect in charge, or his hishop, or the municipality might think was the way in which sueh a building ought to have been carried out. In either case, however, this very serious difticulty has resulted, namely, that there is now no longer a ready means of distinguishing between the gennine work and its imitation. The most aggraraterl instance of this is in the west fronts of English cathedrals: where statues have been put up by the scores in niches which hal been standing empty for many years. The new statue loeing put in place and being found to ditfer somewhat from the ancient ones, there has been too strong a disposition to scrape and clean the older ones to match the new. It is therefore of the greatest importance that the documents shonls be studied and the memories of arehitects and artisans consulted before it is too late, and that a complete aecount of the restorations curried ont be compiled and made acessible to all students of the momments in question. If one goes to Wells Cathedral as a student, he should have a ready means of ascertaining just which statnes, which pew heads, which details of the sculptured exterior and interior, are wholly modern, which have been scraped ant cleaned, and which remain intact.

The restorations of the great French cathedrals have been on the whole judicions, beeause the respect felt in France, by every local community for its own monuments, is so great that the newly cut stones which are inserted to make good deeaying or broken stones of the old fabric, are most carefully copied from the originals; and such work as camot be copied, such as the elaborate sculpture of the porches, is preserved in its existing state with hions care. One cam sturly the cathedral of Cbartres or Feins withont much fear that those parts which no modern hand could tonch without destroying hare been renovated. There are, however, remarkable exceptions. One which may be named is the rebuilding of the important and exquisite church of S . Front at Pérignenx. This building has been entirely rebuilt, and it is not unfair to say that the attempt has been, not to preserve the old church, but to buikl a new one according to the architect's notions of a Romanesque chureh of the date of S . Front. This will be found very completely and carefully described in the book entitled il Visit to the Domerl Churches of Clurente, puhlished by the London Architectural Association after 1875 ; see the preliminary chapter, and also the description of the

RESTORATION

phates of that church. The liomanesque ehureh at Auteuil, in l'aris, has been restored in a similar radical way, that is to say, rebuilt from its basement. The eathedral at Valence, on the Rhône, has been rebuilt in a simitar fashion. The famous strong eastle of lierrefonds wals restored by Yioflet-le-Due at the expense, it is understuon, of the Emperor Napoteon III., and here, while the repair of the walls and the fortifications, ruofs, aml the like can be justifind in every important part, the artist has allowed himself almost a free hand in the deenrative sculptures and paintings. The fortress is trustworthy as an example for the molern student of military architecture, but the deeorated halls are mere pastiches.

As regards the restoration of buildings in towns, it is to be observel that those who resicle in the place have a feeling toward une of their loeal monments somewhat different from that held by visitors. Thus, to the Venetian who walks every afternoon on the Place of S. Mark and takes coffee under the areales, it seems absurd that his familiar Ducal Palare, Church of S. Mark, Procuratie Vecchie, and the rest should be left shabhy and defaced by time merely to please travellers. To him it seens important that the church should be firm, and siquareset, and neat-lonking; and that the patare should seem elegant, whole, and free from thaws and defacements. He camot muderstaml that it is of vital importance to the whole world of students that every capital that can possibly be lelt in the arcales should remain maltered from that which time and arecident has left it. This love of local monuments is not to be ignored merely because of the fact that sometimes fine old buildings are destroyed to make roum for a wide street; this also is a part of the lemal love of neatness, elegance, spacionsuess, and the appearance of high cost and free expenditure.

There is, however, hut one true doctrine, and that is that buildings shoudd he held together by iron ties, if necessary; that they should he stayed up, fastened together, held in place: that it should be clearly understood that no modern work whatever shall be put nuon them in the way of rebuilding, carving, painting, or the like. It is the most important thing that a rieh man conld do for the study of art that he shoudd purchase fine ohl buildings all over the worth and see to it that they are left unaltered by molern restorers.

The influence of the French Commission des Monuments Historiques (see Histurical Monnments) has been extremoly beneficial. A society was founded in England under the intluenee of the late William Morris, who was its first honorary serretary, and this, entitled the Suciety for the Protection of Ancient Buildings, has also been of value. (See Architect: Arrhitsct in England; Frauce ; Italy.) The student is also

RETURNED MOULDING

referred to the books on Willian Morris by Aymer Vallance: The Arl of Willian Morris, folio, and Hilliam Morvis: His Ant, His Hritings, and Ilis Public Lije; ortavo.
13. The process of making trawings or molels, or both, showing how, in the opinion of the designers, a now ruined building might prohably have appeared when perfect ; also the drawings, etc., so made. Many sueh restorations have beell published; and it is to he noted that all our modern iteas of Greek and Roman buildings are the results of just such trawings and nowlels, for none of then is so nearty intact as to convey any just architectural impression to the beholder. (Compare lielevé.)

—R. S.

resurrection gate. A lich Gate; so ealleal from the frequent vecurrence of representations of the Resurrection carved or painted upon sueh struetures.
retable. A decorative screen set up above and behind an altar, generally torming an architectural frame to a picture, bas-relief, or mosaic, which are included in the term. It is sometimes a movable feature resting on the back of the altar, and is often mate of precinus materials. The retable sometimes inchules a shedf or shelves. (Sce Altar Ledge ; Reredos ; SuperAltar, moder Altar.)

RETAINING Wall. A wall erected at a plaee where a difference of level occurs in the soil and intended to retain the ligher soil and prevent it from sliding.

Benjamin Baker, C. E., The Lateral Pressure of Eutherort; l'rofessor William Cain, C. E., Practiod Iresigming of Retuining Walls.

RETICULATE. Crossed with a network of lines; decorated on a basis of regularly intersecting lines, as on a surface ormamented with an interlacing of fillets or reglets like network, presenting a mesked appearance. This species of ornamentation is common in the Byzantine and Romanesulue styles.
retreat. A falling back, retirement, or withdrawal, as of one surface behind another in a panel, or of a part of a building, or of a whole building, hehind or to the rear of ans ther.

RETROCHOIR. A projection helind the choir or cast emb of a church, forming a separate division or chapel: if there is a laly chapel, it is interposed between the lady ehapel and the choir.

RETURN. A surtaee turned back from a principal surfare, as the side of a pilaster, the jamb of a window or door opening. A return forming an obticue angle is called a splayed return. (See Splay.)

RETURNED MOULDING. A moulding continned in a different direction from its main direction. as in mediarval arehitecture, a drip, hood, or lathel moulding over an arch, when, at the springing point on either side, it turns and

RIB

assumes a lorizontal direction, either for a short distance or continuously, as a string course. (See Dripstone, and the figures under that term.)

REVEAL. That portion of the jamb of an opening or recess which is visible from the face of the wall back to the frame or other structure which may be placed between the jambs. Thus, the windows of an ordinary lorick lualding bave usually reveals of some four inclies: that being the width of each brick jamb visible outside of the window trames.

Athens in 1750. He was associated with Stuart in the preparation of the Antiquities of Athens, $\&$ vols. folio, $1762-1816$. He also prepared the drawings of Parts I. and II. of the - Intiquitios of Iomice (1769-1797, folio) jublished lyy the Society of Dilettanti. . He designed and decorated rarious residences in Englanul.

> Redgrave. Dictionary of Artists.

REYNAUD (REGNAULT) DE CORMONT. (See Cormont, Reynand de.)

REYNAUD, FRANCOIS LE-

 ONCE : engineer and arehitect ; b. Nov. 1, 1803, at Lyons; (1. Feb. 14, 1880, at Paris.He went to Paris in 1818, was a pupil at the Ecole polytechrique and of Durand (see Durand). Iu 1824 he entered the Ecule des Beanx Arts as a pupil of Huyot (see Huyot). He studied in ltaly and in 1835 beeame an engineer in the Serrice des Ponts et Chaussées. In 184? he was appointed professor of architecture at the Ecole des Pouts et Chuussées. March 7,1883 he was associatell with Vaudover aud Viollet-le Due as insperteur général des édifices diocésains. He became inspecterir générul des ponts et chausstes in 1867 , and in 1-69 director of the Ecole des Punts et Clacussées. He was one of the founters of the Société centrale des architertes. He is best known by his Truité d'-1ichitechure (text -2 rol. 4to, plates \because vol. fol.. 1850-1858).

Charret, Arehitectes Lyonnais.
REZ-DE-CHAUSSEE. In French buildings, the story on a level with the grount (see Étage and sub-titles).

RHODONITE. A silicate of manganese of a pink or red colour, frequently

REVERBERATION. The process of reflection of sound by the walls whereby it is returned into the room, as distinguished from transmission or alsorption. This results in a prolougation of the sound, or, if the source contimues to aet, in emmulative intensity. It is to be carefully distinguished from resonance. (See Acoustics.) - W. C. S.

REVESTRY. Same as Vestry; the old form.

REVETMENT. In masoury, a facing intended to afford a better or more fitting surface, as the facing of a rubble or conerete wall with thin slabs of marble according to the Roman manner, or, in interior work, with marble, stone, wainscoting, or any other material in the service of decoration.

REVETT, NICHOLAS ; architect ; b. about 1721; d. June 3, 180t.

He risited Rome in 1742 and met James Stuart (see Stuart, J.), with whom he went to
streaked and spotted. Hard aud tough, aud with a close texture. Little used in America, but a farourite material with the Russians. Found in commercial quantities only in the Urals.
-G. P. M.
RHOEKOS. (See Theodoros.)
RIALTO, BRIDGE OF THE (Poute di Rialto). The ancient bridge which conuects the Rialto with the other large island of Tenice, Isola di San Marco. (See Bridge.)

RIB. A moulling on an arched or flat ceiling: but specifically and more properly, in medieval raulting, an arcb. generally moulded, forming part of the skeleton upon which rest the intermetliate cuncare surfaces which constitute the shell or closure of the rault. The crowning intersections of these arches or ribs are adorued with sculptured bosses. In quadripartite raulting the main diagonal ribs are called by that name and also arcs omives (see Ogire) ; each transverse rib is called arc
PLATE XIV

RIALTO BRIDGE
At Venice; connecting the two large islands, that of San Marco on the bridge, and a broader walk between. The building with arches on the Canalazzo previous to the nineteenth century. There is a double row of separate battlement-like picces is the Fondaco dei Tedeschi. It was built shops, and a sidewalk between each of these and the outer parapet of the toward the close of the eighteentli century and replacedl a bridge of wood.

RIB

dowblean, and each longitudinal rib, are formeret. To this fumbamental system of rils supplementary and subordinate ribs were afterward adderl, lividing the concave of the ceiling into many pancls, but in genemal these had no function in the construction. (See Lierne Rib,)

Diagonal Rib. In a ribbed vault, one of the two intersecting ribs extending from one corner of the compartment to that riagonally opposite. In Gothic vanlting, the diagonal ribs were generally semicircles; so that the wall ribs (formerets) and cross ribs (ares doubleatix) were naturally pointed to avoid the cupola-like form which would result from too great a difference in their respective heights. When the diagonal ribs were thus pointed, the cross ribs and wall ribs were naturally given the form of a more acute pointerl arch. (See Ogive.)

Laminated Rib. Same as Laminated Areh (whieh see umber Arch).

Lierne Rib. (See under L.)
Ridge Rib. A longitulinal rib sometimes used at the apex of mediaral vaulting.

Wall Rib. That one of the two formerets which is closely attached to the exterior wall of

Rib, Fig. 3: Roof with Ribs largely Non-constiuttional; English Perpendifular Style; Lierne Vault, S. Miry Reduliffe, Bristol; A.s., 1413.
the vaulting square in question ; therefore, parallel with and opposite the other formeret which is a part of the nave arch or the open arch leading into some other vaulted compartment.

RIBBING. Deeorating with ribs; the results of such treatment, especially as shown in the later vaulting of the Middle Ages, when non-constructive ribs were multiplied for the sake of decorative effect, and in the arabesques formed by intersecting ribs in the stucen ceilings of the Tudor period in Englamh.

RIBBON. A. A narrow belt of decoration in any material or in iolour alone.
B. In (arpentry, a thin strij) of bent wool, such as is used in shaping convex or concave surfaces. In ship earpentry, where it is more frequently used, it is called rib band.
C. A thin grooved strip of lead usel in glazing stained glass windows, or in setting the quarrels or pames in leaded sashes. (See Window, Part II.)
D. In the balloon frame construction of the United States, a light girt or similar piece secured to the faces of the studs, and forming a contimous tie around the buidding and suppriting the ends of the beans. RICAMATORI, GIOVANNI DE' (Giovanni da Udine); lainter and decorator; b. 1487 ; 1. 1564.

RICCHINI

Aceording to Vasari, he sturlied with Giorgione in Veniec alont bos. He was especially successful in decorative painting and stneco work, and was the chief assistant of Raphael at the Lorgie of the Yatican and in painting accesmores in the Lugria of the Farncsina, Rome. The decoration of the Villa Aladana, lome, is ascribed to him.

Crowe and Cavalcaselle. Rorphutl: Franceschini. Elogite di Cituremni de lidint: Maniago, storie defle lefle arti friutene; Vasari. Milanesi ed.

RICCHINI (RICCHINIO) FRANCESCO

 MARIA ; architect.Frum 1605 to 1638 he was supervising architect of the cathedral of Milan. He was also emploved at the Oipelate Maggore where he built the protal on the Via Oipedale. His greatest work is the Patazzo di Brera, the court of which is one of the finest in ltaly. He built also the Palazzo della Canonica and many other buildings in Nilan.

Gurlitt. Frescloiche des Baroolstiles in Italien; Ebe. Spüt-Renaissance; Buito. Duomo di Milanó

RICCIARELLI, DANIELLO DE (DANIELO DA VOLTERRA): praiuter and sculptor; b. 1509 ; d. 1566.

Ricciarelli was intluenced liy Sodoma, Peruzzi (see Peruzzi), Perino del Vaga (see Buonaccorsi), aud Michelangelo (see Buonarroti). He was a laborions painter aud left many pictures in the Roman churches. The most important is the Descent from the Cross in the church of S . Trinità del Monte, supposed to have been designed by Michelangelo. He assisted Michelangelo in much of his work.

Müntz, Renaissance.
RICCIO. ANDREA. (See Briosco, Andrea.)
RICCIO. ANTONIO. (See Fizzo, Antonio.)
RICHARD DE GAINSBOROUGH. (See Gainsborough, Pichart de.)

RICHARDSON, CHARLES JAMES : architect.

A propil of Sir John Soane (see Soame, Sir J.). He published numerous architectural works, the most important of which are: Architectural Remains of Elizobeth and James I. (1836, 1 vol. folio), and Studies from Ohd Enylish Monsions (t vols. folio 1811-1848).

Redgrave, Dictionary of Artists,
RICHARDSON. HENRY HOBSON: architect ; b. Sept. 29, 1838; d. April 27, 1886. -Richardson was born in Lousisiana. In 1860 he entered the Ecole des Beaux Ants under the direction of L. J. Amdré. The outbreak of the Civil War baving destroyed the resources of his family; be securell through André a position as draughtsman in a gorermment ottice in Paris. Returning to America in Ortober, 1865, his first commission was for a Enitarian church in Springfield, Massachusetts. This was followed by the construction of the offices of the Eoston and Albany

RICHIER

railroad in Springfich and a church in Medford, Nassachusetts. Uctober 1, 1867, he formed a partnership, with Charles Gambrill. In July, 1870, liichardson's design for the Brattle Street Church in C'ommonwealth Arenue, Boston, was successful. This Romanesque church is noted for its fine tower, bearing a frieze sculptured with colossil figntes. The best known of his works is Trinity Church in Boston, begun in 187^{2} and finisheed in 187T. In 1876 he was associated with Leopold Eidlitz and Frederick Law Olustead in the completion of the State Capitol in Albany. Fichardson built the Allegheny Court House (which see), Sever Hall in Harvard University, and numerous public and business buildings. In most of his works he followed a style of his own based on the Romanesque architecture of smithern France.

Yau Renssetaer, Henry Hobson Richardson and IIt Horks.

RICHIER GEOFEROY; architect.
Febrnary 17. 1451, Richier succeeded Jehan Foussel as muitre de lofure of the cathedral of Rouen. About 1458 be began the archbishop's palace at Rouen.

Deville. Recue des architectes de la Ville de Rопен.

RICHIER, GERARD ; architect and sculptor. A son of Ligier Richier (see Richier, L.). In 1511 he made the fireplace of the Salle des Grands Jours at Saint Mihiel (Ifeuse), France. In 1580 he went to Nancy, and in 1581 made the tumb of Perrin Lecuver in that city.

L'Abbé Souhaut, Les Richiers.

RICHIER, JEAN ; architect and sculptor.
Probably a son of Gérard Richier (see Richier, (.).). In 1609 he was associated with Michel Pierre in constructing the sepulchral chapel of the dukes of Lorraine for the church of the Cordeliers at Naucs. In $161 \frac{1}{t}$ he assisted in the fortification of that citr.

L'abbé Souhaut, Les Richiers.
RICHIER, LIGIER : architect aud sculptor; b. probably in 1506 at Saint Mihiel (Mense), France ; I. Aprił 11, 1567, at Genera, Switzerland.

His first work is the Nativity of Haton-Châtel (1523). In 1532 he execnted for the church of S. Etiente at Saint Mihiel the famous group of the Sepulchre, his most important work. In 1.544 he made the monument of the Prince of Orange for the cathedral of Bar-leDuc (Mense), France, and in 1545 that of René de Châlon for the church of S. Pierre in that city. In $15+7$ he made the monument of the duchess of Philipue de Gueldre for the Cordeliers at Nancy. In 1549 he made a design for the chapel of the Collegiate church of S. Maxe at Bar-le-Duc, and in 15.5.5 decorated this chape\} with sculpture.

Jos de Lisle, Abbaye de Saint Mihiel; Gonse,

RICKMAN

RINK

Soupture françatse; Batuchal, Dictionnaire; T'remblaye, sulesines.

RICKMAN, THOMAS, F.S.A. ; arehitect ; b. Jume 8, 1776 ; d. Jimuary, 1841.

In 1873 he was elected professor of arrhitecture in the Liverpoul Acallomy. His bestknown work, In Ittempt to diseriminute the Ntyles of English Inchitecture, was first pinted separately in 1817. He built a very large momber of churches in Engliturl.

Redgrave, Dictionary of I Irtists.
RIDGE. The line of meeting of two apposite roof slopes, especially the nearly horizontal edge which is seen against the sky and is often decorated by a Ridge Urmament or C'resting.

RIDGE AND FURROW TILING. (See Pan Tile, under Tile.)

RIDGE ORNAMENT. A cresting follow. ing the ridge of a roof often elahorately monled or having floral ornamentation of pottery or of lead over in iron skeleton.

RIDGE PIECE ; - POLE. The boarl or plank at the apex of a roof against the sides of which the upper ends of the rafters almot; sometimes ealled ridgeplate. Sometimes a second plank, called a false ridgepole, is secured above the ridgepole so as to form a cresting or a fommation for metal cresting.

RIDGE SPIKE. A fimial at the eml of a ridge crest, made of the same material as the erest (compare hip knob).

RIDING HOUSE. A building specially fitted up for riding horsebaek indoors. The essential part of the structure is the great hall which will generally be high in the midulle hecause of the construction of the roof, and maty be ventilated and also lighted in part from the centre of the roof. The floor is usually covered with some soft material easy for the horses' feet, and preventing noise. There will also be arrangements for bars for practice in leaping, and places reserved for spectators usually in the form of raised galleries. Some of these laalls are very large ; one at Moseow is sald to be 550 feet long, and one at Darmstadt has a roof given as 319 feet long by 157 feet broad in a single span. These buildings seem, however, to be comecterl with military training.

RIGGENBOCH, CHRISTOPH ; arehitect ; b. 1810 at Basel ; d. 1863 .

He was a pupil of Moller (see Moller) at Darmstadt and studied also in Berlin and Munich. He superintended the restoration of the minster at Basel, Switzerland, and built the Elizabeth Kirche in that eity.
seubert, Tïnstler-lexikoin.
RIGHT LINE PEN. (See under Pen.)
RIGHT OF WAY. (See Law ; Leristation.)
RILE, GÉRARD VON. (See Gérarl von like.)

RILIEVO. (See Relief.)

RINASCIMENTO. In Italian, a rehinth, espectally in the rense of Remaissance, the Italian movement of the fifteenth rentury. The term is used for the rebirth of literature, scientific investigation, and fine art, while Risorgimento (which sere) is often the tern for the ejorh historically considered.

RINGHIERA. (${ }^{\text {'onnerted }}$ with Italian Aroinuge, a pmblie address.) In Italian art, any place from which it was rustomary to speak in public: especially the baldony projerting from the prinefigal front of the Palazzo Publico, Palazza Communale, Broleton, and the like.

RING STONE. One of the stones of an arch which show on the face of the watl, or the end of the arch ; one of the ronssoirs of the face forming the archivolt. - W. R. II.

RINK. A building enclosing a large unobstructed area aml used for some form of skating.

The skating foor for ice skating should be at least 74 feet $x 170$ feet, insulated with at least 8 inches of rork and then made water tight either hy planking covered with tarred felt or asphalt mastic; it should be made tight along the sides so as to have a maximun depth at the drainage points of 12 inehes and at the sides of 7 inches. The top inch should be protected against cutting by means of a wooden strip. The refrigerating pipes shond be carried by means of strips placed jarallel with the short axis of the floor with semicircular depressions in them for the suppurt of the pipes. There shond be at least one drainage point from which connection should be made to a sewer controlled by means of a valve. The entire skating surface shoudd be 4 feet below the level of the spectators' platform, this in conjunction with a $\underline{-}$-foot railing affords a depression in which the cold air lies and makes it easy to maintain the ice hard and withont fog, and to maintain as well an agreeable temperature for the spectators.

The artificial ice is made by flooding the floor and freezing by either the compression or the absorption system, using either direct ammonia exjansion or cold brine circulation, the latter being very much sater and very much less troublesone.

The light must be very brilliant, a skating floor such as is desoribed requiring it least five hundred 16 e.p. lamps.

With a high roof and windows at the sides no especial provision need be made for ventilation. If the conlitions are different, then a fan should he provided, discharging cold air into the skating-lloor pit near the ire surface through ducts under the spectators' gallery, at four points, at least.

The rink for roller skating is arranged in the same way except that the skating floor should be made of sugar maple in - -inch strips, well nailed and planed smonth. - George Hill.

RIO

RIO. A stream or camal ; the term is an abbreviation of the ltalian Rico and is in use especially in the city of Venice, where it is applied to all the smaller water streets, that is to say, to all except the C'analazzo and Canareggis.

RIOTERRA. (Apparently a Venetian abbreviation of Rico (rio) termazato.) A street made by the filling up of a camal ; especially in Venice, whete, during the last forty years, a number of whl canals hatse been turned into streets which are gencrally wider and straighter than the ohl colli.

RIPLEY, THOMAS; b. about 1685 ; d. 1758.

In 1705 he obtainet the freedom of the Carpenters' Company. Faroured by Sir Horace Walpole, he became chief carpenter of the king, 1721, a place previonsly held by Grinling Gil)bons. He built Houghton Hall, Norfolkshire, from the designs of Colin Campbell, and from $17 \cdot 4$ to 1730 Wolterton House in the same shire. At about the sume time he built the Almiralty, in London, except the façate.

Steplen-Lee, Dictionary of National Biography.
RIP RAP. Broken stone more irregular in shape and size than Rubble; used in walls and foundations.

RIP RAP WALL. A stone wall without regularity of structure; as used in deep water.

RISE. A. The vertical distance between two consecutive treads in a stair; sometimes, the entire height of a tlight of stairs from landing to landing. (See Riser.)
B. The vertical height of the curved part of an arch, that is the distance measured vertically, as in an elevation, from the springing line to the highest point of the cursed intrados.

RISER. A. The upright of one step, whether the step be in one piece as a block of stone, or built up. In the former case, the riser is the surface alone (compare Jamb; Soffit). In the latter case, the riser is the board, plate of cast iron, or similar thin piece which is set upright between two treads.
B. By extension, the same as Rise. A stair in which the treads are separate planks, slabs of slate, plates of iron, or the like, is sometimes built without risers. (See Open Riser below.) In this case, an incorrect extension of the term is used, and such a stair is said to have open risers.

Open Riser. The space between two arljoining treads in a stair when such space is not filled with a solid riser. (Fee Riser.)

RISING JOINT HINGE. (See Rising Hinge, under Hinge.)

RISING LINE. In plumbing and gas fitting, the main which carries water or gas vertically or nearly so; the term often including the minor pipes and branches attached.

RISORGIMENTO. (See Rinascimento.)

ROBBIA

RIVA. A piece of ground along the edge of the water; a juay or terraced road at the water's edge. The worl is used for one of the larger water-side strects of Venice, especially the Rivel degli Schulemi.

RIVET. A short bolt or pin of wrought iron, copper, or other malleable metal, formed with a head, so that when inserted in a hole passing through two pieces of metal, the point or end projecting on the other side having been hammerel Hat, is second head is formed and the junction male thas permanent and effectual. Except when the rivets are small, this hammering out of a second or inner head is clone while the rivet is hot, so that hy shrinking in the process of cooling it may bind more closely the pieces which it is intended to unite. In this closer and more effectual bond exists the priucipal alvantage of risets over bolts and nuts.

RIVETTING. The process of uniting the various parts of any structural memher or framework of stone or iron by the use of hot or cold rivets, whether driven and headed by machines or hy hand. (See Iron Construction.)

RIVOLTATURA. (See Mosaic.)
RIZZO (RICCIO), ANTONIO DI GIOVANNI. (The Antonio Bregno of F. Sansovino) ; sculptor and architect ; d. about 1498.

Antonio lizzo should not be confounded with Andrea Briosco (see Briosco, Andrea) called Riecio. Antonio Bregno of Como, sculptor of the momment of the Doge Francesco Foscari in the church of S. Maria dei Frari, in Tenice, is probably also a different person. The only work which hears Rizzo's signature is the statue of Eve on the Arco Foscari, at the Doge's Palace, Venice, but the Allam ant other statues on the Arco are doubtless by him. Sansorino (op. cit.) ascribes to him the momment of the Doge Niccolo Tron in the Frari. Rizzo's chief work was the reconstruction of that portion of the cont of the Doges palace which was destroved by fire Sept. 14, 1483. He held the ottice of soprastente of this work until 1498. At the Doge's Palace, Rizzo built the northern half of the eastern wing (on the Riva), including the facade upon the court and that upon the canal. The Giants' Stair (which see, under Stair) was also built by him.

Bernasconi, La rita ele opere di Athtonio Rizzo; Paoletti. Rinascimento: Muntz, Renaissance; Perkins, Ithlith sculptors; Cicognara, Fabbriche di Tenezin; Meyer, Dis I enezianische Grabdenkmal; Zanotto, Paluzzo Ducale; Sansovino, Yenetin.

ROBBIA, ANDREA DELLA ; sculptor; 1). Uet. 28,1435 ; (l. Aug. 4, 1525.

A nephew of Ltta della Robbia (see Robbia, Luca della), and assisted him in developing the art of colouring terra cotta with stamniferons glazes. The scheme of colour employed by Luma was always simple, and Andrea usually confined himself to blue and white for the figures, re-

R.OBBIA

serving polychromatic decoration for the accessories. He is less severe and devated in style than Luca. The only work which eatu with certainty he ascribed to Amlrea is the motable of the church of S. Maria delle (arazie at Arezzo (see Benedetto da Maiano). The works of the members of the family can hardly he ristinguished (sce Robbia Work).
(For bibtiography, see Robbia, Luca detia.)
ROBBIA, GIOVANNI DELLA ; sculptor; b. May 8, 1469 ; d. about $15 \% 9$.

One of the seven sons ol Amdrea della liohna (see Robbia, A. (lella), of whom five aphear to have assisted him in the development of the family specialty of colouring tera cotta with stanniferous glazes. (See liobbia, Luea della; liobbia Wock.)
(For bibliography, see Robbia, Laca della.)
ROBBIA, GIROLAMO (JEROME) DELLA ; sculptor aul architect; d. Ang. 4, 1566.

Girolamo was the goungest son of Andrea della Robbia (see Roblbia, Andrea della). Nothing is known of him until he went to France, pobably hetween 1525 and 1528 . In a document dated Febs. 5, 1529, Jerosme de Robia, taillpme l° zmurges el esmailleme is mentioned as associated with Pierre Gadier, Metistre Macon in the constrnction of the Chatean din Buis de Boulogne (known as the Chatean de Madrid, ind destroyed in the eighteenth century). IIe appears in the reconls of the building until 155%, and he was either its architect or the designer of the terra-cotta lecoration, which was destroyed with the bulding.

Marquis de Laborde, Le Châtorn du Bois de Bomlogme; Marquis de Laborde, Let liennisstme des Irts; l'alustre, Lat Remaiswance en Fiance: Jacques Andronet du Cerceau, Lr:s plus excellemts bastiments de Froncr.

ROBBIA, LUCA DELLA: senlptor; b. 1399 or 1400 ; 1. Feb. 20, 1482.

The principal member of a family of sculptors in Florence in the fifteenth century. He was apprenticel to a goldsmith. The best known of his works and the earliest which ean be dated with certainty is the marble cantoria which was formerly in the eathetral of Florence and is now in the Museo Nazionale (Bargello). It was begrn in 1430 and finished about 1440 . The empanion piece is by Ihmatello (see Donatello). between 1437 and 1410 Luca made five hasreliefs, completing the scries begmo by Giotto (sce Ciotto) in the first story of the Campanile. Florence. The bronze doors of the sarristy of the cathedral of Florence were hegun by Luca with the assistance of Michelozzi (see Michelozzi) in 1447 , lut not placed mutil $1+7 \cdot$. In 14.55 he began the marble monmment of the bishop lonozzo Ferlerighi in the churd of S. Francesco di Paolo near Florence (finished 1451).

ROBBIA WORK

To Luca is due the application of the art of glazed terra cotta to figme scolpture and to clahorate architectural decoration. He was assisted and suceceded hy varions mombers of his family (see Roblia Work). Laca's callest work in labbia ware, of which the date is known, appears to he the bas-relici of the hismorection over the dowe wh the suctristy of the cathedral of Florence (1443). The Aspension alko in the athedral was made between 1446 and ltyo. A series of medallions on the ficemles of Or S . Michele (Florence) are among his carlier works. The works of Luca are more scvere in style and more simple in colom than those of his suceessurs.

Mared Reymond, Les dulle Itoblin; Cavallucei Molinier. Les dellet limbloit; Stegmam, Die Bitderhunerfomilip drlla Redhbia; Marquand, Innting delle Rubluess in Ituly; Vasari. Milanesi ed.

ROBBIA WORK. Glazel terra-cotta work of the Della Foblia family.

This decorative material, though known to the ancient Egyptians, Bahylonians, Assyrians, and Persians, seems to have been introhnced into Europe by the Saracens and applied by them ouly to the minor arts. It assumed monumental importance in the hands of Luca della Robbia, a Florentine sculptor of mosimal skill and refitement. Work in this material beeane the exchusive octupation of his nephew Andrea, five of whose sons were sculptors. These sons spreal their probluctions in various quarters of Italy. Giowami sent examples of his art into many small towns of Tuscany, Fra Ambrogio to the region about Siena, Fra Mattia to L'mbria and the Marches, Luca the younger to liome, and Crirolamo to France. Giovanmi was succeeded by Benedetto Bughoni and by Santi Buglioni ($1494-1576$), who continned the practice of the art until late in the sixteenth century. A south Italian somptor, Maestro Jacopo da Eenevento, is represented by a signed altarpiece of glazed terial cotta, and there are many momments of the fiftenth and sixteenth centuries made of this material which eamot he assigned to any member of the Robisia School. some eare is sometimes required to distinguish this class of Renaissance scolptures from the similar works and copies made by Bastianini, Novelli, and Crazian in the early part of this century or by the C'antigalli or Ginori companies of the present day.

The glazes ased by the different members of the lioblia School varied in quality. Luea's glazes were bard and brilliant, while those of his successors proved to be in many eases less durable. Lu'a's haniling of colonred glazes was masterly, and the results harmonions and refined. Andrea's attempts at polychromy were less successtul and Giovami's frecmently atrocions.

The Rohhia family applied glazed terra cotta to many kinds of arshitectural decoration.

ROBBIA WORK

Parements were made by the elder Luca for the palace of Piero di Consimo dei Medici, he Andrea for the chapel of s Lorenzo in the Collegiata at Empoli amd by the younger Luca, after designs hy liaphael, for the latmie of the Vaticam. The earliest lioblia pavements showed some trawe of sataren influence, which, howerer, wats soon rephaced by more distinetively Italian designs. (ilazed terra-cotta ceilings were matle Ly Lual for the Medici palace, for the rotumla of the purch of the Pazzi chapel, and by Andrea fior the porch of the cathedral at listoia. some of these may he riewel as substitutes for the marlde-cottiered ceilings of classic architecture, others for the mosaiccovered vanlts of liyzantine type, but the designs have in addition the charm which comes from the naturalism of the early Renaissance. Melallions, not infrequently set in frames representing fruit and thowers, decorated the centre and corners of vaults, as in the Portogallo chapel at San Miniato, or the spandrils of the arches of an arcale as in the borehes of the Imorenti hospital in Florence or the Ceppo hospital in Pistoja, or were arranged in horizontal lines. as in the Pazzi chapel. Medallims, rectangles, and other simple forms were fremuent! used for heraldic emblems.

The minor towns of Tuscany contain on the walls of their public buidlings hundreds of coats-of-arms in glazed terra cotta br the Robbia School. Continuous friezes were not commonly made of this material. Luca attempted them on a small seale on two badlachinos at Impruneta, and Andrea made a terra-cotta frieze around the interior of the dome of S. Maria delle Carceri at Prato. It was reserved for the pupils of Gioramni to make the sery striking frieze of the Ceppo hoopital. Not a few lunettes were made by the Rolbias, as, for example, the pointel-arched lunettes in the Florence eathedral br Luata, the round-arched lunette over the entrance of the cathedral at Prato by Andrea, and the polychromatic lunette by Gioranni, recently actuuirel by the Brooklyn Institute.

Many magnificent altarpieces in glazed terracotta may be crelited to this schoul. Their pilasters and capitals and friezes and mouidings are charming examples of Fenaissance architectural desigu. It would be diftieult to find a more exquisite momment of its kind than Luca's tabernacle, which serves as an altarpiece in the chapel of the Holy C'ross at Impruneta. Andrea is. however, mucls more abundantly represented by heautiful altarpieces in many Italian towns outside of Florence, especially at Arezzo and La Verna. I'erhaps the most perfect of his altarpieces is the C'oronation of the Virgin in the Osservanza near Siepa. A good example of such altapieces is the Assumption

ROCAILLE

of the Virgin in the Metropolitan Museum, New York. Many inferior, highly coloured but partially glazed altarpieces were made ly the pupils of Ciovami for the smaller villages of central Italy. The figured composition in these altar-pieres are in high relief. Sculptures in the roumd, like the beautiful gronp, representing the Visitation, which Luea made for the chureh of S. Ciuranni at Pistuia, were not common.

Pavements, ceilings, lunettes, friezes, medallions, altarpieces, statues, by no means exhaust the list of the applications made by the Della Rohbia family of glazed terra cotta. The churehes of central Italy are abundantly supplied with Robbia tabernacles, and Rubbia fonts, caulelabra, and vases are not rare. Thus the new technipue was applied systematically in many directions, where previously more expensive methods of marble and metal senpture, of mosaic and tempera painting hat prevailed.

- Allal Marqland.

ROBERT DE COUCY; architect; d. 1311.
The architect of Reims cathedral, after the the fire of 1211 , was either Robert de Coucy or Hue Libergier (see Libergier), who becan the church of S. Xicaise at Reims in 1229 . The Rubert de Coucy known to the records became architect of S. Nicaise at the death of Libergier in 1263. He was also arrhitect of the cathedral if Reims at this later time.

Gonse. L'Atr Grathique: Cerf. Vatre Dame de Reims; Tarbé. Notre Iome de Rrims: L'Abbé Tournear. Description de Votre Dame do Reims; Bauchal, Dictionncire.

ROBERT DE LUZARCHES. (See Luzarches, Robert de.)

ROBIN. PIERRE; architert.
He marle the plans of the church of S . Maclon at Ronen about 1437 and conducted the works on that building until $1+50$.

Bauchal. Dictionnaire.
ROBUSTI, JACOPO. (See Tintoretto.)
ROCAILLE (n.). A system of decoration suppusel to be founded upon the forms of rocks, or uron the artificial rock work of the seven-teenth-century gardens to which were adsed shells sometines of real, sometimes of imaginary shapes. The ornament soon passed into a system of sorolls combinet with abundant Horal and wher carving, with gilding used freely, aul paintings in panels. This system of ornamentation was used equally for the wood-lined interiors of handsome residences and choirs of churches and for the smallest oljectis of familiar ornamentation, such as the little boxes of gold, ivory, and tortoise shell used for smuti and bonbons, small toilet articles and the like. The essence of the style is that these curves shall never be continuous for more than a short alistance, nor make more than one double curve like the letter s, without breaking off to hegin

ROCK-CUT BUILDING

again abruptly. (See Meissonier, and the collective erlition of his works cited.) - li. S.

ROCKCUT BUILDING Exeavation in

Rock-cut butlding: Tomb at Telmiseus, Asla Minor; Plan.
native rock without the aid of masomry, or with but little masonry. Tombs so excavated are common in Egypt, Lycia, Petra, Etruria, and Jerusatem, rencrally presenting an arthitectural front only, with dark interior cham

ROCK WORK

Fllora, they are entirely isolated from the native rock mass from which they were cut, presenting within and without all the appear-

Rork-cut Puilining: ' 'omb at Telmissus; see Plan.
ance of structural buiklings, though aetnally momolithic. - II. V. B.

ROCK FACED. Same as Quarry Faced. (See Stone Cutting.)

Ruck-cut Building: Underground Kitchen, Village of Monijebia, Syrta.
bers, of which the sections are supported by masses of stone left in the form of solid pillars. Temples so excavated occur in Nubia, as at Ipsamboul, and in modern India, where, as at
rock temple. (Sen Rorkent Fuidling.) ROCK WORK. A rough and purposely irregular combination of stones, broken bricks, and other hard materials, with rement mortar

ROCOCO ARCHITECTURE

pouren over it, aml earth, pelibles, and the like filling the caritios, sometimes having grass amd small phants growing upn it ; the whole intended as a garten teerotation in what was suppused to lie a maturalistic style. This device was common in the eightenth eentury, anul its prevalemer is supposed to have had to do with some of the features and with the names of the decorative styles of the time. (Sier limaille: Romero.)

ROCOCO ARCHITECTURE. The archi-

Rocuco Arfhitecture: Eabliest Type; Duorhay at Toulurse, Fraxce.
tecture of the century hegiming about 1660 A.D. in so far as it is marked by a certain exeess of curvature and al lack of firm lines and formal distribution. The term is of French origin, in spite of its Italian appearance, and was apparently derived from the term Rocaille. The characteristie decoration of the style is hardly seen in the exteriors of buildings, or at least hardly in the walls, jurticoes, etc., but these are elaracterized by great boldness in deviation from the chassical orders as described

ROESNER

and drawn by Vignola and other authorities. The capitals of columns assume new forms; wreaths and festoons adorn the Ionie capital; the entablature is sometimes cut into pieces, or wholly changed in its propmertions to allow of a story of windows; there is a tendeney toward setting piers and Hanking huttresses, with an angle projecting in front, so that the plan of the luttress is approximately triangular; there is a disposition to use irregularly carved window heands and door heads, and to "nen winduws of romed and oral shape in musual places; the halconies have commonly wroughtition railings, and these are of fintastic curvature both in plan :uml vertically ; sculpture of human figures, either complete or used as caryatids and telamones, is very much diversified in pase and gesture. The characteristic interior decoration is composed of serolls which pass into each other abruptly, as described umler Rocaille. There is also in the interiors a singular indifference to the constructive character of the design, the walls passing into the flat ceilings through a very large eore, which is not limited to horizontal lines either at top or bottom, but when seen from helow is difficult to determine as to size and exact location. These strange coves are often filled with very elaborate and highly finished painting, a contimation often of the composition with which the reiling is filled. Openings also fill the wall atoove doors anh winlows. (See Oterlour ; Dessus de Fenêtre: Dessus de l'orte ; also Churrigueresque.) - R. S.

ROD. A piece or strip of wood, such as conld he cut out of a plank; that is to say, about 2 inches square; as used by carpenters for setting out their work. Such a strip of wood, marked with leet and half feet, and sometimes with inches and half inches for a part of its leugth, is generally cut exactly 10 feet long, aml is then called by the workmen the Ten-foot Rod.

Lightning Rod. (See under L.)
Picture Rod. A roll serving the same purpose as a l'icture Moulding (which see under Moulling).

ROESNER, KARL ; architect ; 1. June 19, 1804; 1. I867.

He was educated at the Academy of Tiemma and in Italy, and was appointed Professor of Perspective at the Acalemy in Viema. Professor Roesuer was espeecially attracted to early medieval architeeture and built many Romanesque churches.

Seubert, Ï̈nstler-lexikon.

ROGER

ROGER (I.) : Archbishop of York.
Roger, Archbishop of Fork from 1154 to 1181, began in 1171 to build the original Norman choir of the cathedral of lork (England), of which the crypt remains.

Browne, Metropolitan Church of S. Peter, York.
ROGER (II.), abhot.
The elerenth ahbot of Mont Saint-Michel. He repaired the nave of the church of his abbey, which had fallen in 1103 . After the contlagration of 1112 he repairel the buildings of the abbey, and erected the constru'tions to the north of the nave of the church. The

ROLL

études iconogronhirpues et archéoloriques (Tours, 1874 , こ vol. folio), La Messe, études Archéologiques sur les Monumpnts (Paris), 1883-1889, 8 vols. 4 to) ; Lat Namte Vierge, études arshéologiques et icomomruphiques (Paris, 2 vols. folio, 1878 , ete.).

Bellier de la Charignerie, Jictionnaire; Bauchal. Dictionnaire.

ROHAULT DE FLEURY, HUBERT; architect; b. J7TT; (l. 1846.

A pupil of Duramd (see Duramd). He won the premier grund prix de Rome in 1802. In 1806 he was appointel inspector of the works at the Are-de-Triomphe de l'Etoile.

Rococo architecture: Early and Goud Decoration from a Chiteal at Bercy, Paris; now Destroied.

Merveille, usually ascribed to him, was not erected until the heginning of the thirteenth century.

Héricher, Mont Sifint-Wichet; Corroyer, Mont Saint-Michrl.

ROHAULT DE FLEURY, CHARLES;

 architect; b. Sept. …, l80l ; (l. Ang. lㄹ, 1875.A son of Hubert Rohault de Fleury (see Rohanlt de Fleury, below). He was ducated at the Eicole Polytechuique and the École des Bermax Arls (Paris). In 1833 he was appointed architect of the hospitals of Paris, and about 1837 built important works at the Jurdin des Plrentes. He was associated with Hittorff (see Hittorff) in designing the homses in the Plate de l'Étoile (Paris). Chatles Rohault de Fleury is best known by his important works on Christian archeology : L'Écengile,

From 1817 to 1833 he was architcet of the hospitals of Paris. He built important public elifices in Paris.

Bellier de la Chavignerie, Dictionnaire; Lance, Dictionnaire.

ROLL. A. A nearly cylintrical member, comparatively small; especially a rounded strip of wool fastencl to aml contimums with a ridge or hip of a roof; a false ridge pole. (See Pitge Piece ; - Pole.)
B. In a roof of lead or other metal, one of a series of rounded strips of woml secured at regular intervals along the slope, aml extending from the ringe to the eaves, over which the ends of the roofing plates are turned and lapped, thas preventing the crawhing of the metal by alternate expansion and contraction.

C'. A similar romderl piece made by the 300
metal sheathing alone, or with the smpport of a worden battern.

ROLL AND FILLET. A round moulding, larger than a heal, with a fillet on the face of it - characteristio in string courses and labels of the midelle amd late mediseval preriods.

ROMANESQUE ARCHITECTURE

the lionam. The name hats been most commonly restricted to the distinct and homogeneuns style that was evolved in W"estern Europe in the ninth, tenth, elerenth, and twelthts centuries, leaving the name of Latin (see Latin Architecture) for the transitional strle which

Rucocu Architecture: Perfected Interior Decuration: c. 17tio; Brychsal os the Rhine.

ROLLED IRON. Iron pressed while in a heated state into sheets or bars of any form by passing between heary steel rollers in a rolling mill.

ROLLOCK. One ring of a rollock arth (which see unter Arch): or one solich of such a ring.

ROMANESQUE ARCHITECTURE. Generally the architecture of Europe between the Foman period and the Gothie: a term applied to it long ago, becanse this architecture was recognized as a closely related variation from 307
bad intervened betreen the breaking up of the Foman in the fourth century and this: but it may be brondly used to coser the interval from the fourth century to the apparance of Gothic in the latter half of the twelfth. The Romanesque was emphatically the architecture of the round areh and the vanlt, as the Greek had been that of the order and the lintel, and the Roman a compromise between the two. It took its start, it has heen saill, elsewhere (see Latin Architecture) from the time when the column was first used as the direct support of

ROMANESQUE ARCHITECTURE

the arch rather than of the entablature, to which it was inseparably joined in the ('lassie styles, the earliest known example being in Diocletian's palate at gibalato (see Creso-Sioman Architecture). Ibut the change remanomburren till the ninth century, and the development from the union of the arth aml columm, and the use of vaulting in common with them which gave the new style its character, did mot hegin till then. The style hats heen called Lombard where it appeared in Italy, and has been aseribed to the builders of the Lombarl kingelom in Italy; lout its beginnings did not appear till that kingdom lad been dostroyed by Charlemagne, aml it wats practically worked out simultancomsly matar Toutonit inthomes in Italy, France, and Germiny, one comatry heing now in the lend and now another, anu with considerable lucal differences in detali, yet with an all-perviuling unity. In the cleventh century it sprad into England, where it appears as the style often called Norman, and later into the semdinavian comentries.

Up to the nintlo century the basilican plan, adopted in Italy and derived from there, was the typheal plan for churches throughout liurope, wherever the intluence of the Byzantine empire dinl not reach, although there were churches of a lifferent type, roum or polygonal, such as Charlemagne's at Aarhen (Aix-la-Chapelle), S. Vitale at lavema, and others of the kind (see Found (hurch). These last were exreptional; the basilican was the type which had been developed with the ritual of the Western Church,

ROMANESQUE ARCHITECTURE

Rocucu Architecture: Stochholm, Sweden.
and out of which the arehiterture of the Midde Ages was evolvel. In the nintly century the storm of invasion, which hat lulled for two centuries, was renewed over a great part of Emrope by the Northomen, the Surarens, and the Hons, more destruetive than the carlien invaders; chureltes were destroyed ly lumilreds, aul the prugress of architecture was thecked. The tenth century was a perion of general depression and porerty, of pulitical comfision, of disorder in the churel. But before the ent of the century the conditime of Europe had begun to mend, ankl with the oprening of the eleventh cime a great architectural fervour which was to last for centuries, and in which new forms of building were rapudly developed. The steps of transition are olseure, but from this time the Romanestue type of clurch, which set the form for the Mithlle Ages, began to take shape. This was the cruciform type, which, heing continued on a great scale through the twelfth century, was followed in its main liness ly the Gothic of the thirtcenth and fourteentl, and so fived the type for the whole of the Middle Ages. The basilican plan was nut emeiform, though it is "ften so callent. In the crucifom the nave and transept interpenetratel; the nave, emintimel across the transept, made the eastem arm of a Latin cross, and the square space in which they met, which we call the

Romanesote architecture: Earif ltalian Type. disiTINGUTEEFD FROM LATIS AREHITECTUEE; CHAPEL AT Bielle, Piedoust: Sth Century A.d.

Romasesqce ArehiTECTIRE: EARLE Frevi h: CHCR Hof Vhesory (Mirse); 10тн Cestury ; Plan.

Romanesque Architectire: Byzantine Type; Capitals from Yenice and Murano.

ROMANESQUE ARCHITECTURE

erossing, belonged architecturally to both. In the basilica the apse was cut ofl from the nave by the transept, in which the service was performen; in the cruciform, when the nave, prolonged throngh the transept, made the castern arm, the apre was joined to it, so that the two together mate the choir, which only when much space was needed for the clergy was prolonged across it, or even down into the western am. Thus the nave, by virtue of its contimuity, gained the predominance which had belonged to the transept. The two were usually built on the same system and of the same dimensions except as to length, so that the crossing becane square. The aisles, ton, were sometimes continued across the transept, flanking the contimuation of the nave, and in the twelfth century even round the apse. The orientation of the basilicas was followed, except in some parts of Italy, the churches tacing the west, with their apses to the east, and occasionally smaller churches were built without transepts, like the smaller basilicas.

But a lifference as marked as the change in plan from basilican to crueiform, and even more important to the construction and aspect of ehurehes, was the change in covering them. The basilicas were roofed and ceiled with wool; their construction was proportionally slight ; they often fell to pieces, and great numbers of then were bumed. The desire for more permanent and more monumental buikings grew with wealth and architectural experience. As early as the eighth or ninth century vaulted crypts were built muler

Kumanesque Architecture: English, c. 1140 ; Church at Northamptun.
churches at first barrel vaulted, afterward groined in Roman fashion ; but it was long betore the medieval buikers got skill to vault the parts above ground. It is difficult to trace out the line of progress in times and places, but it is clear that the aisles, being lower ami narrower, were first vaulted, and that this was first dune

ROMANESQUE ARCHITECTURE

in the round churches. It was lone in Roman fashion, with barrel vaults and groins ; but the difficulty of vaulting the irregular obligue divisions of the aisles of the octagonal churches led to dividing the vaults into small compartments by cross ribs. This system, extended to the aisles

Rumanesque Architecture: Church of Vignory; see Plan.
and finally to the naves of the long churches, led to lividing them throughout into regular bays which conld be huilt one by one, and greatly facilitater the construction of vaults. In early experiments barrel vaults, both longitudinad and transverse, were frecly used, but they were heavy and uncomely, and soon gave way to groined vaults, which, by eollecting the thrust at their points of support, couhd be stayed by there increasing the thickness of the wall and pier. In the course of the eleventh century the halit of groin vanlting the aisles in square bays became general in the north, and probably in that part of Italy where the Tentonic inthence was controlling. The greater lifticulty of vaulting the naves led to varions efforts ami many failures. It was neeessary to increase greatly the weight of the clearstory walls, and elaborately contrabut the thrust of the high vaults, In the middle of France by the end of the eleventh century a method was devised of covering the nave with a barrel vanlt, round or pointed, and abutting it by half-harrel vaults over the aisles, whose crowns reached nearly to the springing of the nave vault. There are examples in S. Etieme at Nevers, Notre Dame-du-Port at Clermont-Ferrand, and in the abbey

ROMANESQUE ARCHITECTURE

of Fontemy: For the sume purpose were used barrel vinlts, whose axes are at right angles with the axes of the aisles. But the thrust of the main vauk along the whole clearstory wall was still ditlicult to meet: the chearstory wats larkenal or wholly closed by the aisle vanlts, the interiors were hary and dark, and the system did not prevail.

ROMANESQUE ARCHITECTURE

story walls, rising high above the aisles without a trace of buttressing, and so thirk that an arcaded gallery is carried through them under the eaves above the springing of the raults. The Frenel builders, more inventive, tried every means to lighten their construction. Sometimes they tied the vaults aeross with iron, stiffening the clearstory walls with tim-

Here the divergence of the French builders from the German and Italian is conspienons. The Germans and Italians, averse to louttressing. trusted, in Ronnan fashion, to sheer weight of masonry, using thiek walls, massive piers, and narrow opemings, maistaining even to the thirteenth century the aspect of massive breadth, diguity, and repose that marked their early Romanesque. In the cathedral of Speyer the thiek-shelled raults, a hundred feet high, are balanced by the mere weight of the clear-
hers, which in time rotted away. Sometimes they relied on buttresses applied to the clearstury, and those, too, at first betrayed them. At last they invented the Hying buttress, set across the aisles at the springing of the main vault above the piers. They built their vaults on independent ribs, transverse, diagonal, and longitudinal, which bore them like a permanent seaftioding. They lightened the shells of their raults and the clearstory walls between their buttresses as much as possible, expanding the

ROMANESQUE ARCHITECTURE

windows, and shortening the bays of the haves; and finally, equalizing the lecight of the ribs and levelling the crown of the raulting ly the use of the pointed arch, they lesl the way to the wonderful nevelopment of Gothic in the thirteenth century.

This was unt achieved without many failures; the ehronicles of the eleventh and twelfth eemturies are full of stories of churehes which tell down som after they were built, or were soon destroyed to make way for new experiments. The ernciform slape and the arrangement of aisles and transept heing presupposed, the church was designed to suit the vaulting rompartments, so that these berame the units of the phan, and it has been said that meelieval churches were planned from the top downward. In Roman architecture, wherever an cutaldature, an areh, or the pendint of a vault abutten against a wall, a column or a pilaster was provided to receive it. This principle, carried out in Byzantine architecture and in the roum and polygonal churches of the early Romanestule, produced the compound pier, and, where arches met at right angles, the cruciform pier. In the north, and in Italy when the supply of columns that could be got from the Foman lonidings was exhansted, piers were the natural supports of the arcales. The plain supare prier, when a pilaster was added to it on one side to receive the cross rib of the aisle vault, touk the shape 1 , and when the main arrhivolt was broken into steps by adling a sub arch,

the shape B. As the workmen gained skill half columens were sulsstituted for the pilasters, and the forms A^{\prime} and B^{\prime} resulted. When pilasters or shafts were carried up on the side of the nave to receive cross arches or vaulting ribs, or sometimes even the roof trusses, the piers took the forms C and D, whieh last may be taken as a typieal form of pier in a developed Romanesque church. As the style pro-

ROMANESQUE ARCHITECTURE
gressed the plan of the piers grew varied and compliented; a representative of every sul)division of the arches and wery vaulting rib was gatherel into it. The rompund piew eame

Rumanesque Architecture: lobrch, Kelso Abiser, Soutlanio f 11130 .
to he used even in churches which were not intended to le vaulten, as we may see in S. Miniato in Florence. Un the other hand, in churches here and there columns continued in use, increasing in size, and bearing on their capitals the groups of shafts and the steppel archivolts above them, set either continuonsly, or oftener alternately with piers. The eharm of an alternating arrangement of piers and columns, or of lighter and heavier piers, seems to have early caught the eye of the German and Itatian buiders, though the Freuch made little use of it. The German system found in this exactly the provision of supports it needed, for it was based on equal vaults intersecting in square compartinents, the natural result of the Ruman system. Their naves being twice as wile as their aisles, the bays of the nave were twice as large as those of the aisles, and each of them covered two arelies. It followed that while every pier or colnmu carried a shalt from a groin of the aisle, every alternate one carried also a shaft from the nave vault. Hence every other pier was a heary one, and the alternate ones were lighter, or in many cases were replaced by columns. This arrangement gives a pecnliar charm to many interiors in the German Romanesque or so-called Lombard style, and to some in England.

The intersection of nave and transept in the erueiform chureh gave special arehitectural im-

ROMANESQUE ARCHITECTURE

portance to the crossing, which before long came to be covered with a clome, or at least with a ranlt higher than the rest, perhaps in reminiscence of the Byzantine method. Orer it a large tower was ofteu built, a habit which lasted long

in the churches of Jormandy of a later style. It early became a habit to carry an interior gallery above the main areades and under the aisle roofs, opening into the nave through an arcade of small arches, usually borne on colonnettes, and treated with greater richness than the principal arches below. This gallery, called
-men from women or monks and nuns from the laity, - and answered to the Gynæceum of the Eastern churches, from which it was doubtless derived. This upper gallery or aisle appears here and there all over Europe, for instance, in S . Ambrogio in Milan, in the Abbaye aux Hommes at Caen, the cathedral at

ROMANESQUE ARCHITECTURE

Peterborougl, and the Minnster at Aachen. The triforium itself, usually a mere open arcalde, became almost universal in churches of importance, a very eflective element of their interior composition, whose triple vertical division, into two contrasting arealles with the windowed elearstory above, was the theme of endless picturestue variations.

The exteriors of elurches developed in correspondence with the interiors. Insteal of the single detached campanile of an Italian chnreh a characteristic group of towers grew up about a German church, all intimate parts of its design. Usually there was a tower at the erossing with a lantern, often a pair at the west end, often a pair flanking the eastern arm, sonetimes a second lantern over the narthex, which in German ehurches was often in two stories, and at times all these were combined in one builling, as we may see in the abley of Laach, or the eathedral of Speyer. The massive walls needed to stay the vaults, and harily reenforced with buttresses, were divided by flat pilaster strips, which often merged in romid-headed panels enclosing the round-arched windows, or were continued up till they were lust in the arcaded and corbelled cornices rumning up the gables with which the fronts of naves and transepts were finished, and were a marked characteristic of the style. The towers, lighted by small windows which multiplied with the ascending sturies, in gromps divided by small colomettes, were at first mostly round or octagonal ; the later ones more commonly siquare, and in Germany and Italy they were regularly covered with pointed roofs, conical or pyramidal. The French buikders were more sparing of towers than the German, and were apt to employ only a pair, or a single one which they commonly placed over the crossing or the west porch. Upon this they lavished great richness, developing the roof into a stone spire, decorated with pimaces and lucarnes, which even before the transition to the Pointed style became a beantiful and elaborate composition.

The favourite ornamental features of the Lumanesque builders were arcades and colonnettes. Areales were used in the utmost profusion, especially in the north of Italy and along the Rhine. Open or blind, they were carried about the sides of cloisters, along blank walls, over the fronts and even the flanks of churches, under eaves, and up and down the slopes of gables. Colonnettes were multiplied unceasingly ; clustered about doors and windows, anl supporting every

ROMANESQUE ARCHITECTURE

areade, oceasionally set in rows for their own sake alone with no arches to earry, as on the front of the Pieve at Arezzo. The decorative instinct of the workmen expressed itself chiefly in ornamental sculpture, neglecting the early Christian art of pieturial mosaic, and making painting subordinate, as it had been in classie times. The earving, which was chietly accumulated upon eapitals and string courses and about doorways, and which at first was based on classieal and Byzantine models, took a new direction mader northern influcnces, abandoning the classical types, the acanthus and basket work, for a lavish development of animal forms, human faces and figures, even narrative seenes, and florid interlacing foliage. A kind of eapital which is ealled the cubic or cushion capital, in its underlying form a cubical block with its lower corners rounded away to meet the shaft, and which was originally a Byzantine form, as

Romanesque Architecture: Capitals uf Porfh, St. Peter's Chureh, Nokthampton; c. 1160.
we may see in S. Sophit at Constantinople and many other Byzantine churches, was adopted by the Germans both in the north and in Italy, probably at first because of its simplicity, and elaborated into a thousand vichly decurated forms. It is a distinct mark of the Lombard style, in Italy and Germany, and thongli banished from the centre and south of France, is found abundantly in Norman churches loth on the continent and in Englant. The doorways were adorne? with peculiar richness, their jambs erowded with shafts, the arehes with decorated mouldings, the tympanums sculptured with Biblical or legemlary stories. In Italy elaborate projecting porches were built over them, carried by colunns which commonly rested on lions or fabulons beasts.

It is diffienlt to trace the transition from Latin arehitecture to Romanesque. Though the two styles were continnons in development, they were the products of different conditions and of

Romanesque Architerture: Abbey Cherch at Maflbrus.

ROMANESQUE ARCHITECTURE

different races. The basilican was of southem origin: it is its peeuliarity that it scarcely changed sluring the five centuries in which it was practised. Born perhips in the East, it was developed in Italy; its momments are found there, and have influcnced the forms of many later churches. It was evidently the work of secular builders. Italy was a land of cities, and well provided with bibders, who were formed into guilds or something like them even in the days of the Empire. ant were succeeded loy the Lombard masons, whose reputation was great through the Diddle Ages. The churches in Italy, founded by bishops or secular pinces, or even by colonies of monks, were loulitless built by these semlar workmen. The condition of Ganl at first was approximately that of Italy. The coasts and the ralleys of the Fhone and the Phine hat a fringe of Roman rities and civilization; the invanions of the fifth century left things here very much as in Italy, and their early Cluristian arehitecture was an echo of the Italian. But in Germany, between the Phine and the Baltic, there were no citics before the reign of Charlemagne. He and bis successors founded a few towns: but the settlement of Germany was practically the work of the monks, whose monasteries, established for the courersion of the natives, became the nuclei of communities from which most of the cities sprang. The invasions of the ninth century thew back civilization in Gaul, and left it almost as bare of churches as Germany. The evolution of a new architecture began alike in both countries and in the Germanized parts of Italy at the hands of the invaters. To apportion among the three comtries their shares in the working out of the new style is not easy. I P to the Carloringian period Italy was the learler: the north lookel to her both for example and workmen. When, at the end of the tenth century, buikling revivel, it was with an astonishing fervour, which contimed all ower Europe for three centurics, and the leaders seem to have been for a century at least the monastic buiders of the north. The Benedictine Order in its two great branches, first the Clmmisian and afterwarl the Cistereion, spreat its monasterics with great rapidity over Europe, and in the north filled the racant districts with its commmities. North of the Alps and away from the large rities the monks, and especially the Benedictines, were the buillers of Europe, which was bestrewn with their churches. Isolated and self-dependent, they gathered about them great companies of workmen, whom they organized into regular schools or guilds, and among whom the art of buidding jrogressed very fast. There grew up among them a body of lay brothers, attiliated but not cloistered, and untonsured, subject to the Orler, who migrated from place to place, building churehes and convents. Through the

ROMINFSQUE ARCHITECTURE: CATHEDRAL OF SPEJEI (SPIRE): 1NTERIOR, 116.)-11(K); LATEST HOMANESQUE, CONTEMPORARY WITH 'IHE FARLY GOTHIC OF FRANCE.

ROMANESQUE ARCHITECTURE

eleventh and twelfth centuries the monks were the chief guardians of literature and the arts

ROMANESQUE ARCHITECTURE

south, until the formation of the communes in the twelfth century, political confusion prevailed. and naturally the progress of the arts was slow. It was natural that with hundreds of thousands of monks eagerly absorbed in building their churches, and with their bands of workmen carrying their experience and their methorls from convent to convent and from country to country, monastic archirecture should lead the erolution of the Romanesque style.

This style as we have described it was the work of the Teutonic races, and in its general characteristics is the same in Lombarl Italy, in Germany, France, England, and in Spain so lar as it existed there. In the south of Italy and on the Adriatic shore it was greatly modified hy the influence of the Byzantine Empire and the forms of its architecture, which inleed left their traces wherever commerce with Constantinople was habitual, on the Mediterranean corasts and in the middle of France, and even in some degree northward along the course of the Rhine. In the south of France, which while it was Gaul had heen pervaded ly Romau influence almost as completely as Italy, the effects of the classic style lingered long, and left conspicuons traces in the new architecture as late as the twelfth century. In the neighbourhood of Fiome, which never forgot the traditions of the Empire, the Fomanesque stule was never implanted. In the northwest of Italy, in Tuscany ant Liguria, the Lombard kingelom wats not fairly cestablished, and eren umder the Frankish, the pupulation nerer was thoroughly Germanized, nor lost its old instincts. Here when the cities grew prosperons in the eleventh century a style grew ul which was isolated and peenliar to itself, of whith the eathedral of Pisa is the most conspicuous example. Though it has been called Romanesque, it is rather the Latin style
north of the Alps, and huilding seems to have absorbed most of their active energy. In the
modified by the example of the neightoming Lombard. The chnreles are basilican, un-

ROMANESQUE ENGLISH

vaulted, and columar. They slow a distinet fomluess for classic form in the prevalence of horizontal lines, the parti-coloured banded walls, the survival of traces of the classic entablature, with which are combined the multiplied shatting, the elaborate doorways, the continued arcales of the Lombaral Romanesque, all carried out with a peculiar refinement and delicary of detail which is difficult to account for, and which is not found in the rontemporary Fmmanessue.
— W. P. P. Lowaflelow.

Adamy, Architektonik des Whamectenischen und Romanischen Stils; Ailler, Mitthulterliche Back-stein-Bumwerte des Ireussischen N'autes; Choisy, Mistoire de l'itrehitecture, Vol. H., dapters 1:3 and 15; the Dartein, Etude sur l'frchitcture Lombarile; Fergusson, History of Architecture in All Comentries, 1893 , lart 11 ., 13 ook 1 ., and parts of Bouks II.-VItI.; Mamelbuch reve Architektur (I)mmstadt), l'art II., Vols, :3 and 4; Inkersley, An Inquiny into Rommnestue and Printed Arehitocture in France; King, Study Book of Metineral Arehitecture amblat, Millay, Essai sur les Effleses Romanes it Romano-Byzanlin's du département the Puy de Dhimp; Revoil, Architerture Lomane du míli de la France; Ruprich-Robert, L'Arch. Formomble aux TY. et XII. siècles; Schnaase, tieschichte , ler bildenden I ünste im Mittelalter, Vols. IIL., IV., Book 2, 4, 5, 6, 7 ; Scott, Sir G., Leftures on the Risp anl Development of Menliaval Architerture; Viullet-le-Duc. Dictionnaire: Vosiié, La Syrie Centrulp. Also see biblograply under Byzantine Architecture.
romanesque, english. English Romanesque, more commonly referred to by English authorities as the Norman style, was not wholly an innovation introducel by the Conqueror. The close relation between England and Normandy had been increased and strengthened by intermarriage. Eilward saw in his consins across the channel far more unity of iuterests than he could see in the Dimish usurpers in England. When, after his exile, he again held sway, he brought with him Norman ideas and perhaps Norman worknen.

Notwithstanding the turbulence of the times and the necessity for fortified eastles and towns, the ecelesiastical buildings were still by far the must important architecturally. That in England they followed very closely on the work across the chamel is most natural, but there was too much native energy to allow the English merely to copy.

The French and English Normans were always alike in their general aims aml ambitions; the vault and its support, the development of the openings, the size and magnificence of their structures. Therefore we see close parallels in Caen, Sens, and Canterbury. As the conquerors became more and more at home and mited with the concmered, they became differentiated from the French Norman, and their buildings took on special characteristies. The proportion of the plan was altered by giving it unusual length, and we find among the very carly
churches lengths of 556 feet and of 180 , respectively, at Winchester anl Peterlwongh. In proportion to their wilth the parish churches were equally long, ufton six or eight times the span of the nave. Nu special ambition was shown in the constructural problems which interested the Contineutal buiklers. The English were often content with aisle vaults, leaving the nave to be spamed with timber. The long vista of nave and choir and the network of timber carved and decorated in colour almost compensate for the lost beanty of the main vault. On both sides of the water the recessed orders were rich in ormment, chisfly of geometrical character ; but the English used ormament also with much profusion on plain surtaces, enriching them with arcades, plan and interlaced, and with varions forms of surface ormament, of which the towers of Norwich C'athedral and of the little chureh at Ciastor near l'eterborough are good examples. Finally, they laid great stress on their central towers. The unvaulted nave was comparatively low, and being also very long afforded an excellent opportumity for contrast in a tower of even momerate height. This oftortunity was eagerly seized.

Tu sum up: the English features are the great length, the central tuwer, and the lack of ambition in scientific construction. (See England, Architerture of.)

The introduction of the pointed arch in the twelfth century marked but a phase in the development of Romanesque. The keynote of Gothic, the balance of parts, the thrust and counterthrust, had not yet made its inpress on England, and even in France it was as yet but a blind groping after the Gothie principle. The aims of the eleventh century remained the chief aims of the twelfth. This period is generally spoken of by English writers as "Transitional." - R. Clipston Sturnis.

ROMAN IMPERIAL ARCHITECTURE.

That of the Roman dominion in Europe, Asia, and Afriea, ending with the fourth century A.D. With the exception of fragments of walls and of a few simple buildings, Foman arehitecture is represented by those monnments which were crected duriny the Empire, and as the style was first developed in Fione and then spread thronghout the various countries suljugated, with such modifications as the materials of the country and the labour to le obtained required and as the climate suggested, the term "Roman Imperial architccture" has been alopted as setting forth more fully the scope of this article.

Under Etrusean Architecture reference las already been made to the first source of what may be called the elcments of the Roman Imperial style, and in one sense the most important. It was mainly through her paved roads that Rome was able to bring into connection all the clief cities of the Empire, hy the

ROMAN IMP. ARCHIT.

solid construetion of her walls to render the cities she fomuded secure against attack, and by the employment of arched comstruction to roof over her buillings with am imperishable material, to buid hridges and aquerlucts (the latter of

ROMAN IMP. ARCHIT.

hasilica; the therme (from the Greek Gymnasimm, a gromp of halls for athletic exercises, would seem to have been the prototype of the public baths), and lastly the orders of architecture, Doric, Iunic, and Corinthian.

Roman Imperial Architecture: Therme of Caracalla; c. 215 A.d. Viollet-le-Duc's restoration of the great hall (tepidariuns).
vital importance in all her Eastern possessions), and lastly to drain off water from marshy districts.

The second source was that of Greek architecture, from which were derived the temple with its peristyle or portico and its onter enclosure ; the porticus or stoa of ber fora, and the

These orders, when employed in those structures which were Greek in their origin, underwent but little change ; the great scientific advance however made in the quarrying of stone and marble, and in the transport of large masses of stone, enabled the Roman arehitect to substitute the monolith for the Greek column

ROMAN IMP. ARCHIT.

built in several courses, and the greater display of richness in the Corinthian order led to its almost universal adoption. In those buidings however in which was carried ont the full development of the arch and vanlt, in the theatres and amphitheatres, in the themme and in palaces raised to great height and of several stories, the orders were utilized as apparently an

ROMAN IMP. ARCHIT.

away, ant probably in provincial towns such as Pompeii and Hercntanemm, the Tuscan order was never employed. The Doric order also dial not meet with much favour with the Roman Imperial architect, ant, besides Pompeii and the exceptional temple of Cora near Rome, which, barring the atteunation of its columns, may be put down to Greek influence, there are

Roman Imperial Architecture: A Hall of the Therme uf Liue lettan; c. 300 a.d
The groined rault has lost its ornaments, but the walls and piers are nearly as originally designed. (This is now the charch of S. Maria degli Angeli.)
afterthought, to break up and decorate the wall surface, and withont any connection with their origin as constructional features.

The so-called Tuscan order, which was derived from the Etruscaus, was of a primitive nature not far removel from the woolen post; the columns also were so widely interspaced that the epistyle they carried was in wood. The employment of this ephemeral material was not in accordance with foman Imperial custom, and except in domestic work which has long passed
but few examples known. It is found in Asia Minor at Pergamon, in the agora of Aizani, and in a few instances in North Africa and Syria, where probably the want of sculptors to carve the decorative features of the lonic or Corinthian capitals led to its adoption. (Feference is now to the twe of the Doric orler as a detacherl constructional feature and not to its application as a decoration only to a wall surface.)

The lonic orler followed the same fate, and is fouml in only two temples in Rome, the

ROMAN IMP. ARCHIT.
temples of Fortuna Virilis and of Concord. Two portions of the colonnaded streets of Gerasa in Syria are thanked ly lumice columns, and also, lout of a very degraled type, many of the smaller temples in the same country. There is a modified type of lonic capital found in Pompeii, in which the volutes are retained at each angle and consist of fine spirals which suggest the

ROMAN IMP. ARCHIT.

leaves which surround the lower portion of the base and to give a greater sense of support to the abacus by the accentuation of the spiral tenulrils at the four augles. In the rarving of the acanthus leaf the section was made tlat in the place of the V-shaped section of each lobe funnd in Greek work. This rule applies to all the principal examples in Fome, with two or

work of a Greek artist. It is possible also that the uncertainty which prevails in the spacing out of the triglyph in the Doric frieze and in the choice between the rushion or the angle volute of the lonic capital may have led to rejection of those orders.

With the Corinthian capital it was otherwise, and its magnificence appealed much more to the

Rosian Imperial Architecture: Ionic Capital, Temple of Satury in the Romay Forcsi.
instincts of the Roman Imperial architect; moreover, it presented the same desigu on all four faces and could be equally well employed in the rectangular or circular temple or for the hemicycle peristyle which in Roman Imperial architecture plays so important a factor in the setting out of the plan. The Greek Corinthian capital, though rery varied in design and in many cases of great beanty, was never completely dereloped in Greek architecture, and it remained for the Romans to systematize the double range of
three exceptions. In Syria, where the Greek artist would seem to have been mostly employed, the V-shapel section of the leaf is almost universally althered to, except where, as in Baalbec and Palmyra, works of such importance were being carried out as to call for the employment of Roman sculptors. There is, however, a second type found at Pompeii and in the Temple of Testa at Tiroli, where the treatment of the leaf resembles more that of the crinkled cabbage. In these two cases the capital is only one diameter high, instead of one and a quarter, as in the portico of the Pantheon and the Temple of Castor and Pollux. The complete order of this last example is the finest Roman Imperial example known. In the entablature of this temple, the enrichments of the rarious fascice, which in the Greek temples were usually painted in gold and colours, are here elaborately carved.

In the Roman Corinthian entablature a very important addition was male by the introduction of mollillions. These may have hard their origin in the mutules of the I wric cornice; they consist of small brackets or corbels which suggest a better support to the corona of the cornice and break the line of shadow as projected on the frieze. In the temples of Syria these corbels are further supported by consoles or ancones underneath, which rest on the upper moulding of the arehitrave and constitute an original but overcharged tecoration for the frieze.

There is one other order introduced by the Romans, the composite, which may originally have been derived from a desire to add leaf

ROMAN IMP. ARCHIT.

recoration to the lonie rapital, or by the substitution of the Lonic volate for the Corinthian volute to give a better support to the angles of

ROMAN IMP. ARCHIT.

order, inasmuch as the relative proprortion of the features cmployed followed a fixal rule. Thus whilst the proprortions of the column and entalla the abacus. It is in fillet a mixture of the two orders with, however, the Corinthian entahlature. The enrliest example is found in the Areh of Titus. In two of the theatres of Asia Minor it is fomm in the proscenimm. (See ('ompmsite Orier.)

The earliest example of the superimposition of orders is fomm in the Theatre of Mareellus in Rome ($t \mathrm{t}-13$ B.e.). Here there are only two orders superimposed, the Doric and Ionic, both much purer in design than any later examples. In the theatre at Urange, France, the orler is ronfined to the lower story only; the outside face of the stage wall, 310 feet long and I 16 feet high, is one of the finest

Roman Imperital Architectire: Cobintulan Capital With liagery; Presehved in the Lateran Museum, Rume. masses of masonry in existence.

The conjunction of the areade with the order and the superimposition of the orters as decora-

Roman Imperial Architecture: Culumis from the Temple of Diana, Efora, Purtugal. An illustration of principal and declining style.
tive features on a wall surface, as in the Theatre of Marcellus, the Coliseum, and other amphitheatres, may in a sense be looked upou as a new
ture and the tapering of the shaft are the same as in an ordinary peristyle, the intercolumniation varies from tive to six dianeters. Again, the uper diameter of the shatt of the lowest order becomes the lower diameter of the shaft of the order superimposed. Thus, given the dianeter of the lowest order of columns, the proportions of the whole of the rest of the design is govemed by the intercolmmiation.

As the Roman Imperial style was first developed in Rome, and then adopted with various morlifications throughent the Empire, some brief account of the materials employed in the city is first necessary. In the time of Angustus there were three methods of building, -in cut and squared stone, in compact masonry of small stones and cement mortar, and in crude bricks. Though Vitmuins lays great stress on the care which should be taken in the preparation of material for the second method named, it is doubtful whether, even in his time, it was much employed (his treatise is said to have been written in the early part of his career') ; but his description of pozzuolana (II., 6) shows that alrenty the special value possessed by this material had been recognized, though not to its full extent. The fact is, as Ur. Middleton observes (Ther Remains of Anciont Rome, I., 7), "This prozuolana more than any other material contributed to make Rome the proverbial 'etermal city.' Without it a great domed building like the Pantheon would have been impossible, as would also the immense vanlted therme and a wide-spanned basilica such as that of Constantine." It is true that this valuable material is not foum in other parts of the Empire, but the great conceptions of the Roman Imperial style were evolved in Rome, and they owe their chief magnificence to the immense size of the raults which spanned the

ROMAN IMP. ARCHIT.

halls of the Imperial palaces and therme. Withont the pozzuolana they wonld have scancely been feasible, and this is bome out by the fact that no vaults approaching the span of those in Rome are fumd in any other part of the Empire

That which first strikes the inquirer in the development of Smperial homan architecture, when comprarel with the history of more ancient styles, is the immense rariety of buildings of every type. To describe adequately even a fraction of these would be imbossible in a general article of this kind ; therefore consideration is contined here to the principles which seem to have grided the architects of Imperial Rome in the laying out of their cities and towns, and in the planning of the palaces and therma which

ROMAN IMP. ARCHIT

Romans, and in this case the first conrse was to run two main streets, lying north and sonth and east and west respectively, intersecting in the middle of the site and ruming from gate to gate in the walls bnilt round the town. In one of the angles thus formed by the intersection wonld be placed the forum, with the principal temple at one end and the senate house, basilica, treasuries, and other public buildings around. The natural level of the ground would suggest the best position for the citadel on an eminence commanding the town, the side of a hill would be utilized for the position of the theatre, and in the lower part of the town, near the river, if one existed, would be established the therme. The next consideration in the Roman Imperial mind would be the
 the Mosque at Curduta.
formed the fonndation of the style and of its derelopment.

Just as in the present day the first course taken to extend civilization is to provide easy means of communication with settlements at convenient distances, so in the first three centuries of our era the Romans extended their power and influence by the formation of paved roads, so well selected in their direction, and so solidly carried out, that they still serse as the main lines of communication, even in those countries where the increase of population might hare led, centuries ago, to their being discarded in favour of new roads, whilst in the more distant portion of their empire, as in North Africa and Syria, they form at the present day the only roads in existence. The direction taken by their roads in Syria suggests that, when laid out, they were intended to connect cities or towns, already existing; but so far as the actual existence of any remains prior to the Roman occupation goes, the evidence is negative. There are, however, instances in which the towns wonld seem to have been fonnted by the
supply of water, the rery essence of existence in the East, and even in Rome looked upon as one of the most important requirements.

The maintenance of a central axis with buildings symmetrically arranged on either side, constituted the leading principle in Roman Imperial design, and it was on this principle that the Imperial fora was laid out. Of these the largest and most important was the Formm of Trajan, lying to the northwest of the old Forum, and in the most crowded part of Rome. To obtain a level area for the immense gronp of buildings, a large ridge of tufa rock had to be cut array at an immense cost of labour. The formm consisted of three parts: the forum proper, to which entrance was obtained through a magnificent triple archway (from which the bas-reliefs now on the arch of Constantine were taken) which was surrounded with a lofty porticus or stoa; the Ulpian basilica beyond, with immense apsidal terminations on either side for the courts of justice; and at the further end, the Temple of Trajan enclosed in a court with porticoes around. Between the two

In an open court was placed the famous cohmm with the bas-reliets recording the Darian rictories caried around in sifiral form. The temple was erected probably on the site of the elin' which hat been cut away. On either side of the hasilica and the forum, preexisting streets ran at various angles, their junction with the basiliea being masked by the two apses referred to ; a similar experlient was adopted with the formm, where two immense hemieycle's were built one on each side; these in their play of light and shade as seen through the open porticus on each side must have been of magnificent effect. Later on when speaking of the palaces of the Ciesars on the Palatine Hill, reference will again be mate to the adoption of similar features to mask the junction of blocks of buildings inclined at slight augles to one another. There were, of course, instances in Which this symmetry could not always be maintained, as in the case of the old Forum, where the sites of the earlier temples and other buildings dating from the first settlements were necessarily retained.

In the more important temples, whether in Europe or the East, the Romans atopted the peristyle of the Greeks ; but they give greater importance to the pronaus, and they omitted the posticum. In by far the larger number, however, the cella occupies the full width of the portico, aml the order around the temple is represented only by semidetached columns against the cella wall. The temples at Nimes and Vienne in France are the best still existing examples in Europe. Unlike the Greek temple the temples were rarely orientatedin Rome. They were looked upon as monumental features and faced the form or piazza in which they were built. So little regard was pail to orientation in the great capital that in one instance the temples of Vemus and of Rome are phated loack to back, both enclosed in the same peristyle; the cellas of these temples were covered with harrel vaults. It is not known for certain whether the Temple of Jupiter at Baablece was vaulted; there are two small temples in the palace of Diocletian at Spalato which were covered with vaults; in Rome there is the remarkable example of the Pantheon built by Hadrian, and at Nimes in France the so-ealled Baths of Diana (see Nympheum) han barrel vaults with transverse ribs; otherwise the timber roofs of the Greeks seem to have been generally atopited in all Roman temples: an alvante, however, having been made by the introduction of the system of trussing the principals with tiebeams and king-posts.

By far the greatest development in Roman Imperial architecture is that which, in the thermee and palaces, is found in the employment of the barrel vaults, the intersecting barrel vault. and the llome. These features led to the

ROMAN IMP. ARCHIT.

erection uf buildings entirely bomogeneous in the material employed, and of so lasting and durable a mature that, but for earthpuakes and the destructive action of mankind, they might all have remained perfect to the present day. The barrel vault construted with regular stone Youssoirs han alrealy for six renturies heen employed by the Etruscans, hut only for passages of comparatively small width underground, or for gateways of towns where the sile walls served as ample abutment to the thrust, but the Rumans alrealy, in the Baths of Agrippat ($24-25$ B.c.) , had employed it to valult over wide spans of considerable height, requiring therefore walls of great thickness to resist the thrust. With the harrel rault these walls must have been continuons throughout the whole length, and windows or openings conld only have heen made below the level of the springing so that the vault would have been comparatively dark. The Romans introducel therefore what is known as the intersecting barrel vault (see Groined Vault), in which two raults rumning at richt angles to one another intersect and form groins at the angle of intersection ; along these groins the thrust of the vanlt is carripl duwn to the pier from which it springs, thus ronentrating on a series of piers that thrust which in the ordinary barrel vault necessitated a continuous wall. The earliest example of this solution of the problem is foum in a tomb at Peryamon in Asia Minor, built by the Attalide kings, in I50 B.c. Though not of great dimensions, it is constructed entirely in stone and shows a considerahle knowletge of sterentony in its execution. It is cloubtful, however, whether in the early years of the Roman Empire, the employment of stone for such great spans as those in the Baths of Agrippa womld have been possible; it would certainly have been very enstly, involving the employment of highly skilled workers.

Mr. Choiss, in his work, liart de buttir chez los Romains, has shown how the Romans adopted a construction which was not only the most lasting and solid ever conceived, but which in its execution was the most eeonomical, both in labour and material. Centring trusses were built at intervals and on the cross lines of the quoins, and planks laid across from truss to truss. On these was constructed a shell vault of that bricks or tiles set in pozzuolana mortar, which added considerably to the strength of the centring. Over the trusses they built arches of brick which relieved the trusses and acted as permanent ribs, with horizontal ties of brick at intervals to connect the brick arches. When the construetion thus formed had set, they filled up the haunches with rubble masomy built in horizontal layers until the level of the tup of the brick arches was reached. According to the width of span, one, two, or three courses of brick rings were employed for the arches. The

ROMAN IMP. ARCHIT.

centring was remored to a second section as swon as the tirst rault was built. Erentually the upper surfare was sloped down on either side, and the exterior eorered with tiles or metal plates. The whole vault buitt with pozzuolana concerete comsolidated into so hard and homogompons a mass that it resterl like the lid of a crockery lowl on the walls, and it became only necessary to build piers or walls of sufficient size to carry the weight. The lamnans, however, diel not apparently realize the splendid nature of the material employed, and built as if it were also requisite to prowide against the thrust.

The walls or piers were built in the same material as the vault, and by somewhat similar means. Thus not only was the whole structure homogeneons, lat by the shifting and raising of the centring and the posts and planking, the construction was of the most economical kind, and could be done, under proper supervision, by unskilled labourers.

From lome as a centre, the principle of plan anl design extemled to all parts of the Empire. It is true that pozzolana cond only be found in Rome and in the south of Italy, but the fine quality of the Foman mortar throughout the Empire is proverbial, and the immense fallen masses which are found in the large temples of Syria, where sometimes in the core of the wall the mortar exceeds in bulk the stones it holds together, testily to the great value the Romans attached to it. It is true we do not find vaults there with a span equal to those in Home, but the same principles of design obtain in all Roman Imperial architecture, so that from one end of the Empire to the other we find similar monuments, varying only in size, and, ontside Rome, in a somewhat more liberal interpretation of the Ruman Imperial style than would have been tolerated in the capital, where the principles of Vitruvins were more rigorously adhered to.

The therme of Caracalla may be taken as the learling type of all the loman baths. The "motif" of the great central lolork of the baths proper, which covers a site of about 730 feet by 380 feet, is to be found in the central hall known as the Tepidariom. This hall, 170 feet long by $8: 2$ feet wide, was covered by an intersecting larrel vault of three bays, carried by immense piers 30 feet deep, piaced at right angles to the hall and contrivel not only to carry the superstructure but to resist the thrust of the vault. The windows to light this hall were placed above the springing of the vatilt, so that halls of less height could be provided around it; the spaces on either side between the piers were utilized as exerlixe, with baths in them, aml at each end spacious restibules divided from the hall by eohumnar sereens, so that a vista 380 feet in length was obtained. With the vestibules, the tepidarium covers an

ROMAN IMP. ARCHIT.

area of about 380 feet by 150 feet. On the east and west sides are open courts surromuled with peristyles. The frigidarim is placed on the north site with vestibules, dressing roums, etc., and the caldarium on the sonth side with a sories of haths for exereises opening into the xystus, all of these, however, derive their axial lines and setting out from the principal hall, the tepidarim, which, as we have said, is the "motif" of the whole structure, and with minor variations is to be fonnd in all the Roman thermae. In the palaces on the Palatine a similar principte is adopted. The tablinum or throne room, the bibliotheca or librany, and the triclininm or dining room, are lofty halls taking their light above the roofs of the adjoining rooms, and they give the key to each group, which is here waried by the great peristyle court inside, with temples or eircular shrines in their nidst. In speaking of the Forum of Trajan, we referred to the two hemieycles which seem to have heen intromucel to mask the junction of lladrian's work with preëxisting streets which joined it at various angles. The palaces of the C'insars on the l'alatine Hill (see Restomation, by Mr. Deglane, Monitenr des Architectes, and The Builder, Feb. 22, 1890) show mumerous instances of this derice. The varions blocks were ereeted by succeeding emperors on sites which necessitated their being built at a slight angle one to the other. Each block appears to be symmetrically aranged with centre axis, but this applies only to the leading features, viz., the principal halls and the peristykar eourts. The rooms on either side vary in their dimensions, but they are always contrived to balance one another: where the axis of the block is placed at a slight angle with a second block, its junction is marked by a semicircular or segmental niche. This seems to have been the principle adopted ly the Romans, not only in the setting out of their palaces, but also in those of all the cities of the Empire.

So lar we have lealt only with the main lines of the plans ant the structures. The scheme of the decoration must have been conceived from the first, which is evidenced by the numerons recesses left in the walls to reeeive the blocks of marble forming the cornices. Owing to the value of the materials, which has led to their removal, there are but few instances in which any of it remains to bear witness to the magnificence of its design and colour. The rich marble decoration of the l'antheon is probably in the main not far remored from the type which was adopted in the great thermæ and palaces.

The applique nature of the decoration was a necessity becanse of the materials of the strueture of these great Roman baths, and this becomes the more evident when we compare the jalaces, the temples, and baths in Rome with

ROMAN IMP. ARCHIT.

those which are foum throughont Syria. Here quarries of excellent stome existed in all parts of the country, and the core of the walls and the extermal fice were homogeneons and constructed with the same material. In a few instances the walls were decorated with pilasters or semidetached columis, the latter frequently found in the interior of the cellas, but plain ashlar masomry in conrses of from \because to 3 feet in height was used as a general rule. There is one exceptional feature in Syria to which great importance was always attached, riz, the great entranve doorways of the temples, which were emriched with bains of earving. Some of these were of immense size, the great door in the Temple of Jupiter at Baalhec measuring 20 feet wile by 41 feet high. The lintel of this doorway was ronssoired, the vonssoirs being carricl through buth architrave and frieze. The peristyle of this temple, 9 leet between columns and wall, is covered over with single stabs of stone of segmental curve underneath and enriched with sunk coffers similar to those which, in the basilica of Haxentins at Rome, were sunk in the brickwork of the great arches of the aisles. Although contrary to Roman custom, the employment of Phenician labour of the country probabily led then to the quarrying and fixing in position of those enormons blocks which form the sulstructure on' the great temple of Jupiter Sol. Three of these blocks, known as the "trilithon," measure from 62 to 64 feet, each one 12 feet high and In feet thick, and so llose are the joints that it is impossible to insert a sheet of note paper in the same. As these blocks are raised on a foumdation of smaller stones which Mr. Reman attributes to the Seleucide, he is of opinion that the large blocks must have been quarried an.] placel in their positions by the lomans.

The dume of the Panthenn was originally covered with tiles of gilt bronze (stripped off in 663), part of which still exists, as also does the bronze rim of the ecntral prening with its enriched bronze mouldings. The imner ceiling of the portico was also in gilt bronze, supported by a systen of bronze tubular girders; this was all taken away in 1626 to make the cannon for the Castel Sant' Angelo, and the great baldachino of S. Peter's.

The frigilarium of the Baths of Caracalla was coverel over with a lattice-work ceiling formed of two T-bars, riveted tugether and then casel in brouze, showing that the Roman Inperial architect was aequainted with a type of iron construction which it was thought belongel only to the nineteenth century:

Among the other monuments of Imperial Rome the basilicas come next in importance, more, however, owing to their immense size ant the magnificence of the materials employed in their construction and decoration than for any

ROMAN IMP. ARCHIT.

special novelty in their design. They were evidently copies of the Greek stoa, and from the ephemeral nature of their timber roofs have long since passed away. The basilicat L'p pia, which formell part of Trajan's forum, rovered an area of 30,000 square feet. The central area, 180 feet by 54 feet wide, was enrhosed with double aisles with galleries above, and was probably covered with a fiat ceiling with deep coflers between the trusisel heans, ant lighted by clearstory windows above the gallery story.

The great basilica of Constantine commenced by Maxentius, but left unfinished at his death in 312 A.I., is a reproluction on a slightly larger scale of the tepidarium of the laths of Caracalla. It was coverel with an immense groinet vault, over so tept in width, divided into three bays: with three deep reresses on ceach side which, communicating one with the other, form the aistes.

Although in the palaces of Rome we find a strict adherence to axial lines and symmetrical disposition, the descriptim given by Pliny of his Lanrentian villa, and the actual remains of the villa of Hullrian near Tivoli, show that away from Rome and in the country asject and mrospect would seem to have been the chief comsideration. In these instances, as in all those where there were great differences of level in the ground, the Foman Imperial architect availen himself of natural cminences where he pliced the most importaut halls, grouping other buildings around them, much in the same way as round the tepidarium of the Bath, though on difterent levels.
Under the heads of Syria and Asia Minor, the colonnaled streets which formed the main thoroughfare of the chief cities have received attention. In these features the Romans recognized the customs of the country, and developed on a larger seale and with greater magnificence the colonnades of the city of Antioch built by the selencidx, but now known only from descriptions.

To works of a purely ntilitarian character, such as the great aquednets which still exist across the Campagna of Rome, in the north of Africa, in Syria, and in Asia Minor, the Romans probably attached but little architectural character. There are, however, a few instances (and particularly in Rome where the aqueduct crasses a thoronghfare) in which the engineer has attempted to make a display by an appliyne of the orders, and this as ustal is unsatisfactory. In cases, however, where the Roman engineer confined himself to his legitimate sphere, viz., solid and economical construction, he has produced results which, from the asthetic point of vies, could not be surpassed. The Pont-duGard near Nimes, built across a deep ravine, with two lower ranges of great arches carrying

ROMAN IMP. ARCHIT.

a thirel range of small aneles, above which is the aqueduct thamel, is not only from a eonstrnctive hut from an artistic puint of view one of the finest conceptions of Loman lmperial architecture.

The sathe van seareely be satil of those farourite examples of Romam Lmperiad architecture, the Arehes of Trimmph. which atre fommi from one eme of the Empire to the other, and were by the Rumans mobably remented as them most sucressfind masterpieres. dust su dar as they were deromted with bas-reliefs representing the victories of the Empire, and in their smper) construotion, they have a definite whect whieh they filltil: hat the assemblage of attached and detached rolumns amd eutablatures becomes monotonons and displays porerty of design.

It is, however, the one example which, whether in Enroue or eastern countries, remains rery muln the same in design, except that in the latter, owing to want of sculptors, there are very seldom any bas-reliets. In Palmyra and other eastern towns this was met by an elahoratims of omament whieh, executed by Greek artists, is sometimes of great beauty.

Amongst the numerous triumphal arches, the example of Trajan at Fenevento is one of the most pleasing, as the Corinthian columns are only semidetached and sorve as a frame to the bas-reliets which decorate it. In arches of a more utilitarian character, such as those forming the entrances of towns, as the two at Autun, the Gateway of saintes, or of the brielge at Saint Chamas in France, and the gateways of Ancona and Verona in ltaly, the architectural result, though simple, is more satisfactory. The great arel at Palmya, one of the largest in existenee, is triangular on plan, and is one of those designs dear to the Fioman Imperial mind whieh was coneeivet to mask the angle of two colonnaded streets, viz., the main thoroughfare of the town leading from west to east and the street to the westera propulon of the great Temple of Jupiter.

More originality and variety is shown in other examples of Foman Imperial momments (see Memorial C'ohmon). Of Hadrian's mausoleum we hare only the kernel in the Castel Sant' Angelo (which see), hut with its several tiers of peristyles, it must have been one of the most splendid examples of Foman architecture. The tomb of Ceeilia Metella and others of the I'ia Appia in the street of Tombs, which extends four miles outside Fome, are in tro rumous a condition to judge of their pristine leanty, and the same may be saiul of those in the Street of Tombs at Pompreii. In France and Germany they seem to have met with a better fate, and the tomh of S . Femy near Taraseon and the Igel tomb near Trèves are well-preserved examples of eonsilerable interest

\author{

- R. Phené Spiers.
}

RONDELET

R. Adam, Ifuins of the Palute of the Emperor Dimbetiun at Spulatro in Dalmutin; Bammeister, Denhmäler des Llossischen Altertums; Bender, Itwm und Römisehes Lebon in Alterthum; Comparetti and De feetra, Lu Villa Ereolamese; Ferrero, L'Ape d'Autuste re suse; Janciani, The Instrumtion uf turient Rome; 7her Ruins and Escretutions of Ancirnt liane: Ancient Rome in the Light of Lecent Deseoceries: Pagan and ('hristinh limme; Martha, Areleculogie Eftrasque rt limmaize: Jau, Pumperi, its Lifp amel Art; Mazons, Lés rmines de Pompei; J. H. Middleton, The Lemains uf Aturemt Romm (2 vols.) : Nissen,
 frolloms: Normamd, Eswai sur l'rointence d'ume archituelure métallique antique. etr., Emeyclopédip.

 and Von Domaszewski, Die Murius-s̈̈ule; Ramsily, Monutul of Is:man Auliquitios, revised by Lanciani (see above); lieber, lieschuhte der Bunhunst im Sltorthmme: Restaurutions des hommments fuliqus (a series; Therme, 'Jrajan (blumm, etc.) ; Stuith, Dirtionary of Greph umd
 Cresy, Architretural Autiquities ut Rume: C'chatrd, Architrelure de Pomjot - ardre ionique - Rerate gén. de l'ardh., 18ill: wrobr C (orinthien - Lícul gér. de l̈arch.. 18iㄹ; Vitruvius, De Arehitertura (or Gwilt's 'ranslation) ; Weichardt, Pompeji ror der Zorstoerung (a study of restorations of the ancient huildings) ; Wickioff, Roman Art (Hacmillan; a translation from an extra volume of the Jahrbuch dro kumsthistarischen Sumbluugen ars östroreichischen hoisorhouses; Robert Wrood. Ruins of Palmen's and Ballec. See also the bibliography under Etroscan Architecture, and Jutes Martha, L 'Art Etrusque.

ROMANO, GIULIO. (See Pippi, (iiulio.)
ROMAN ORDER. The peeuliar system introduced hy the Romans of late Republican or early Imperial times, by whieh an arehed construction is given some appearance of Greek post-am-lintel building. In the illustration under Alette, in each story an engaged column carries, in appearance, an entablature. The abutments and the ards which they carry, and the wall upon this arch, are, however, the real strueture and the entablature is merely an ornamental balcony. The structure is really a highly atomed areade. (See Roman Imperial Architecture, tenth paragrajh.)

RONDELET, JEAN BAPTISTE; arehitect ; B. June 4, 17.t3; 1l. Sept. 28, 1829.

In IT63 he eame to Paris to stmly under J. F. Blontel (see Blondel, J. F.) and later assisted Soutflot (see Soutfot) as inspeetor of the works at the chureh of S. Geneviève, afterward the Panthéon (Paris). In 1783 he obtained a royal pension and visited Italy. In 1785 he superintended the construetion of the dome of the Pantheon under Brehion (see Brebion), who had sueceeded Soufflot. In 1799 he was appointed professor at the Ecole des Beaur Arts. Rondelet published Tratik théorique et de l'art de batir (Paris, 1802, text 亏 rols. 4to, pls. ㅡㅡㄹ vols. folio), Mémoires historiques sur le dome due Panthéon firemçuis (Paris, 1 vol. fto,

ROOD

1814), Trarluction des commentaires de Frontin sur les aquectues de Rome, ete.

Bellier de la Chavignerie. Dictiomaire; Lance, Dictionnaire.
ROOD. A cross or crucifix, especially a large crucifix placel at the entrance of the choir or chancel in methieval churches, often supported on the rood beam or rood sereen, and, in later examples, accompanied by images of the Virgin Mary on onc side and of S. John on the other, the Crucifiel being in the mildle.

ROOD ALTAR. An altar standing against the nave or nuter side of a rood sereen.

ROOD ARCH. The central arch in a rood screen, the roud being over it. (See Rood Screen and Rood.) The term is sometimes applied to the arch between the nare and chancel, the rood in that case being under it.

ROOF

rood steeple. Same as Rood Spire. ROOD TOWER. A tower built externally over the cutrance to the choir from the nave, or over the intersection of nare and transepts.

ROOF. That part of the closure of a building which covers it in from the sky. Upon this part of a builling depends in large measure the character of its design as a work of architecture. Roofs are distinguished: (1) By their form and method of construction ; as, the flat roof, characteristic of dry tropical countries, and nuch used in modern commercial buildings in the United States; the sloping roof, including gabled, hipped, penthouse, mansard, and gambrel-roots with their varieties (see Pitch). (2) By the character of their covering; as, thatched, shingled, battened, slated, tiled, metal-covered, tarred, asphalted, gravelled, etc.

ROOD BEAM. A horizontal beam extending across the eutrance to the choir or chancel of a church to support the rood; generally at the line of the springing of the choir or chancel arch.

ROOD LOFT. A gallery or elevated platform estahlished upon the rood screen, with pierced parapets, pinnacles, and images culminated in the central rood. From this loft the Epistles and Gospels were sometimes read to the people assembled in the nave, and sermons were occasionally preacherl.

ROOD SCREEN. A screen, open or partly closed, of wood, stone, or wrought iron, erected in medieval churches between the mave and the choir or chancel supporting the rooll in the centre; it was sometimes double with raulting between and rood loft orer, and frequently richly adorned with niches, statnes, tracery, and other architectural details. The jubé of the church of the Madeleine at Troves is among the richest of the remaining examples in wrought stone. (Sce Choir Screen and references; Jubé; Rood; Rood Loft.)

ROOD SPIRE. A spire or steeple built externally orer the intersection of nave and transepts, becanse that point marks the entrance to the choir and the position of the rood. It was generally of wood, as at Amiens and Paris; but the term is extended to great central spires, as at Lichfield.

ROOD STAIRS. Stairs by which the rood loft was approached. These were placed at the ends of the rood screen, were often spiral, and of beautifully sculptured open work and tracery.

Rood Loft: llanegryin, Mfrionethshire; c. 1500.
The cross (roon) is no longer in place: perhaps remored during the Puritan supremacy.

In carpentry, the term refers to the timber framework by which the external surface is supported. This, in sloping roofs, consists usually of a series of pairs of opposite rafters or couples, of which the lower ends are tied together in rarious ways to preveut spreading ; or, where the span is too great for such simple construction and there are no intermediate upright supports, of a series of rafters supported by longitudinal horizontal purlins, which are generally carricd on a system of transverse timber frames or trusses, spaced from 8 to 20 feet apart. In modern practice, the typical forms of these trusses are indicated in figures 1 and 2 , showing principal rafters or principals, of which the lower opposite ends are tied together by tiebeams hung in the centre from a king-post, as shown in figure 1 ; or, at tro

ROOF

joints, from queen-posts, as shown in figure 2; from the lower patt of these suspension members, braces or struts may he extended to stiffen the prineipals. To suit varions combitions of shape of roof and area to he eovered, these typical aml elementary forms are, in modern usage,

subjected to innumerable structural modifications and extensions, some of which are illustrated in the figures of this article and in W ood, Construction in ; Part I.

One of the most marked distinctions in the historie styles consists in the pitch or inclination of the roof. Thus in the Creek temple the slope of the perliment varied from 15° to $16_{2} 2^{\circ}$;

ROOF

Traité pratique de la Construction Moderne et description du Matériel employé par les constructeurs, laris, 188i, 2 rol. folio.

- Il. Van Bruevt.

Barrel Roof. A. Same as Barrel Vault (which see uncler Tault). B. A roof or ceiling

which has within the appearance of a Burrel Yautt ; a ceiling of nearly semicireular section.

Compass Roof; Compass-headed Roof. (See Cradle Rout below; also ('omphiss (II).)

Coupled Roof. A ridged or double pitched. roof of the simplest construction, often without

Ruof: Flat, as used in nearly rainless Regions; Duuma, Syria. See First Cut under Syria.

Roman roofs had a slope of from 22° to $23 \frac{1}{2}^{\circ}$; Romanesque roofs followed closely the Roman slope; the Gothic pitch was much steeper, sometimes reaching 50° or even 60°. In the Renaissance erit there was in Italy a revival of the Roman pitch with the other classic leatures: but the French builders of this era retained the steepest slopes of the medieval sky lines, especially in the conical roofs of their round towers and in the pyramidal roofs with which they characteristically covered each separate division of their buiklings. These lofty roofs, with their high dormers, chimneys, and crestings, constitute a distinctive characteristic of the French Fenaissance, the peculiar steep roof of double slope, known as the mansard roof, being a development from these French traditions. The structural ronditions from which the steej medieval pitch was evolved are explained in Wood, Construetion in ; Part I., where also may be found some notire of the that terraced roofs of tropical or semi-tropical countries.

Denfer, J.. Courerture des Élifices; Ardoises, Tuiles, Métoux, Matieres diverses, Chénđux et descentes, 1 'aris, $18!3,1$ vol., 4 to ; Lanck, Leupold,
tiebean or collar beam, depending upon the stiftiness of the walks for its permanence, and, therefore, of small spin.

Roof of Stone; Slabs resting ox Choss Walls CARRIEI UN Althes.
For similar transverse arehes see ents Monastic Arehitecture ; Pointed Arcbitecture,

ROOF: CHURCH OF S. MNIATO; FLOREACE: TYPICAL BASILICAN ROOF; A WOODEN gallerl rests upon the tie beails.

ROOF

Cradle Roof. A form of timher roof much used in the llidille Ages for chateles and large halls, in which the rafters, collar loams, and braces of each trnss were comhined into an approximately arched form, and sumetimes indeed hand their soffits cut to the curve of all arch, prohlueing internally the effert of a series of arches; or, when the arched momhers were ceiled, of a cradle vault.

ROOF

kind are the metal-covered roofs of Europe and Americal in which the slone is often half an inch to a foot or one in twenty-fomr. The plates of metal in these cases must be soldered together with eare.

French Roof. A curb ronf with sides set at a very steep angle su ats sometimes to approach verticality, while the top above the curb may be nealy flat or may have a visible slope though

Roof: with Collar Beams and Beafes (Kinfe Rafters), 13th Century; Hall uf Stokesay Castle, infopshire.

Curb Roof. One in which the slope is broken on two or four sirles; so called hecanse a horizontal curb is huilt at the plane where the slope changes (see Curb, D; Gambrel Loof: French Roof; Mansard Roof; which are forms of corb roof).

Flat Roof. A. One whose surface is actually horizontal or with no perceptible slope, as in the mul, earth, or cement roofs of tropical comntries and the roofs of brick or terra entta supported by iron beams and covered with water-tight material which are characteristic of motern fireproof buildings.
B. A roof having a slope so slight that one ean walk or sit upon it as npon a floor. Of this
much less steep than the lower slope. The term is of United States origin, and applies especially to a form of roof which, beginning about 1865 , beeame very eommon all over the eomntry.

Gable: Gabled Roof. A ridge roof which terminates at each end in a gable, as distinguished from a hipped roof. A gambrel roof is a form of gable roof.

Gambrel Roof. A curb roof with only the two opposite sides sloping : it is therefore a gabled curb rouf. This form is common throughont New England, New Jersey and eastern New York, laving been adopted by the earlier colonists of the Northern states, and being much

ROOF

more frequently sem there than in the countries whenee the colonists cance.

Hip; Hipped Roof. One laving hips by which the projecting angles between two aljacent slopes are suthated. Thus, a pyamidial rout is one which has four hips: and in some cases a root, as un a bulding of irregular phan, may have more hips than four and often altemating with valleys.

ROOF

gables, earh of which is truncated halfway up or thereabout so that the roof is hipherl above. It may be otherwise explamed as a hipped ronf, of which the hips starting trom the ridge are too short to reach the eaves, so that the roof below beermes a gabled roof of which the gables are truncated.

Lean to Roof. One with a single slope; as where the aisle of a church is usually roofed

Roof: Early English; Solar of House at Charney, Berishire: c. 12 0 ; fith Cambered Cross Beams supporting Posts and a Purlix Plate by Direct Resistance tu Pressure; 13th Century.

Homogeneous Roof. One in which the same mass of material fumishes the onter pitch for shedling rain water and the surtace exponsed within: that is to say, a roof forming a sollil shell either of compact masonry, as often in Byzantine art, or of slals of stone, as in Syria and in a few churches of Europe. (See cut Selsenico, muler Dalmatia.)

Jerkin Head Roof. A ridge roof of which the ridge is shorter than the caves, having two
with a single slope from the wall of the clearstmy outward.

M Roof. One in which two rilges parallel or nearly sin to one another are separated by a receding or dropping valley, gutter, or the like : a device sometimes resorted to for diminishing the height of the roof, as in supposed necessities of the arehitectural style, and sometimes resulting from the buiding of an aldition when it is not desired to disturb the earlier roof.

ROOF

ROOF
Mansard Roof. A rurbed roof with clomer windows of some size; that is to say, such a roof as will best provide for lahitable roms within it. This is the reof common in neoclassic and monlern châteaux and publie buillings in France, the deck or upper slope being msually small in proportion to the lower slopes, whereas in the French lioof (see subtitle abme) the reverse may be the ease.

Pavilion Roof. A roof hipres on all sides so as to have a pramidat or nearly lyramidal form.

Penthouse Roof. A roof with one pitch like that of a shed or of the atisle of a church in the orlinary distribution.

Pyramidal Roof. One in the form of a pyramil or, by extensiom, a hipped roof in which the ridge is relatively short so that the sloping sides enl nearly in a point.

Ridge: Ridged Roof. A domblepitched roof, the two slopes of which meet at a horizontal ridge.

Saddleback Roof. A gatle rouf in some peculiar position, as whell a tower is roofed in this way instead of terminating in a flat terrace or in a spire.

Shed Roof. Same as Penthonse Roof.
Single-framed Roof. A rouf framel without trusses, the opposite rafters being tied tir gether by the upper floor frame or by hoards nailed aeross horizontally to serve as ties or collars.

Slab Slate Roof. A roof covered with slaks or thags of slate, as in cottages built in the neighbourhonl of slate quarries.

Span Roof. A roof compuserl of two equal

Ruof: framed like a Floor: Heayy Choss lieams carrying Purlixs AND STIffened By Bhaces cet To A CURVE WHICH IS COMPLETED BY MUUldiNgs PlaNted us; Kiddivgtos, Oxon ; c. 1350.
slopes, as a nave roof, in contradistinetion to one having one slope, as an aisle roof or penthunse roof.

Terrace Roof. A that roof in sense A; especially when the roofing is of masonry and the surtace allows of free use of the roof as a place for walking and taking the air.

Trough Roof. Same as M Foof.
Truss Roof. A roof, the ratters of which are supported on a triss, or a scries of trusses, by means of purlins.

Valley Roof. One which covers a building so amanged with projecting wings or pavilions, nearly on the same level as the main roof, that there are valleys at the junction of the two parts of the rouf. The term is hardly applied to roofs which have merely the ralleys of dormers and small gables.

ROOF COVERING.

 The closure lain upon a rouf frame, incluling the wood sheathing or boarding, and the outsite protection or weathering by metal, slate, tiles, shingles, painted362

ROOF COVERING

canvas, tarred paper, thateh, by any composition of tar, bitumen, asphaltum, etc., with gravel, or any other form of protection

ROOF COVERING

pansion antl contraction ; or, in flat roofs, large slabs of slate or stone are bedded in cement. In the more nsual cases, roofs of any pitch may be

Roof: like that at Chariet, but mech lifihter as bang work uf a skilled Cunstructor; Highas Ferrera, Nurthinftusishee; c. 1301).
against the weather. In the few eases of absolntely incombustible construction (see Fireproofing) the slates or tiles are tied by lead wire
coverel with metal, which is nearly always of tin plates in the 'United States; though tern plates are used, and, much more rarely, zine, as

Roof: uf Stapcase, Thurstun Abeey, Lincordshire; c. 1300.
to iron laths: or, the roof being filled up solid with brick, terra cotta, or cement blocks, large sheets of copper, zinc, or lead may be nailed upon it, lapping orer one another like slates, and left free at the lower end to allow for ex-
in France, lead, as often in Great Britain, or copper. The term, The Leads, applied in England to a nearly Hat roof which may be used as a floor, is unknown in the L'nited States, where such a roof would be covered with tin plates or

ROOF GARDEN

with tar amd gravel. Steep roofs alone may be covered with tiles, slate, or shingles, laid in the usual way, without any filling or cementing of the joints; and it is to be noted that rain and snow may beat in through the crevices to a slight ilegrec without serious damage. (Sce the separate terms : also Flashing.)

ROOF GARDEN. A garden formed upon a that roof, especially prepared for the purpose hy arranging thereon growing plants and shrubbery in pots, tubs, and boxes, anl oceasionally by acenmulating thereon sulficient soil to sustain grass and other small vegetation ; specifically, a place of public entertainment in the open air upon a roof, provided with facilities for rauleville performances, partly sheltered by awnings and aulorned with a few ormamental plants.

ROOF GUARD. A device to.prevent snow from slinling off a roof withont interfering with its watershen ; it is fencing or opentrork of wool or iron at the foot of the slope, or of stiff wire bent into the form of loops, laitl in with the slate or shingles, and forming projections distributel over the roof surface so as to arrest the tendency of snow to slide.

ROOFING. The materials of which a roof is composed ; the art of constructing a root. (See Roof ('overing.)

ROOFING SLATE. (See under Slate.)
ROOF PLATE. A Wall Plate (see under Plate), which earries roof timbers.

ROOF STAGING. A scaftolding used by roofers in working un a roof slope. It antomatically holds fast to the roof by means of barbed rods or claw plates.

ROOF TREE. Same as Ridge Piece - Pole. Sometimes usel fignatively, referring to the Whole rouf as at shelter.

ROOF TRUSS. In earpentry, one of the transerse timber frames compused of principals, ties, struts, and suspension rods, used in lowfs of wide span to simphort common ratters by meams of longitarinal purins.

ROOM. An enclosite or division of a house or other structure, separated fiom other divisions ly partitions ; an apartment, a chamher; as a drawing-rom, parlon, clmugg romm, or chamber in a honse, a stateloom in a ship or raihroal car, a harness room in a stable.

Ruof: Elab date Himmer-beam Construethon; S. Stephen's Chereh, Norwich; c. 1 tiol
and sent to England. Returning to America after the war, he grarluated at the college of the City of New York and entered the othice of James Renwick (see Renwick). He afterwarl beeame an assistant of Juhn B. Snook, and umter his direction superintemled the eonstruction of the Grand Central Station in New York City. In 187: he entered the office of Drake d Wight in Chicagn, and later formed a partnership with Daniel H. Burnham. linot held the important office of consulting architect of the World's Fair Commission in Chitago.

Harret Monroe, Joha We llown Rome.
ROPE. A roll monlding decorated with a twist like the strands of a rope, common in Romanesque architecture; a cable monling. (See Cabling.)

RORITZER, KONRAD (THOMAS and WOLFGANG) ; architects.

Komrad Roritze! was architect of the cathedral of Ratisbon (Regensburg) from 1459 to 1465 , and built also the choir of the Lorenz Kirche at Nurembers between 1459 and 1477 . Thomas Roritzer was cathedral architect at Ratisbon (Regensburg) in 1482 and Wolfgang
horitzer hell that ottice in 1514 , when he was decapitated for sedition.

I'opp, Less Truis Iiges de l'Architecture Ciothique; seubert, fïnsiler-lexikon.
rosace. Sime ils Rusette (1.).

Rosace froma Honse at fetonrsa, Syria; јтн to (ith Centuri.

ROSE. I. A conventional representation of the tlower in its original or wild state, much used in Gothice seupture and especially in late English Gothic and Elizabethan art. One form ol it is especially suggestive of English political changes. (See Tutor lose below.)
B. A circular or nearly circular ormament. (Compare liosace, Rosette, Rommlel.)
C. A diaphragm of woven wire or of a phate of metal piereed with holes to stop solith matters which might clog a pije.

Tudor Rose. (Originally, in heralilie use; hence rommon in architecture.) A combination of two or three single wild roses, red and white, one above another, expressing the marriage of Henry VII. of England with Elizabeth of York, and the resulting peace between York ant Laneaster. In the Deanery at Worcester the flower is seren-petalled : sometimes it is sixpetallen; usually it is, as in mature, five petalled. It has always five small, sharp "rays," representing the leares of the calys.

ROSENGARTEN, ALBERT ; arelitect: b. 1809 .

In 1839 he won a three years' travelling scholarship and went to Paris to stuly with the architect Labronste (see Labrouste). After a sojourn of two years in Italy, he established a large practice in Hamburg, Germany. He published Die Architehtonischen Stylurten (1874,1 vol. 8 vo).

Seubert, Kïnstler-lexikon.
ROSETTE (I.). A decoration common in all the historical styles, treatel as a flower, a knot of foliage, or as a patera with conventional or geometrical letail, generally approaching circular in form, but sometimes square. In Roman arehitecture, it oceurred in the centre of ceiling or soffit panels, and as a central ornament on the Corinthian abacus. In medjaeval arehitecture, rosettes of square form were frequent in the decoration of mouldings, as a knot of foliage in the centre of foliaterl panels, etc. In early Italian work, rosettes

ROSSI

appeared often as geometrical inlays of colonred marhles. - H. V. B.

ROSETTE (II.). (Sce Electrical Appliances.)

ROSE WINDOW. A window which is of circular form, expecially a large one and filled witl tracery such as those of the west and north and sonth transept fronts of Gothie ehurches. In these, howerer, the eircular tom of the window, althougl clistinguishable, is sometimes, in later work, a part of the tracery of a still larger window with pointed head. When a rose window has the tracery hars arranged in deeidedly radiating order it is often called Wheel Wintuw, and by a popular extension, Catherine Wheel Wintow. (See cols. 1093-1098.)

ROSS, LUDWIG; philologist and arehæologist ; b. July 2̊. 1806 : (1. Ang. 6, 1859.

Ross studied in Kiel, Copenhagen, and Leipzig, and in 183.3 went to Creece. In 1834 he was appointel chief conservator of the anticuities of Crrece and in 1837 professor of archreology at the University of Athens. With Selambert (see Schanbert) and Christian Hansen (see Hansen, H. (.) he restorel the temple of Nike Apteros on the Acropolis at Athens. In 1843 he marle a jouney among the Greek islands and in Asia Minor. In 18 t5 he was appointed professor of archeology at the University of Halle, Germany. He published Die Ahropolis won Lthen ... der Tempel der Nike Apteros (1839, l vol. folio) ; Reisen ouf den Griechischen Inseln (1840-1852, 4 vols.);
Das Thescion und der Tempel des Ares zu Athen (1852).

Brockthaus, Finnersations Lexikon.
rosselino. (See Gambarelli.)
ROSSI, DOMENICO ; architect; d. 1742.
A pupil of Balilassare Longhena (see Longhena). He built the facade of the ehurch of S. Eustachio, the chureh of S. Maria dei Cresuiti (1715-1728), the Palazzo Comer della Regina ($17-24$), anol the Palazzo Sandi (1721), all in Venice.

Gurlit, Geschichte des Barochstiles in Italien.
ROSSI, GIOVANNI BATTISTA DE (il Commendatore) ; archeologist: b. 18:2; d . 1894.

Il Commendatore (G. B. de Rossi was the historian of Christian amd subterracan Rome, and published a remarkahle series of works on this subject: Inscriptiones Christiome urlhis Romee, (1857-1885, 3 vols.); Romu Sotterromea cristiana (186.4-1877, 3 vols. fulio); Mostici cristicumi e Saggi di parimenti delle chiese di Rome (1578). He was also editor of Bulletino d Areheoloria crestecna (1863). He assisted Heuzen and Mommsen in the direetion of the Corpus C'nicersale Inscriptionum Letlinamom.

Vecrologie in Construction Moderne, Sept. 29, 1894.

ROSSO

ROUND CHURCH

ROSSO. IL (Giovamni Battista di Jacopo; callet in France, Maitre Loux) ; painter and decorator ; b. 1496 (at Florence, Italy) : ،l. 1541.

Fosso was one of the young men who studied from the cartoons of Dichelangelo (see Buonarroti). In 1530 he went to France and was emploved with Primaticein (see Primatiowio) in the decoration of the palace of Funtainehlan. He lecorated the Giramle Gulerie and the Chambre de Modume de Estumpes at Fontainehleau.

Vasari, Milanesi en\}. ; Palustre, Remaissence: Pfor. Monoyraphis do Fontainebleau; liouyer et Darcel, L' Ant Arehitertural.

Rosso antico (luritu Rosso Autico). This is, according to Delesse, a porphyrite; i.e. a basi- eruptive rock, consisting essentially of a compact reddish felsitic base, in which crystals of hambleude and rose-coloured plagioctase feldepar are porphyritically dereloped. The stone was used by the ancient Egyptians for making statues of the deities and for other ormamental purposes, and later by the Romans. The uriginal source of the rock was the Dobhan Hountains on the west shore of the Red Sea, in Egypt. - (土. P. M.
rostra. (See linstrum, B.)
ROSTRAL COLUMN. (See under Column : also see Memorial (olumn ; Rustrun.)

ROSTRUM (pl. Rustra). A. The beak or prow of a ship, used as a ram in the naval conflicts of the Greeks aud Romans ; it consisted of a beam or heams armed with heary pointed irons, the whole being atfixed to the buws of the war galleys above or below the water line. Captured rostra were preserved as symbols of rictory.
B. In the plural (Rostra), a platfurm elevated in the Roman Forum, so called because its basement or portimn was decorated with the rostra of ships captured in the first haval victory of the Repulblic; from this platform orations and pleadings were delivered to the Roman populace.
C. Any pulpit or platform from which addresses are made.
rot. (See Dry Rut.)
ROTUNDA. A circular hall, especially one covered by a cupula like the Pantheon or the central hall of the Capitol at Washingtun. The frequent application of this term to any large central area in any public buikling, as the "office" of a hotel, which is neither circular in plan nor covered by a tome, is improper.

ROUBILLAC (ROUBILIAU). LOUIS FRANÇOIS ; sculptor ; b. I695 (at Lyons, France) ; d. Jan. I 1, I76?.

A pupil of Balthazar, sculptor to the Eleetor of Saxony and probally also of Nienlas Cunston (see Constou, N.). He won the second Granel Prix at the Academie Royale in 1730. He appears first in England in 1738 , when he
made a statue of Hamdel for Vamhall gardens, Lomton. In 1it3 he made the monument of John Camplell, Duke of Argyll (Westminster Abhey), in 1753 the momment to Aclminal Sir l'eter Warren (Westminster Abbey), in 1758 the statue of Shakespeare (British Museum), in 1761 the well-known Nightingale monument (Westminster Abber).

Walpole, Anerrhites; Stephen-Lee, Dictionary of Vational Bingruph!!

ROUGHCAST ; HARDCAST. A kind of plaster made with strong lime murtar and sand, mixed with clean gravel until it resembles a concrete, used for the exterior faces of rough masoury walls, as of small country houses. In dillerent parts of Great Britain and the United States different processes are userl. Sometimes the mortar is very hot when the gravel is mixed with it. C'ommonly the whule mixture is thrown or dashed forcibly against the wall When freshly plastered. The surface is often coluurel by a wash while still wet.

ROUGHING-IN. Any coarse mechanical process preliminary and preparatory to final or finisleel work, as the rongh cuat of mortar forming a fomdation for one or more eoats of fine plaster, or, in, a scheme of decoration, the necessary mechanical grumndwork of colours or morelling. Specifically. in plumbing, the establishment of the system of pipes for supply and waste, done while the house is preparing for plastering, and before the pipes are connected with the fixtures.

ROULETTE. Same as Dotting Pen. (See Drawing Pen, B, muler Pen.)

ROUND CHURCH. One whose plan is a circle or is symmetrical about a centre, and not

Rousd Cherch: S. Costasa at Rume; Plan.
arranged upon a defined axis. Polygonal churches, and those which consist of equal arms radiating from a central point, are included in this term. Such buillings are apt to difter radically from longitudimal churches in that they are centred upon some monument or feature which is set in the middle, and for whose protection or accommolation the church is planned. The baptisteries were buldings of this kind (see Baptistery), being planned to receise a central font or basin.

ROUND CHURCH

The round plan for huildings lelongs, with variations, to most styles and periuds of architecture. It was a farourite anong the homans and common among the Greeks, especially for mortuary and rommemorative structures; and from these evidently the C'mistians adoped it The circular type prevailed with the Romaths - on a large soale as we see it in the mansolemms of Hadrian and Augustus, on a small scale in many lesser tombs. It was a filvourite form for temples to lesser divinities and heroes; for example, the temples of Vesta and Her-

ROUND CHURCH

is the same. The niches were continned in Christian architecture, especially in baptisteries, but the round form gradually prevalited in them urer the rectangular. The Foman tombs, and rotundas that appear to have been tumbs, were most commonly domed, and are often lighted, like the Pantheon, through a round opening in the crown of the dome. This last treatment appealed to the Cluristian sentiment; we are expressly toll that the rotundas that Constantine built at Jerusalem, to commemorate the Holy Sepulchre and the place of Christ's

Round Chirch: S. Costanza at Rome: see Plan
cules at Rome and of Vesta at Tivoli, and still more for important tombs. This last use commented it to the Christians for memorial buildings. The most claracteristic Roman type was a cylinder with a thick wall, in which niches were cut inside. most commonly eight, usually square and semicircular in alternation. We see this type at Rome in the so-called Torre dei Schiavi and the Jlansoleum of Helena, at Tivoli; in the Madomna della Torre, and on the largest scale, with some complication, in the Pantheon. In what is known as the Temple of Jupiter at Spalato, the builcing is oetagonal without and circular within, an Eastern fashion that became eharacteristic of Byzantine work, but the arrangement of niches
ascension, were in the mithle left open to the heavens intu which he hat ascended. Others of the earliest Christian buildings seen to have been built in this way. Some anthorities have believed it of S. Costanza at Rome, S. Maria Maggiore at Nocera, and the Baptistery of Constantine. The baptistery at Alujelia in Syria wats apparently uneovered in the middle ; and in the great church or group) of churches consemated to S. Simeon Stylites at Kalat Siman, the centril octagon from which the four arms ranliate, and in which was preserced the pillar on which the saint had stood, was eharacteristically left imroofed. (See eut muder Plaming; also under Syria.)

Round churches were not naturally allapted

ROUND CHURCH

to the liturgical worship of the Chureh; the very early custom of setting the clergy conspheuonsly aside from the congregation hil mot allow of their offeriating in the midtle of the chureh, hut refuired them to stand apart toward the cast. This orientation at once established a longitmanal axis in the dhmerh that was at variane with the centralized plan of the round chureh. This fart of the wrientation of the liturgical churehes divided the buildings into two elasses, me symmetrical about a line, the other abont at point. The need of separating the ecutral feature, tomb or font, from the body of the spectators in the romm building matumally led to dividing the bullingr into a central nave, ats it were, and a sumomming aisle - which wats, in fact, as some writers have noticed, the intiasion of the hasiliean idea into the romm stroneture, for the central space must needs be lighted iny a dearstory. The separation of this space from the absle. whether ly a range of columms or by aranle, soon almost enjoinerl the sulstitution of a polygonal plan, with piers or culumns at the

Round Churef: the uriginal Chafel of Chirlemagae at Aix-laChafelle; 1, Ground story; B, Upper Story

ROUND CHURCH

Rutid Church: S. Miria at Niotelis, South Italy: Втн (ENTII: A.D.: PLaN.
angles, for the romd. The difficulty and awkwardness of applying aroules to a circular plan is ronspicuous in s. Costanza and in the baptistery (h. Maria Maggiore) at Nocera. The smaller the buibling and the sharper the curve, the greater the lifficulty. We have no cinronological series of secmely dated roumd huldings by which we can trace their progress contimumsly, but it is clear that there was in the first ('hristian centuries a rapid change from the circular plan, which the Romans preferred, to the polygonal form. liy the time of Justinian, and even earlier, if we may juige from the remains in central Syria, the straight-sided shape had prevailed tor the main lines, thongh the round ontline was retained in niches and apses. We see lonth combined in S. Soffa aml SS. Sergins and Betchus at Constantimple, and in S. Vitale at Raremna. where the main constructive arches of the building are set in the straight walls of a polyconal enclosure, while the arcates of the apses, which are merely decora-:3-4

ROUND CHURCH

tive, and have little weight to carry, stand on at circular plan. The effient to reconcile the areade, and the polygonal phan which suited it, with the dome, which was the

ROUND CHURCH

space than were cuvered by iny other form of roofing in masonry. This invention, giving eommanding importance to the epitral feature of the plan, and shown in its greatest develop-

farourite covering of the Romans, and to which the Eastern builders clung tenateionsly, led to the great inrention of pendentives, by which
ment in S. Sofia, became the leading influenee in shaping Byzantine churches (see Byzantine Architecture). These, nevertheless, though the

Rornd Church: Aix-la-Chlpelle: see Plins.
the dome could be hong even over a spulue plan, learing the floor muder it unobstructed, except by four piers at the corners of the square, and opening vaster areas of interior
square or nearly square plan prevails in them, with a central dome, are intended for liturgieal worship, and so are built on an axis, and to be classed, not as round churches, but as longi-

ROUND CHURCH

tulinal. The Byzantine churoh was thus intermediate between the romd and the eruciform.

Round charches were huilt here and there over Europe through the early Christian perion and the Middle Ages, though they were tew, and grew rarer in the later periouls, compared with those of basilican and cruciform types, which were almost imperative for the needs of great congregations. The two churehes of S. Costanza at Rome and S. Maria Maggiore at

ROUND CHURCH

of meertain date, slows the masonry of a century or two later. It was dumbtless meant originally for a baptistery, for which the unnsuatly large font still ocerpics the centre. Both were evidently converted into churehes for liturgieal worship sume time after their buidding, for the apses in hoth are later alditions. S. Stefano Ratondo, the other great carly round church of Rome, is of basilican structure, far slighter than these two, being roofed with

Round Church: \& Gerfos's at Cologne; the Older Part sow altered into a Gothic Rotuxda; its Plan is Gf unkyown antiquity; probably 4th Cestury a.d.

Nocera, already mentioned, the second an obrions imitation of the first, are of peculiar form. A circular arcade, in the one case of twelve arches and in the other of fifteen, whose columns are in pairs set across the wall, and therefore ratially, encloses a central space some 40 feet wide, which is domel, amb surrmumed by an aisle under an annular rault. S. Costanza, built, we are told, in the fourth century as the mausolemm of the sister ant the laughter of Constantine, is of brick and concrete in the Roman style of that day, but the dome is raised on a clearstory. The church at Nocera,
woon, with concentric aisles round a ceutral rotumla some 70 feet in diameter, which now at least contains the altar. Essenwein's theory that S . Stefano was bilt in imitation of Constantine's church of the Holy Sepulchre, aud that the middle was at first ouen to the sky, is at least plausible; the fact that it was dedicated to the protomartyr lends some colnur to it. It is clear that the romel form of the Holy Sepulchre had much influence on the building of round chmrches among the early Christians, and that this influence was revived in the West during the crusades. The great

ROUND CHURCH

roturla whose foumbations remain in the church of S. Benigue at bijous was apparently an imitation of it, huilt in the eleventh centhry : the form and the name ate recalled in the Whorth calleal s. Sepolctu amme the complex of chapels known as. ㅅ.. Stefano at Bolugna. The churches built he the Kinghts Templars over Eurure, of which the Temple Church in Lon-

ROUND CHURCH

Christians addel to the Roman form. SS. Angeli at Perugia and the old rotunda of S . (ierem at Culome, rebuilt in the thirteenth century, both buildiuge of uncertain date, are furthur instances. S. Titale of Ravenna, alrealy moticol, contemporary of s. Sufia, set the example of a more complicated structure radiating from a polygonal centre. It was

Round Chlrch: S. Gereun's at Cohogef, frum the E.E.; aee Plan.
The smaller accessory buildings are not shown.
don is one, are later examples, as is the swaller one at Cambridge callel S. Sepulchre, and that of Neurr-Saint-Séplucre in France. The Rotonda in Brescia, if it belongs to the elerenth century, is probably due to the same influence, and it repeats the same trpue. S. Michael's at Fulda was a German example of the same. S. George of Thessalonica is also a round building with a surrounding aisle, by some attributed to the Roman Empire, Lut prohabls a Christian building, and has the clearstory which the
imitated by Charlemagne in his Mïnster at Aachen (Aix-la-Chapelle), and recopied from that in similar churches at Essen and Ottmarsheim. But the practical value of the erueiform type for all the uses of the Latill worship made it prevail throngh all Western Europe; on it was. spent the frogressive effiort of the builders of the later Middle Ages, and Guthic churches of round form are vers fert. The architects of the Renaissance, enamoured of the dome, under which Brunelleseo introduced the

ROUND CHURCH

new style in Florence, reverted to the romid ehureh. Bramante's lamous Tempietto in S.

Round Churfa: Mathas Kapeloe at Kobeme on the Rhine; Plan.

Pietro in Montorio at lome leal the way; the Madonna della Consolazione at Todi, the In-

Rovnd Churfh: Mathias Kaptele: Section Shuwing Intertor only; sef Plan.
coronata at Lorli, hoth ascriberl to Bramante, were the forerunners of a long line of roum churches, of which the well-known Salute at

ROUND TOWER

Venice is one of the most pieturespur examples, and the Liebframenkirche at lowender of of the later. But the great achieroment of the Remaissume architeets in churel buiding was the union of the rentral type with the arneform by setting orer the sifure rossing the dome built on pendentives, after the maner of S . Sotia, which culminated in S. Peter's, and fixed the dominant form for hemasimbe architecture, as the development of the groined vitult had for methenal. - W. P. I', Longreniow.

ROUNDEL. A. A suall cirentar panel or wimluw ; specifically, a cimala niche deeply recessed, olten decorated with a bust in high relief, or, in late neoclassic design, filled by a free standing bust.
B. In glass making, or glazing, a bull's eye or circular light, like the buttom of a bottle.

ROUNDHOUSE. A. In the U'nitel States, an engine homse, in sense 1 , which, in flan, is constructed on a circular are, from which radial tracks converge towaml a turntable near the centre of the are. The turntable also connects with me or more lnamehes of the milway, so that an engine is realily transferred from the honse to the railway line, or vice peosu.
B. A police station house or other place of temprary confinement for persons arrested; pophlar and without exact signifiamce.

$$
-(\mathrm{C} . \mathrm{D} .)
$$

ROUND TOWER. A. In early Christian architecture, a building of a peenliar type with few windows and those generally so small that bells would harlly give ont their sound freely; very slender, and commonly furnished with conicall stone roofs. Of these there are more than one humdred in Ireland ; and there are known to be more than twenty-two in other comntries of Europe. Although it is proballe that they were used rather for defence and for lookout purposes than for the j,lacing of bells, yet a tower of this type is commonly called bell Honse. (Bee Ireland, Arehitecture of.)
B. In the Southwestern United States the work of American Indians of the Pueblo type. Some stand alune but the greater number are near, or comected with, other ruins of rectangular form. Two or three concentrie walls exist in some, separated by from 2 to 6 feet, the

Round Tuwer (Def. B), onter interval being divided by transverse walls on radial lines into small chambers. The diameter of the imer circle varies from 10 to 20 feet or more. Walls were of roughly dressed stone. Those near other ruins are generally classed as kivas; isolated ones may have beell lookouts. (See

ROUSSEL

RUDE

Communal Dwelling; Kiva; Watch Tower, under Tower.) - F. S. D.

Stokes, Early Christian itrt in Ireland.
ROUSSEL (ROUXEL), JEHAN ; architect.
He was mectite dorncre of the city of Rumen. Scpt. $\quad=1,1447$, at the death of Jehan Salrart (see Salvart), he sucereded him as arehitect of the cathedral of Ronen, and held that ottice until 145 l .

Deville, Revue des architectes de la Cathedrale de loupr.

ROUX, MAITRE. (See Russo, Il.)

RUBBLE. A. liough stones of irregular shapes and sizes, bruken from larger masses, either naturally by geological action, or artificially by unarrying. The term is used very loosely, covering all between dimension stone and cobble stones or gravel. (See definition B and sub-titles.)
F. Nasomy built of such stones.

Coursed Rubble. Fubble in sense B, in which the stones have faces with square corners and nearly parallel sides, and beds nearly horizontal and vertical.

Rofrn Tower (Def. A): Ardmore, Irfland.

ROVER. In architecture, any member, as a moulding, which follows the line of a curve.

ROVEZZANO, BENEDETTO DA. (See Benedetto da Rovezzano.)

ROW ; ROWLOCK. (See Rollock.)
ROYERS DE LA VALFENIERE, FRANÇOIS DES ; architect ; b. August, 1575 ; d. Warch 22, 1667 .

The chief nember of a family of architects which was employed at Arignon, and at Lyons in the serenteenth century. In 1636 he was appointed architect of the Chartrense of Ville-neure-lèz-Avignon, which he enlarged and decoraterl. In 1646 he finished the Palais de Justice at Carpentras, and in 1647 made the plans of the abbey of the Dames de S. Pierre (now Palais des Arts) at Lyons.

Charvet.les La Valfeniere; Monfalcon, Histoire Monumentate de la ville de Lyon.

Snecked Rubble. Rubble laid up with rough or irregular stones, but so fitted as to secure an effective bond.

RUDE, FRANÇOIS ; sculptor; b. 1784 (at Dijon, Côte d'Or, France) ; d. Nor. 3, 1855.

Purle was the son of a coppersmith of Dijon. He studied art at the excellent scluool of Derosge in Dijon. In 1807 he went to Paris and was employed on the Colome de la Grande Armée (Colonne Venlinme). In 1812 he won the memier arourd prix, but on account of the political disturbances of the time did not risit Fome. He went to Brussels (Belgium) where he made the C'aryatides of the Théâtre Royal, the perliment of the Hôtel des Mounaies, etc. He returned to Paris in 1827 , and in 1828 exhibited his statue of Hercury at the Salon (now in the Lourre). Rncle executed a part of the frieze of the Are de Triomphe de l'Étoile (Paris).

RUGERUS

In 1832 Alvel Blonet (see blonet) succeeded Huyot (see Huyot) as architect of the arch. For him, largely at the suggestion of M. Thicr:, Rude made four designs for the sculpture of the piers represinting four suljeects illustrative of watr: Le Dépurt, Le Relour, La Défense dlu Sol, and Lat lieix. These drawings are now in the Lamre. Lee Deperit, the only one of the four which was carried out by Roule, is probably the most important momment of French sculpture. The three other groups were made by Cortot and litex (see Etex). In 1836 lime mate his statue of Maréchal de Saxe, now in the Lomyre. In 1852 Rude opened an atelier for the instruction of pupils, which formed many importent sculptors. Among his many works are the monment to Napoteon in a park at Fixin (France), the splendid reclining statne of Codefroy (avaignac in the cemetery of Montmartre (finished 184i), and statues of Monge, Bertrand, and Ney.

Fourcaud, Frouçois Rade; Gindriez, François Ruthe; Gonse, Sculpture francraise.
rugerus. (See Throphilus.)
ruggieri, ferdinando ; arelitect.
liuggieri reluilt (1736) the interior of the church of SS. Felicita, lesignel the taçade of the clurch of S. Firenze (1715), and assistel C'arlo Fontana (see Fontano, Carlo) in the construction of the Palazzo Capponi, all in Flnence. He is lest known by his Studio d' Architetmin Civile.

Gurlitt, Geschichte des Burrocksites in Itulien.
RUIJSBROECK, JAN VAN ; architect.
A Belgian architect of the fifteenth century who made the $\mathrm{p}^{\text {bans }}$ for the Sturlhis at Brussels. The first stome of this building was laid in 1444.

Immerzeel, Hollundsche en Vlaumsche Kun. stenaars.

RULE. A strip of wood or metal with a straight or true elge, used to assist workmen in making straight or true work, as in plastering, to assist in keeping a surface in plane. When graduated and currectly marked with foot divisions and subdivided into inches, and into halves, quarters, eighths, and sixteentbs of an inch, and made to folld in two or four sections for conrenience of carriage, the tool becomes a carpenter's rule.

Diminishing Rule. A loard or the like used to lay unt or determine the curvature of the swelling of a column ; its edge being cut with a concave curve.

Foot Rule. Similar in make and form to Two-foot liule, but half as long, aucl, therefore, half as long when fotted up.

Two-foot Rule. A cirpenter's rule as defined above, two feet long, and folding usually into four six-inch lengths. This is much the most common form of rule used by mechanies,

RUSSIA

architects, and all persons engaged in the building tralles. - R. S.

RULER. (Sce Straight Elge.)
ruling pen. (sie under Pen.)
RUMFORD, COUNT. (Sice Thompm,
Вепјаміи.)
RUN. In the United States, same as Going. RUNIC KNOT. A firm of interlacing common in the ornamentation of jewels, implements, and in stone and wood carving gencrally anong the early Northern races of Enrope. - H. V. I.

RUSKIN, JOHN ; writer on Fine Arts; b. 1819; 1. 1900, Brantwoul, Coniston, Lan'ashire.

While engaged in the stuly of painting, especially landscape painting of early ltalians amd modern English, he studied also the mediaval architecture of Europe, and made many acruate trawings, engravings from some of which illnstrate his publisheel works. In 1849 was jullished The Secen Lamps of Arehitecture, a series of essays ; :mul, in 1851-53, The Stones of l'emice, one chapter of which, "The Nature of Gothir," laas heen reprinted separately. He published also lectures and detached essays.

RUSSIA, ARCHITECTURE OF. That of so much of the modern empire of that nane

Russia, fig. 1: A Greek Byzantine ChurchPLAN, ILLUNTRATIN: THE TYIE COMMUX IN Rusia alno; the Cupola is communiy like Thit shown in Fig. :
ats lies west of the Ural Momtains. In this vast region there are many remains of amcient building showing great capacity for art of a semibarbaric sort, and much of that picturesqueness which comes from massive building of unusual height and expressive outline, as in fortification. Thus, the watch towers, which serve also as places of defence, which exist in great numbers in the region of the Caucasus, are as effective as Scuttish Pele Towers or the border towers of the Pyrenees, and the wooden houses and clumehes of all the forest-roveret parts of the comtry exhilit a power of design not surpassed by the log churches of Norway (sce Seamlinasia) or the chalets of Switzerland. That influence which was to change the character of church architerture throughont the empire seems to have come into Russia not earlier than the twelfth century. This was the

RUSSIA

Byzantine influence coming partly from the momasteries of the Greck chureh in the south, suchas those of Mt. Athom, and partly from Constantinople direct; but it was largely influenced,

Russis, Fif. 2: Cheri h of the Intercession of the Virgin at Pukrufa; see the Greek I'las, Fiti, 1.
at least in decoration, by a more purely Oriental spirit which is manifested in earlier Pussian manuscripts, jewellery, and other minor arts of decoration. The immediate result of this was that the eities of the empire were filled with churehes built with central cupulas in the Byzantine taste, but also much smaller than the churehes of Constantinople; hardly larger than those in the towns of the Peloponnesus or of Attica (see Greece, Arelitecture of), and taking their essential characteristics largely from the comventual ehurclics which were often small, because of the small size of the religions communities. Thus, a relatively important chureh in a good-sized town may be only 20 feet square within the four main piers which earry the cupola, with a surronding aisle not over 6 fect in willth. so that the congregation of 150 people would erowl it.

The constructional features of these buildings are: first, a very simple and straightforward plan of ranlting with either briek or stone, and a great abumlance of mortar, generally in the Byzantine manner; seconl, an almost miversal disposition with a square eompartment supported by four piers carrying a eylimdrical drum which might be finished in a
bulhous empola, or an vetagonal tower generally finished with a blunt spire; thirl, a marked disproportion of height to size of plan, a preculiarity undoubtedly resulting from the conventual chureh within its crowled enclosure, but very effective in cities; fourth, a disposition to carry up the central tower or drum unbroken within, so that mural painting eould be earried out over the whole of the somewhat high funnel-shaped or cylindrical tower above the heals of the congregation; fifth, a tendency to make much of the entrance, by means of a porch often crowned by a low tower, an elaborate Hight of steps leating to a second porch communicating with the much loftier bell tower, aml a final imer narthex leading direetly to the place of worship. There are many minor pecnliarities but the above which are generally foumd in the churches from the twelfth to the eiglteenth centuries are strongly marked and suttice ly themselves to explain the notable individuality of Russian churel arehitecture.

Ahove the root the drum of the cupola was often raised to an exaggerated height, many times higher than the halb itself, and pierced by slemler windows. The bulb might be more or less prolonged into an onion-shaperl, up-ward-pointing form, evidently of Persian origin, and this hulb might be covered with metal or with lrilliant culoured tiles. The octagomal tower and spire which sometimes replace this eupola and drum have the umique feature of coming inwart from the silles of the tower to the starting of the suire by means of a series of small arches rising one upon another, like the squinches of Western towers but in three or four horizontal rings: these arches showing on the exterior produce an effect as novel as it

Ru'ssla. Fig. 3: Tower of Cherif of Vasili BlajExOI. Moscow: RECEDing Arches miminishing Size uf Central OpenIN(: is thoronghly constuctional and logical. The same system is applied to larger towers which rest on the ground, as in the really noble tower of S . John Chrysostom at Korowniki, a tower which

RUSSIA

though only 125 feet high has a most stately appearance. The chapel of the convent of S . Nicetas has a blunt, octagonal spire built in a more familiar western style, but of equally good form. The church of the Virgin of hasan at Markowo, near Moscow, has the roof itself carried up on a moderate slope by means of this system of squinch-like arches, these showing on the untside of the root like blind dormers with rounded tops or like eychrows (see that term B), of which the window openings are stopped. In this rhurch, as in those of less importance, the peruliarity of an elaborate system of vaulting, an effective exterior, and a brilliant mural painting within apulied to a churels which conld not hold over 200 worshippers is as notathe as in still smaller chmrches. The churd of the Resurrection at Rostow has its tower arched up high with a special cupola reaching a height of 85 feet, and this is coverel with figure painting of generally cool and dusky tones lut with warm colour in the costumes. The churd of the Trinity aud of the Yirgin at Anscow has in important tower over the entrance like the gateway pagodas in India. In this chureh the chapels, of which there are several, are nearly as large as the church proper. All these buildings of the seventeenth and eighteenth renturies are of the character described above, but there are also churches the plan of which is a matren Greek cross, which cross is roufed by its cupola, except the apse. A mortification of this, again, shows a plain parallelogran withont on three

Russla, Fif. 5: Log Built House, Province of Kustruma.
sides, the fourth side broken by three apses, but the plan within is not so diflerent from the ulans cited above, the piers diviting the chureh into a cross.

RUSSIA

The ancient buildings of the Kremlin in Moscow, though much altered extemally, retain, within, their halls of curious vanlting of many types. The willingness of the Rassian builhens to close the roots even of their very large roonts with masonry, and their apparent interest in the ditlerent systems within their reach, point to a natural readiness for architectural achicrement which the existing buildings, in teresting and suggestive as they are, do not guite verify. The extremely backward social condition of the empire through the ages which were most fruitful of architectural work in Enrope and in the nearer East, must be held as the canse of this hackwarduess. Ancient Russian architecture is rather a series of curious complex tendencies amb admirably intended results than a trimmphantly successful result. All Europe may go to Russia to study, but not to copy.

The simple \log buidd-

RUsisi, FIG. 4: Tower of S. John Chrysostum, at Jaroslaw ; showing IndIAN iNFLUENCE. ings of the peasantry, inchuling churches as well as large and small residences and village houses, are extremely attractive becanse of their successful combination of some truly arehitectural treatment with the simple structure (see Chalet; Loghouse ; Scandinavia, Arehitecture of). The practice followed in Fussia cenen to the present day of hollowing the unler surface of each log, that it may more nearly fit upon the log below and thus be capable of more perfect chinking, points to a use of this kind of strncture in buildings of some importance and considerable cost.

Beginning with the reign of Peter the Great, buildings of modern Emopean form have been imitated in Pussia, and palaces for the sovereign and for the mobles have followed the neoclassic style of the ejoch, but generally without fortunate result. The taste is often barbarous without being effective, the exteriors pompous without being stately. An exception is, however, the great church of S. Isaac, the cathedral of saint Petersburg, which was the bobly of several succeeding emperors, the plan having been changed frequently, and the present one dating from 181\%. The chureh is considered to rank in size, cost, and impurtance next after S. Peter's of lione and S. Panl's of London. It has four octostyle porticoes, two of them heing much deeper than the others and having immer

RUSTICATED

eolumns on the principle of the tamous portico of the Pantheon at liome, and the parathelogram foom which these prortiones proget is roofed by a central coprola of great size arompanied by four smalter ones at the fom principal angles uf the central souare. The complat is built cutirely of cost and wrought iron, an amimable achierement for permanmex and sucesstal combination of parts: but when viewed in the light of moklern congineering, unnecessarily costly, the material heing used in enormous masses. There is a great abmulance of decorative senpture in bronze, although part of what scens bronze is confessedly electrotype. The great doors are lesigned in the most exaggerated taste with hmman figures in high relief, seeming like statues in niches, and of a somle much greater than life.
L. Rusca, Recueil des Dessins de differents hutimens construits à staint Ditersbourg et dons l'interienr de l'empion do lassie; Fendrikliter. Monuments of Ancient liussiun Architerture, 18.51; A. Ricard de Montferrand, Eglise cathédrule de Saint-lsanr; 1. Weltmann. Description del nourean Peltais Imperial due Liremlin de Moscon. 1551; Demidoff, I'ayage pittoresque et archiologique on licesse: Souslow. -1/uumonts

Rustication: Base of Palazzo Strozzi, Flor. ence; 15th Centulif.
de l'ancirnne architpeture Russe, 26 I'l., St. Petersbourg, 189.) ; Mexis Martinow, Anciens Momumonts des environs de Moscou, les! ; Nohring and Von Lörvis, Die Städtische Profamurchitektur der Giothik, der Renaissance und des Barocco in Riga, Reval und Narra, Liibeck. Is!2: Fabricius, Le Hromlin de Moscou. 1883; Valérien Kiprianoff, Mistorve pittoresque flo l'architecture en Russip, levt.

- R. S.

RUSTICATED. In stone masonry, distinguished from smooth ashlar ly rustication.

RUSTICATION. In stone cutting, that done with joints sunk in some sort of chanuel, the faces of the stones projecting. The above is what is meant generally when rustication is spoken of, but the face of the stones is usually roughened artifieially to form a contrast with ordinary dressed ashlar ; and this rougheuing may be earried so far as to inelude rermiculation, or may consist of a regularly eut series of projections and sinkings. This is sometimes imitated in brickwork; and then sometimes, anl jerhaps in stonework also, in horizontal growes withont rerticals.

RUSTIC WORK A.

 Decoration by means of rough woodwork, the bark being left in place, or by means of uncut stones, artificial rockwork, or the like, or by such combination of these materials and devices as will cause the general appearance of what is thought to be rural
SABINE

in character. Where woolwork is used it is customary to provide a continuols sheathing as of boards, upom which are mailed the small logs and hranches with their bark, muss, ete., c:iretully preserved; hut these strips of wonl are often arrauged in omamental patterns, causing anything but a rural appearace.
B. In cut stone ; same an Rusticater Work.

S

S. The abbreviation for saint (English and French) ; scinte (French, feminine) ; san (i.c. sento), surta, santi (Italian and Spanish). (For the plural form ansl the superlative, see SS.)

SABINE. (See Sarine.)
SACRAMENT CHAPEL. A chapel especiailly reservel for the preservation of the hust.

SACRAMENT HOUSE. An ambry; used especially for the keeping of the sacred wafer.

SACRARIUM. A. In Roman archeology, a place of rleposit fur sacred objects, a chapel or slimine.
B. In Christian ecelesiology, the sametuary, the choir, the sacristy, a piscina, a sacrament house; the late Latin word being employed in various meanings.

SACRED TENT ; TIPI. A tent erected by American Indians to shelter some sacred object. Especially, one of three tents or tipis, of the Omaha, used for the Sacreil Pole, a stick of cottonwood eight feet long, said to be over two hundred years old, the Sacred White Butfalo-cow Skin, and the Sacred Bag consecrated to war. These sacred tents and all they contained are now in the Peaboly Museun at Cambridge, Massachusetts. See the contributions of Dorsey to the reports of the United States Bureau of Ethology.

> -F. S. D.

SACRISTY. A place reserved near the high altar ank sanctuary of a chareh, usually a single room, but sometimes of great proportions. It is the place where priests and deacons vest for the service and unvest again, and where ecelesiastical garments are stored; and where much of the business of the church is done, as the reception and registration of reruests for masses or prayers. There is of necessity a lavatory, and there shond be a separate piscina for washing altar vessels and the like; also permanent presses and cuplonaris ; and all these fittings are commonly made architectural and are often adonned rery richly. In some old

Sacristy: (Cathedral of Le Mans (Sarthe), Franle.

SADDLE STONE

the slember stone mullions; inore often to secure the lealed glass by means of wires twisted arouml it.

SADDLE STONE. The stone set at the apex of a gathe built of masonry, and forming the capstone uf the coping.

SAPPTA. Sime ats Septil.

SAFE. A place for the safe keeping of money, plate, prapers, and other valuables. Sifes are intemled to be fire-proof, burglar-proof, or buth. When built with the buikling as an integral part of it, the are commonly built from the fomulation with solid masonry to the first flow, and with brickwork abure in double walls, and are commonly called ranlts. When extembed throngh several stories, the structure is ealled a stank of ranlts. The floor and ceilings in earh stary are generally construeted with light iron beans and railroats bars laind far enough apart to permit a solid closure of brick laid upon the flanges with a covering of brick or cement ; or fewer beams are used, and arches of brick are laid between them. In each story the doorway, or loorways, are of bevelled steel trames built into the masoury, forming a restilonle clused with onter doors of iron and steel, and lighter inner doors, all provided with burg-lar-proof bolts. In fire-proof buildings these safes or vaults are not neeessarily built from the foundations, but may be started from the steel framework of any Hoor, wherever required. Safes of this kiml, though fire-proof, are not consitered burglar-proof moless lined with steel and provided with other securities against intrusion. For banks and other pullic institutions these structures are luilt with greater care and with ampler interior space, and often with two stories of sates on each Hoor. Good safes have onter and inner doors, both prorided with burglarproof locks. A patent lor fire-proof safes provides an outer and inner steel lining between which alum is packed. When exposed to heat the alum gives ufi its water of crystallization, which becomes steam at urdinary atmospheric pressure, thus enclosing the contents in an enrelope of steam at $2 l 2$ degrecs F., which is maintainerl until the water is all expellest, and which thus greatly delays the burning of contents. (See Golown ; Kura.)

> - Henry Van Brust.

SAFE-DEPOSIT VAULT. A vault in sense B, to provide safe storage fur documents, bullion, jewels, plate, coin, and other raluables. Public safe-deposit vaults are large basement rooms or vaults of solid masomy, lined with burglar-proof hoxes of rarions sizes, which are severally accessible only to those who rent them. Such places are provided with every pussible appliance of safety and protection, and include a series of small rooms or comprartments, wherein those who rent the boxes can be seclurled while examining their property or consulting their papers.

SALZBURG

SAIL OVER. Any projection or jutting beyond the general wall surface. Also, sale over, oversale, oversail. A term cunnected with salient. (Sce Overhang.)

SAINTE CHAPELLEE. In Frencl, a holy chatpel, that is, one of esjecially sacred character; a term usel peeuliarly for those which contain some relie of great sanctity, as any one of those which relate especially to the Passion of Christ. The structure of a clouble building, with a lower and a higher church, is especially identified with these buillings throughout the Middle Ages in France. It is found in the celebrated Sainte Chapelle of l'aris, once forming part of the royal palace in the Ile de la Cité and at Vincennes, but this has no special significance, its jurpose being rather to add to the height and dignity of the structure.

SALLE DES PAS PERDUS. A large hall forming a monumental vestibule or waiting room to smaller halls or apartments, as in courts of justice and other public buildings in France.

SALLY. A projection; the eml of a timber, as the foot of a rafter, cut with an internal angle to fit orer a plate or horizontal beam.

SALOMON DE CAUS. (See Caus, Salomon le.)

SALOON. A. A spacions or elegant apartment for the reception and entertaimment of company : a hall of state or ceremony.
B. In the United States, specifically, a barroom.

SALT IN BRICK WALLS. (see Ettlorescence.)

SALTPETERING: SALTPETRING. (See Etthorescence.)

SALUTATORIUM. In medieval building, a porch or a portion of the sacristry of a chureh, where the clergy and the people could meet and confer.

SALVART, JEHAN ; arclitect.
Marth 13, 1398, he replaced Jehan de Bayeux as architect of the cathedral of Rouen (Seine Inférieure, France). In 140 i he restored the west pertal of the cathedral. From 1400 to $1+11$ he was employed on the châtean of Tancarville (France). In 1430 he enlarged the windows of the choir of the cathedral of lonen. In 1432 Salsart appears as muitre dowore (city architect) of the city of Ronen.

Deville, Rovue des Architects do la Cathédrale de Ronen; Bauchal, Dirtionnaire.

SALVI, NICCOLȮ ; architect; b. 1699 : d. 1751.

Salvi was a pupil of Antonio Cannerari. His most important work is the funntain of Trẹri (which see) in Rome (1735-1762).

Gurlitt. Firschichte des Baruckstiles in Italien; Milizia, Memorie.

SALZBURG. ARCHITECTURE OF. (See Austrian States, Architecture of.)

SALUTE
The church of the Madonna della Salute (or of Health or Salration, on the left is the Dogana del Nare, and the church withont tower on
the ltalian word having both meanings). The view is taken from the the right of the Salute is. Gregorio. Fender piles (pali) are numer-
Molo, that is, the church is seen from the northeast; the low buikling ous, and one carries a lantern marking a Traghettu or ferry of trondolas.

SALZENBERG

SALZENBERG, WILHELM ; architect.
He was a pupil of Schinkel (see Schinkel). During the restoration conducted hy Fossati (see Fossati) at the church of S. Sophia in Constautinople, in 184i-1848, Sulzenberg was commissioned by the king of Prussia to examine the construction and decoration of the building. He published his results in 1854, under the title, Alt-christliche Buadenkmale rom Constantinople (I vol. foliu). This won for

Shinte Chapelle: S. Germer near Beauralis (Olae), France; at East End of Churih.
him the silver melal of the Royal Institute of British Architects in 1855.

Seubert, Fïnstler-lexikon.
SALZMANN, MAX ; architect ; b. abont 1850; 1. Feb. 7, 1897.

Architect of the cathedral of Bremen, Germany. At the time of his death he harl finished the towers and the decoration of the northern side of the buiking.

Nekrologie, in Funstchronik, Feb. 18, 1897.
SAMBICHE. (See Chamliges.)
SAMBIN, hUGUES ; architect.
Architect of the city of Dijon (Cote d'Or,

SANCTUARY

France). He built the fine western portal of the church of S. Michel at Dijon. The signature on the bas-reliel of the tympanum is supposed to be motern. Other works at Dijon are ascribed to him.

Chabent, Dijon.
SAMMICHELE, SAMMICHELI. (Sce Sanmicheli.)

SAMPLE ROOM. A. A room where commercial samples are kept and shown, as ly a travelling merchant in a hotel.
B. A place where liguor is sold by the glass; a barroom.
SANCHEZ, UNFRO; sculptor.
He built the stalls of the choir of the eathedral of Seville (Spain). An inseription on this work bears his name and the date, 1475.

Bermandez, Diccionarin.

SANCTUARY SCREEN

SANCTUARY SCREEN. Aly partition Which separates the sanctuary proper from the larger phat of the choir. (Sie Chancel Sereen; alsu (hoir sereen and the references.)

SANCTUS BELL. A hell hung in an exterior turet or bell wot ower or near the chancel arch, which was fommery rung to fix the attention of those not in the church to the service of the mass ; this notive is now usnally limiter to the ringing of a hand lell in the sanctuary.

SAND. Small prarticles of stone formed sometimes ly the trituration of stones or rocks when carried by water, sometimes by the decomposition of the cementing substance of crystalline rucks. Sand for buikding purposes is generally foum in the beds of streans or in beck, or pits, in the earth, as well as on the seashore.

It shoukd ln silicions, gritty, not too fine, and shoukd he perfectly clean and free from loam. Saml formed by the trituration of finely grained or amorpinous rocks, really fine pebbles, may be used for mortar, if of hard material, and no other can lie obtained. Silicions material is to be preferred. - W. R. H.

SANDBY, THOMAS ; architect ; b. 1721 ; d. June :5, 1798.

He was appointed architect to King George Il. of England in 1754 , and in 1755 was one of the committee which considerel the formation of a public academy. At the formation of the Royal Academy, in 1768, he was made a member, and the first professur of architecture.

Wiltiam sandby, Ifistory of the Royal Academy.
SAND FINISH. (See Plastering.)
SAND FOUNDATION. A platform or bed of sand, natural or artificial, prepared for the erection of a building. (See Foundation.)

SANDING. The sprinkling of fine sand on fresh paint to obtain a granulated surface resembling sandstone.

SANDSTONE. A stone consisting of consolilated silicious sands. (See Stone.)

SAN GALLO. SANGALLO. ANTONIO (I.) DA (GIAMBERTI) ; b. 1455 ; d. 1534 ; architect, enginecr, and woodearver.

Antmio Giamberti, brother of Criuliano da San Gallo, began life as a woodworker. He went to Rome about 1492 , and was employed by Alexander VI. (Pope $1+92-1503$) to remorlel the Castel Sant' Angelo, and build the gallery connecting it with the Yatican. He appears in the records as murator: About 1496 he was appointed Capomaestro of all the works of the Signoria of Florence, Italy, including the improvement of the l'alazzo Vecchio and the fortresses of Firenzuola and Poggio Imperiale. He enjoyed a large practice as military engineer until about 1518 , when he seems to have settled at Montepulciano, where he built the Cervini, Tarugi, and Bellarmini palaces and the important church of the Madonna di S.

SAN GALLO

Biagin. The palace of the cardinal, Del Monte (Palazzo Commmale), and the Loggia del Mercuto, at Monte San Savino, are attributed to Antonio. He built also the nave of the church of the Anmuziata at Arezzo. (See San Gallo, Giuliano da.)

Lamberti, Matonnerti san Bagio; Mémoiresde lat Société des Autiquaires de France, 1884, p. 292.

SAN GALLO, SANGALLO. ANTONIO (II.) DA (ANTONIO PICCONI) ; architect; l. 1485 ; 1. Oct. $3,1546$.

Antonin H. Was the son of a sister of Giuliano and Antonio (I.) da San Gallo. His name was Picconi. He was employed by Bramante (sce bramnante) as a draughtsman, and assisted Giuliano da San Gallo at S. Peter's church, and in 1517 was made Raphael's associate in the superintendence of that huilding. May 1,1518 , he was appointed arehitect of the chureh and the Vatican palace, and retained that office until his death. The model which he made for S . Peter's is still in existence. Antonio was for many yoars the leading architect in Rome, and controfled a large military and civit practice. He had in hand at one time the tortresses of Florence amd Ancona, the completion of the buikings at Loreto (see Sansovino, Audrea), the enlargement of the Vatican, and the fountain and arpeduct at Orvieto. The villa Hadama, Rome, is attributed to Riphael by Tisari, but existing drawings by Antonio and his brother, Battista, indicate that much of the work was clone hy them about 1530 (Geyminller, op. cit., p. 59). About 154^{2} he built for Paul III. (Farnese, Pope 153t-1549), the Pauline chapel in the Vatican, which was decorated by Hichelangeto (see Buonarroti). For the same pope, also, he began the famons Famese palace in Rome. At about the beginning of the third stury, the wurk was transferred to Michelangelo, whose design for the cornice was preferred. A long list of Autonio's palaces and churches is given by Vasari (Vita di A. San Gallo the Younger). Many of his drawings are in the gallery of the Cthizi (Florence).

Bertolotti, Nuori documenti; Ravioli. Notizie; Reltenbacher. Banmeister der Renaissance; Muintz, Renaissance; Vasari, Milanese ed. : Vasari, Blashtield-IIopkins ed.; Geymüller, Raffaello Sanzio come architetto.

SAN GALLO. SANGALLO, ARISTOTELE. (See Sangallo, Bastiano da.)

SAN GALLO, SANGALLO, BASTIANO DA (ARISTOTLE) ; painter ind architect; b. 1481 ; d. 155 J .

Bastiano was a son of the younger sister of Cituliano anl Antonio (I.) da San Gallo, and a cousin of Antonio (II.) la San Gallo. He was apprenticed to the painter Perugino (see Vanucci, Pietro) in Florence, and studied the great cartoon of Michelangelo Buonarroti. He earned the name, Aristotele, by his intelligence and application. With his brother, Giovanni Fran-

SAN GALLO

eesco, he was employed to build the Pandolfini palace, in Florence, from the designs of Latfacello Santi (see Sinti, Ii.). The buitling was mot finished until after 1530 . He attached himself to the court of Cosmo I. dee Medici ; Sim Galln, Battista (il (qubbu) ; architect; b. about 1406 , a brother of A. (11.) di Sial Gallo, assisting in much of his work.

SAN GALLO, SANGALLO, FRANCESCO DA ; sculptor aud architect ; b. 1194 ; d. 1576.

Frimeeseo was a son of the great architect, Giuliano da San Gallo (see San Gallo, Gintiano da). His best work is the recumbent statue of Bishop Bonafelde, at the Certosa, near Florence. Between 1531 and 1559, he male with Antonios Solesmo the monument to Piero de' Medici at Alonte Cassino (Tuscany).

Vasari, Milanesi ed.; Müntz, Renuissance.

SAN GALLO, SANGALLO, GIULIANO DA (GIAMBERTI) ; architect, engineer, and woodcarver.

Giuliano was born in Florence; the oldest son of Francesco Giamberti, a woudworker who trained his sons to his own trate. Francione was also his teacher and associate. Mitanesi derives the name San Gallo from his residence near the Porta di San Gallo in Florence. In 1465 he was in Rome, and was employed by Paul 11. (Pupe 146t-1471) on the palace of S. Mareo, the tribuna of S. Peter's, and the Vatiean (Müntz). In 18 ± 8 he fortified and defenden, musuccessfully, the city of Castellina against Ferdiuand I. of Naples. For Lorenzo de' Medici Giuliano designed the octagonal sacristy of S. Spirito in Florence (hegun 1489), and the famons villa of Poggio a Cajano (about 14851489). His chef-d'cuwre the church of the Madonna delte Carceri at Prato, was built between 1485 and 1491. Dec. 9, 1507, Giuliano was chusen Curomestron (chief architect) of the Duomo, Florence. The cloister of S. Mardalena de' lassi, in which he copied an lonic capital found at Fiesole, was begun in 1479. The Palazzo Gondi (Florence) is assribed to Giuliano by Vasari. For the Cardinal dellia Rovere, afterward Julius II., he restored the fortress of Ostia (1484), and built the palace of Savona (1494). On one of the sketches of the Barberini collection is written an account of a journey to France in 1496 . Giuliano built the dome of the church at Loreto, Italy ($1497-1500$), and was employed as civil and military architect in many Italian eities. During the reign of Leo X. (Pope 1513-1521), he was associated with Raphacl as architect of the Vatican and S. Peter's (see Santi, R). Jnly, 1515, he returned to Florence. Several of the designs which he made in competition for the farale of S. Lorenzo in 1516 are still preserved at the Ufizi Gallery. A list of his buildings is

SANITARY ENGINEERING

publishen by Milanesi in his Visari. The San Gallo ham a botegn (shop) in Florence for woorl(arving and sendpture. 'lhe wamen crucifix at the Ammmziata, and a part of the high altar at the 1hnmo (Florencer), and other works at lerugia and elsewhere, are attributed to (finliano. Del Batia, in the Fabbriche di Firenze, has shown that between Sept. 19, 1489, and Feb. 6, 1490, Ginliano da San Gallo was paid 115 lire, 10 soldi for the monlel, still in existence, of the Strozzi lalace (Florence), of which he was undonttedly the designer, instead of Beneqletto da Maiano (see Maiano, Benedetto dia), as Viasariasserts. There is an album of his sketeles in the Barberini Library (Tome). Another collection is in the library at Siena. They contain Irawings of monuments in Italy, France, and Greece, which have disappeared.

Dr. Hans von Stegmann in Die Architcktur der Rencissance in Tosctmm ; Ravill, Nutizie; Mäntz, La's Iots, it la courr les papes; Mïintz, Renaissinuce; Vasari, Milamesi efl.; Mazzanti del Badia, Falbriche di l'ivenze; Müntz, ľ̈mlianu tha Sün. Gidllo et les momuments du midi de le Fronce; De Laturière, Ohservations sur les dessins de (fialiann, etc.; V. Geymiller, Documents inédit.s.sur los. Vunusrrits, etc.

SANITARY ENGINEERING. A braneh of the science and art of civil cngineering, relating to such works of civil engineering as tend to promote public and individual health, to remedy unsanitary conditions, and to prevent epidemic diseases. Simitary engineering, although a new profession, comprises a great many subjects, and much more than is usually understool by the term. The pratice of sanitary engineering embraces water supply, sewerage, sewage and garbage disposal for cities, the prevention of river pollation, street paving and cleaning, laying out cities, municipal sanitation, sanitary surveys, regulation of noxious trales, disinfection, cremation, and the sanitation of buillings.

The requirements of molern buildings are uumerons and complex. They have given rise to several departments of engineering work, of which the sanitary is not the least important. The sanitary engineering of buildings comprises sewcrage, removal aml disposal of waste matters, water suphly, lighting and ventilation, plumbing work, subsoil drainage, dry foundation walls and cellars, and sewage dispusal for country honses; furthermore, sanitation of sehools, hospitals, prisons and military barracks, erection of jublic baths, fire protection of institutions and safety measures for theatre audiences; sanitation of factories, workshops, summer hotels and resorts, ant railway and ship hygiene.
laut of the work of the sanitary engineer relates to sanitary inspertions of old or new bniddings, and builuling sites; it inclades expert services in court, and special work arising dur-

SANMICHELI

ing epidemics, in war time and after floods or inumlations, ete.

It is not the special province of the sanitary engineer to enter into the puestion of diseases and their eanse, neither does he profess to have an intimate knowledge of medical science and biolugy, yet he must be well acquainted with general health axioms, for upon these all practical sanitary progress is hased.

Quite olten the term "sanitary engineer" is improperly used, and applied to phombing inspectors ; and even tratesmen have misappropriated the name. There is a large and growing field for the sanitary engineer's services, and conscientious, accurate, and intelligent work, coupled with a broal general eulture, is the key to suceess in this, as in ather professions.

Edw. S. Philbrick, Lmerican Simitary Engineerint; Manstield Morriman, Elements of Sanitery Éngineering; W'm. Paul Gerhard, siemitary Enyineering.

- W. P. Gerhard.

SANMICHELI. MICHELE ; architect and military engineer ; b. 1487 ; d. 1559.

Sammicheli was born at Verona (1taly). About 1500 he went to Rome, where he came under the inthence of Bramante and Raphael. As early as Nor. $-7,1509$, he is mentioned as cathedral architect at Orvieto, ltaly, and appears in the records of that building until 1528. Dichele built the altar of the Three Kings in this eathedral. His earliest inclependent work is the church of the Matonna delle Grazie at Montefiascone (1519). After the sack of Rome in 1527, Sammicheli was employed by Clement VII. (Pope 1523-1534) to assist Antonio (1I.) da San Gallo (see San Gallo, Antonio II.) in the fortifitation of several Italian cities, notably Parma and Piacenza. This was a begimning of an immense practice as military engineer, which included the construction of the defences of Milan, Urbino, and Naples, and the superintenlence of the entire system of fortifitations for the territory under Venetian rule in Italy, Dalmatia, Crete, and Cyprus. He is said to have invented angular bastions. The most arehitecturally important of his military works are the fort of S. Andrea di Lito, Venice, the bastions of Yerma, and the superb series of semi-military portals in the walls of Verona; the Porta Nuova, the Porta Palio (or Stuppa), the Porta S. Zenone, and the Porta S. Giorgio. The most important of his palaces are the Berilacqua, the Canosa, the Pompeni, Versi, and Gran-Guardia in Verona, and the Grimani (on the Grant Canal), and the Cornaro Mocenigo (in the Campo S. Paolo) at Venice. The architecture of these palaces is in the main a development of the type established by Bramante in the sn-alled palace of Raphael (now testroyed) in Rome; heary rustication below

SANSOVINO

crowned by a single order above (Sturgis ; op. cit., p. 453). Sanmicheli designed the domical church of the Madonna di Campagna, the famous circular chapel of S. Bernardino, the farade of the church of S. Maria in Organo, ant portions of the church of S. Giorgio in Braida, all in Verona. He designed the monument of Alessandro Contarini in the ehurch of S. Antonio at Padua.

Camuzzoni. Discorso per l' inaugurazione del monumento a Sammicheli: Salya, Elogio di Michele Summicheli; Ronzani-Luciolli, Fahbriche di Sommicheli; Vasari, Milanesi ed. ; Müntz, Renaisstuce; Burckhardt, Renaissance in Italien; Burckhardt, Cirerone; Sturgls, European Architecture; Gisell-Fels, Ober-Italien; Fumi, Duomo di Orvieto.

SANSAVINO. (See Sansovino.)
SANSOVINO (SANSAVINO), ANDREA (ANDREA CONTUCCI) ; senlptor and architeet; b. 1460 ; d. 1529.

Accorling to Vasari, Andrea was the son of a labourer of Monte San Savino in Tuseany, and his first teacher was Antonio Pollajuolo (see Benci, Antonio da J.). His earliest known work is a terna-eotta altar with figures of S . Lorenzo, S. Sebastiano, amd S. Focro, now in the monastery of S. Chiara at Monte San Savino, Italy. In 1480 , on the recommendation of Lorenzo de' Medici (b. 1448; d. I 49.2), he was imvited to Portugal ly King John II. A bas-relief and a statue by him are still in the church of the monastery of S . Marco, near Coimbra (Portngal). In 1490 he returned to Flurence, and was employed in the decoration of the chureh of S. Spirito. In 1500 Andrea was commissioned to execute the marble statues of Christ and S. John Baptist over the door of the Baptistery (Florence). The statues of the Madonna and S. Johm Baptist in the cathedral of (renoa were funshed hy him in 1503 (signed Stonsonimus furielal). His earliest work in liome apprears to be the monument of Pietro da Viicenza (dated l564) in the ehurch of Ara Coeli. His chief work, the monument of the Cardinal Aseanio Sforza, brother of Lulovico il Moro, Duke of Milan, at S. Maria del l'opolo, was finished in]506. The similar monmment of the Bishop, Hieronimus Bassus in the same church was begun in 1507. The monmment of the Carlinal Johames Michaelius and his secretary Antonio Orso in the church of S. Marcello (Rome) is ly Andrea. Among his works in his native city (San Sarino) is the cloister of S . Agostino, which is especially interesting on account of optical refinements introduced to correct the effect of its irregular plan. He built the great stairway hetween the eathedral and the hishop's palace at Arezzo.

Schönfeld. Audren Stensocinn: 11. Semper, Herrorragpmle Bildhaner-Architekten; Müntz, Remaissause; f'erkins, Tuscan Sculptors; FaccoSacconi, Loreto.

SANSOVINO

SANSOVINO, GIACOMO. (See Sansovinv, Jacopo.)

SANSOVINO (SANSAVINO), JACOPO or GIACOMO (JACOPO TATTI) : sculptor and architect; b. 1486 ; d. Nov. 27, 1570 .

Jacopo was born at Caqu'ese, near Florence. He attached himself to the sculptor Andrea Sansovino, from whom he received his mame and artistic training. About 1467 he went with Ginliano da Sin Gallo (see San Gallo, Giuliano da) to liome, where he met Bramante and entered the service of Julius II. Sansovino mate a design for the farcate of the church of S. Lorenzo (Florence), which was not executed (see Buonarroti). He designed the church of S. Giovanni lei Fiorentini in Rome, which was continued by Antonio (II.) da San Gallo. The farcate is by Alessandro Galilei (see Gatilei). After the sack of liome (1527) Simsovino went to Venice, where he remained the rest of his life. He had charge of the church, campanile, and Piazza di S. Marco, amd the adjacent public buillings except the Doge's Palace. The Palazzo Cornaro deila Ca* Grande appears to be one of his earliest Venetian buitdings. In 1535 the Council of Ten (Venice) commissioned him to build the Zecea, in which he used a fireproof" iron construction. Sansorinu's greatest work is the library of S. Mark. He legan the loggietta of the Campanile (Venice) about 1540 . Sansovino built aks in Tenice the chureh of S . Francesco della Vigna in 1534 , faŗade by Pallatio (sce Pallatio), the church of S. Giorgio dei Greci about 1550, the elurch of S. Salvatore (restorel), the church of S. Maria Mater Dumini about 1540 , and the farade of the sonota di S. Giorgio dei schiaroni about lojsi. He made the momment of the Doge Francesco Venier (d. 1556), with the fine statnes of Hope and Charity, in the church of S. Salvatore (Tenice), and the monment of Livio l'odocataro, archbishup of Cypress, in the church of S. Sebastiano (Venice). He built also the Palazzo Delfini, now Banca Nationale, and legan the Procmatic Ňuove continuel by T. Scamozzi (see Scamozzi, Y.). Dec. 18,1545 , the great vauit of the Libreria fell. Sansowino was held responsible for the loss, imprisoned, and fined. He was restored to his position Feb. 3, 1548. His most important works of sculpture at Venice are the statues of the loggietta, the colossat figures of Mars and Neptune which give its name to the Giant's Stairway at the Duge's Palace, the evangelists orer the choir sereen of S. Marco, and the famous bronze door of the sacristy of S. Hareo (hegun 1546, fimished 1569). He made also a bas-relief for the church of S. Antonio at Padua. He was much assisted by Alessandro Vittoria (see Yittoria, Alessandro).

Temanza, 「ita di Sansorino; Mosler. Sansorino u.s. r. : Müntz, Renaissance; Vasari, Mi-

SANTI

lanesi ed.; Sturgis, European Architecture; Perkins, Tuscan sculptors.

SANTI (SANCTIUS, SANZIO), RAFFA-
ELLO ; called Raphat ; painter and architect; b. March 20 (or 28), 14×3; 4. April 6, 1520 . Raphael was born at Urbino (laty), the son of Giovami Santi, a jainter. Abont 1499 he entered the atelier of Perugino (see Vimucei, Pietro), at Perugia, and probably assisted in the decoration of the Cambio at Perugia, which was dune at this time. According to Pasari, he alsu assisted l'inturicchio (see Pinturicehio) in decorating the Yibrary at Siema, berun in 1502. He visited Florence in 1504 , amd spent much time in that eity until 1509 . Riaphael was called to Rome by Juhius H. (Pope I5031513) in 1509 , to assist in the decoration in fresco of a suite of apartments (stanze) in the Vatican alrealy begun by Sudoma, Perugino, and others. The first stanzu was finished in 15il. The second stonza was painted between 1511 and 1514 ; much of the execution was deputel to his assistants. The thind stanzu, still less the work of Raphael, was finished alout 1517 ly Giulu Romano (see Pippi, Giulio). The decorations of the loggie of the Fatasan were begun in 1517 (see Loggie of the Vatican). In 1514 he manted at the Villa Farnesina (Rome) the fresco of "Galatea," and later made the designs for the "Marriage of Cupid ant Psyche." The splendid silyls in the Chigi chapel at the chured of S . Maria della Pace (Fome) were painted at about the same time as the "Galatea." When Bramante dien (Mareh 11, 1514). Paphael surceeted him as arohitect of S. Peter's ; with him were associated Fra (riocondo (see Gioromio) and others. liaphat's principal innoration was to substitute a Latin for the Greek cross of Bramante. His reputation as architect rests mainly ipon obscure statements by Vasari. He may have designed those portions uf the Villa Madama (Rome) which were built before 1520 , although existing measured drawings for that buidding are by Antonio (II.) amd Battista da San Gallo. The I'modulfini palace (Florence) is ascribed to Raphael, but was begun after his death. The Farmesina villa was undoubtedly the work of Bahdassare Peruzzi (see P'eruzzi). Raphael may lave designed the Chigi chapel at the church of S. Maria del Popolo and the palace of Giovanni Battista dell' Aquila (Rome), which has disappearel.

By a brief dated Aug. 27, 1515, of Leo N. (Pope, 1513-15:1) liaphael was authorized to inspert and purchase all marbles in the ruins within ten miles of Pome. This enableil him to institute an extensive series of important exarations. He began a work on the topugraphy of Rome, the text of which, by Andreas Fulvius, was published in 1527. The plates were never completed.

Crowe and Cavalcaselle. Rophael; Muntz. Rephapl; Passavamt. limpletel rou Crhino; Sprinsel, Raphew und - Midh laugelo: Gruyer, Le:s Frostues de Raphat; Vou Geymiller, Rafitetto come Archicrto; V'asari, Milanesi ed.;

Vasari. Blashfield-Hopkins ed. ; Bigot, Raphat At lit Faruesine: l'ontani. Optre architntoniche di Raffupllo Sinzio; E. Müntz. Histoire de la Tapisserie an Itatie; Waagen, Treasures of Art in Endiand.
sanzio. (See Santi, Raffacllo.)
SAPWOOD. (See Heartwood.)
SARACENIC ARCHITECTURE. The architecture of the Saracens, that is, of the

SARRAZIN

Mohammedans considered as the conquering people whose power gralually extended to the lands of the Nediterranean. It is in this sense that the word "Saracen" bas come into the English language. The term "Saracen," as applied to the Nohammedan arts of lesign is, therefore, much nore nearly accurate than the term Arab, Arabian, or Arabie. Thus, it woukd be olsriously erronents to speat of the Mohammedan architecture of India as Arabian, and the term Saracenic Iudian or Indosaracenic may be used. In this connection see the title of Mr. Stanley LanePoole's book, The int of the N゙uracens in Eyypt, which is a useful book, but too mief. See also the same author's book, Cairo, Sketches of the History, Monumerts, und Social Life. (See also biblography under Moslem Architecture.)

-R. S.

SARCOPHAGUS (pl. Sarcophagi).
A stone coftin. The term having heen originally a Latin adjective, "flesh levouring," and applied to a certain stone from Asia Dlimor (Plinys Vatural History, XXXVT., IT). It was applied substantively in later Latin to any tomb or cotlin.

The use of sareophagi was common in Egspt from the time of the builder of the great pyramin!. Greeks and Romans seem not to hare used them often before the time of Trajan ; althongh the famous sareophagi of sillon in Syria are thought to be of the time of Alexancler the Great, and the Siripio tomb in the Vatican is undoubtedly of the third century b.c.; but afterward they were extremely common, aul the museums of Europe contain many very richly seulptured. In the Midille Ages the Gothic tombs of ltaly often includet a sareophagus (see Tomb), and the Reuaissance brought back the use of them in a more nearly antique way, standing free. Perhaps the most celebrated are those in the smaller sacristy or Capella lei Depositi, at the church of S. Lorcnzo, in Florence, having Nichelangelo's magnificent recumbent statues on their lids.
-R. S.
SARDINIA. ARCHITECTURE OF. (See DLediterranean Islands, Arehitec-
SARKING. In Scotland and the north of England, thin boards for lining, sheathing, etc.

SARRASINE. A porteullis.
SARRAZIN, JAQUES; sculptor and painter; b. 1538 (at Noyon, Pieardie, France) ; d. I660.

Sarrazin was a pupil of Nicolas Guillain in Paris. In I610 he went to Rome and studied

SARTO

there for eighteen years. For his patron, the Cardinal Aldobrandini, he mate the figmes of Athas and Polyphemus at his villa at Fraseati. Returning to Paris about 1628 , Sarmzin made the senlptured decoration of the Tour d'Horluge at the Louve (see Lemercier, Jagnes). The Caryatides sumporting the pediment of this building are lis best work. About 1613 he made the monmment to contain the heart of Lonis Nill., the sculptare of which is now in the Lourre, and alont 1646 the monument to contain the hart of Prince Henri J. of Condé, mow at Chantilly. In 1654 he was appointel rectenr of the Académie royale de peinture et de sculpture (Paris).

Lami. Dictionnaire des sentpteurs de l'Eerole
 Lourre.

SARTO, ANDREA DEL. (Sie Audrea del Siattu.)

SASH. A frame to hoh the glass of a wimbow ; envecially in English usage of a sliding window as distinguishas from a swinging winlow (wre Casement). Such a sash is said to be hung, that is, by its sash cord or chain: and duuble-huny when it has a sash eord on earh side. In the United States the term "sash" is often inplied to the movable womlwork of a casement or glazel door. (See C'ased Frame.)

SASH BAR. One of the cross bars of a sash, sublividing it for convenience of glazing. (See Muntin.)

SASH CHAIN ; SASH CORD. (See Sash Line.)
sash fastener. Same as Sash Holder.
SASH FRAME. The window frame in which a sliding sash is hung; the vertical parts (nsually pulley luxes) are made hollow (boxen] or eased) to contain the balancing weights. In the Unitel States, also, any window frame.

SASH HOLDER. Any contrivance for holding the sash of at window so that it camot be openell from outside, or so that it will not fall if it is not hung with weights; especially an appendage like a bolt or revolving latch which holds the meeting rails of two sashes together, preventing either from being openel.

SASH LINE. The eord, elain, or metal ribbon ly which the sliding sash is attached to its balance weights.

SASH POCKET. The upright side of a sash frame when made lolluw to receive the balance weights. By extension, a movalle section in the style enclosing the above, intendel to give access to the sash weights and lines.

SASH RIbBON. (S'ee Sash Line.)
SASH WEIGHT. A cylimdrical easting of iron or leaul ling by the sash corl in the porket or box of a sash frame to halance the sliding sash.

SASSANIAN ARCHITECTURE. (Sce Persian Architecture, Part 11.)

SCALA CORDONATA

SAW CURF ; SAW IN. (See Kerf.)
SAW MILL. A mill in which lumber is split or diviled hy saws rum hy power machines. (See Woorlworking Machinery.)

SAXON ARCHITECTURE. A. Architerture of Suxumy first, ats a larger state, elecetomate, and kingilom, down to the Napuleonie wars; second, as a smatler kinglom, since the l'ance of 1815 and the cessions to l'russiax ; thirl, as a province of the kinglom of Prussia, including the districts amexed by Prussia in 1815, and sther lands. (For all the above, see Germany, Architerture of, Part 1I.)
B. The arditecture of Jigham and southern Srotlaml before the Norman Conumest. (For this see England, Architecture of: Sootland, Architecture of.) There is much uncertanty as to the date of the earliest mediaval huikiings existing in England and Sotland, and there is mo luikling of whith it is certainly known that it dates from the periorl previous to 1066 . R. S.

SCABBLE. In stone working, to dress a surfare with a broal chisel or heary-pointed pick after rough pointing or shaping, aml preliminary to finer finshing. Also Seapple. (See Stone Cntting ; Stone Iressing.)

SCABELLUM ; SCAbELlon. In Roman anl neoclassic architerture, a high perlestal for the suppert of a linst, often shaped like a Gatine.

SCAFFOLD. In bulling, a temporary worlen framework, put together with nails or ropes, to afford fouting for workmen in erecting the walls of a thilding, or in giving access to reilings and other parts which camot be reached fiom the floors.

French Scaffold. I. A seaffold built on the system prevalent in Framce. A double row of pules or stuared timbers is soct up along the whole frontage to be built, and stiffenest by X-hracing, continnous girts are lasked or bolted to the uprights and support cross sleepers, on which planks are placed at convenient levels; a speeies of tower with a pulley serves for hoisting material, which is trundled over the scaffiold to its destined position.
B. A tem applied in England to scaffolds built of sifuared timbers framed together by bolts, collan's, fish-joints, etc., and capable of being taken down and recrected without injury ; called also Jeuny Seatfode.

Jemy Scaffold. Same as French Scaffinle, B.
SCAGLIOLA. In Jtalian, an interior surface decoration for columns, walls, and flows, emmosed of white plaster and ghe, mixed in various ways with metallic oxides, or with insertions of eolourel stucer, generally in imitation of marbles, the whole being rulbed and finely polished.

SCALA CORDONATA, or A CORDONI. A ramp or inclinel plane formed into paved stejus from 18 inches to 3 feet tread, with only 410

SCALE

l to t inches rise, eath step being thus inclinel sumewhat less than the general slope. The risers on tronts of the steps are of stone, and constitute the cordoni. surh ramps are used for aminats ats well as peelestrians, and are common in Italy.
-A. D. F. H.

Scabellum with Imertrative Vase; Modern French,

SCALE. I. A straight line divided into feet and inches, or metres and centimetres, or the like, accomling to a detinite and stated proportion to reality, as ome forty-eighth (or four feet to one inch), one one-thonsandth, etc. Drawings of all kimis when mate by mathematical instruments (see Drawing) are made

SCAMOZZI

to scote: and the stale may be laid down on the Hrawing, or may be on a separate piece of 1ather wronl (see detinition B).

1. A rule, genrrally of metal, ivory, or wood, marked with a seale in sense 1 , or several such scales, to facilitate the making of drawings and diagrams to any convenient scale.
C. In architectural drawings, the size of the drawiugs as comprared with the actual size of the ohjere olelineated, as one-quarter of an inch (1) the fonet.
I). In arrhitectural design, the proportions of a loulling or its parts, with reference to a definite Mulule or unit of meanarement.

SCALLOP WORK. The cutting of a fas"ia or elge intu a series of similar convex lobes, as frequently in lomanesque mouldings. (Sce Imbrication.)

SCAMILLUS. In classic and neoclassic archaterture. - 1 , the slight bevelling of the outer cilge of a learing surface of a bloch of stone, making the part visible by a slight ineision, as orms between the neeking of a Dorie eapital aml the ulper drum of the shaft.
I. A plain hlock placed under the plinth of a columu, thus forming a double plinth.

SCAMOZZI. GIOVANNI DOMENICO; arehitect ; l. alwout 1530 : 1f. 158. .

From a simple carpenter he became an accomplished architeet. He visited Budppest and Warsan, where he reconstructed the royal palace. Giovami made the index (indice copiosissimo) of the edition of Serlio's works, which was puthished in Venice in 1584 and 1619. (See Serlio.) In his introduction to this edition, Lurluvico Roncone mentions some of Giovanni's louildings.

Roncone, Introduction to Sertio edition, 1584; Zanella, 「'ita fi Palladion, p. 102.

SCAMOZZI, OTTAVIO BERTOTTI ; writer aul elitor.

His most important undertaking was the publication of Palladio's designs (see Palladia). His Il Forestiere instruito delle Cose pia di Architettura e di Alcme Pitture della Cittì di Vicenza was published at Vicenza in 1761, aml LOrigine dell Accademia Olympica di Viconza in 1790.

Larousse. Timtinmaire.
SCAMOZZI, VICENZO; architect; b. 1552 (Vicenza) ; d. 1616 (Venice).

The name Scanozzi is tlerived from Camoccio (Chemosrio), chanois leather, indicating some ancestral occupation. Vicenzo was a son of Ginvami Donenico Scamozzi (see Scamozzi, (invami Domenieo), and a pupil and rival of Amlrea Palladio (see Palladio). He studied mathemati": muler the Padre Clavio, who was employed hy Gregory XIII. in retorming the calemiar. Scamozzi made a thorongh study of the Roman momments. In 1582 he went to Yenice to contime the Libreria di S. Marco,

SCAMOZZI

begun hy Sansorino (sce Sansovino, J.). Scamozzi added the inti salte. He also contimued the 1'rocuratie Nuove, begun by Sansovino, alding a third story (see Longhena, B.). In 1593 scamozzi designed and hegan the fortress of Palmannova in Friuli (Italy). In 1600 he accompanied a Venetian embassy to France, Germany, and IIngary. An antugraph accomt of the visit, with driwings, is in the musenm at Vicenza. He huilt a casinn at Lonigo, another at Castelfranen near Treviso, the Palazzo Trenta at Vicenza, the l'alazzo

SCANDINAVIA

opere ed. $18: 38$; Zanella, Vita di I'ılladio, p. 103; Mosler, Sansocimou. s. u. ; Quatrensere le Quincy, Les plus célébres Architectss; Milizia, Menorie.

SCANDINAVIA, ARCHITECTURE OF. That of the great peninsula now oconjuell by the two kingdoms of Sweden and Norway. The Seandinavian lanls are sometines hed to inclule Demmark, which is treated spatately.

The western half of the peninsula, now the kingdom of Norway, contains a score of very ancient timber churches, the construction of which is not unlike that somewhat familiar in

Scandinavia, Fig. $1:$ House in which Gustavus Wasa tuok Refuge in 15e9: near Upsala, Swenen. The structure is of solid timber like a log house, or a chatet of type a. Part of upper story and sereen of stairs are covered with large, matched shingles.

Trissino at Vicenza, the Palazzo Verlato at Villaverla (1574), the Palazzo Raveschieri at Genoa, and the seeond story of Buontalenti's Palazzo Roberto Strozzi in Florence. About J60t he designed the cathedral of Salzhurg (Austria) and a part of the Schloss at Prague (Bohemia). Scamozzi pulbished Discorsi soprea l'Alutichith di Roma (Yenice, 1582), and Dell' Hent dell' Architeltura umisersale (2 mols.. Venice, 1615). There is a molem edition, Publicata per cura dis. Ticozzi e La Masieri (\because vols 8 vo, Milan, 1838).

Temanza, Vita; Ticozzi, Vita, in Scamozzi 413

New England in the seventeenth and eighteenth centuries, viz. a frame fillen in with slalis or thick upright planks (sce Wood, Construction in, Part 1.). These churches are peeuliar in plan and general arrangement, lut esperially mique in their absence of architectural treatment of winlows (see Fenestration), this depending largely upon the severity of the climate, combined with an apparent alsence of winlow glass at the time of their construction. They are generally thought to be of the years hetween 1100 and 1250. They are huilt, like the semiByzantine churches of Russia, with a ecutral

SCANDINAVIA

nave and an aisle surroumling it on either sile with lean-to roufs, hat the whole surface alnuse the aisle roof is not a clearstory in the proper sense, hecause containing no windows, or at most small ventilating alpertures. There is often a second and lower aisle surrombling the whole of the buikling. with a second lean-to roof : this outer aisle is almost wholly a continuous narthex or purch, and is in part enclosed with sulid slab walling, in part (prened in wooden colomates with a semblance of arched construction. Althongh partly ozen, its purpose is mainly additional shelter and warmth.

SCANDINAVIA

One of their characteristics is, howerer, so much respected in Norway that they are not likely to be injured in this way: the carred serollwork, which is called runic serollwork, dragon ornament, and the like, and which is extraordinarily effective and suited alike for covering large surfaces and for the ornamentation of pillars, syluare or round, is generally in woul, but there are instances of similar work in stone, and even the earliest wronght iron-work is sturtied from the same sources.

Rumanesiule stune raulted churches are not unknown. There are two very good ones in

Scandinarla. Fig. 2: Hutse of freatates Wisa; see Fig. 1.

The exterions of these churches shom very few and very small winduws, perhaps two of six square feet earh on cach side, and no more. It is probable that in winter the chief light of the interior came from the lighting of the altar, aided. perhaps, by other lamps burned in the nase or at the entrance.

Of these churches, the large one at Hitterdal has been illustrated in popular books and is well known: those of Burgund and Urnes in Bergen, at Timd in Tellemark near Hitterdal, and at Ringebu, Ginl, Vang. Kaupanger, aud at Torpe. near Nybgaarleu, are equally importaut to students and are illustrated in books named below. Restoration. destruction, and in one case the moring of the chureh to a new site, have interfered greatly with the study of these buildings.

Normay, at Throndenaes and Ibestad. Moreorer, the great cathedral at Tronihjem, thongh it has never been completely rebuilt since ruinous fires, is most interesting in plan and has admirable Romanesque and late Gothic work in all its parts. A nare with aisles and two western towers, a transept without aisles, and a choir with aisles much narromer than those of the nave leal to a curious octagonal structure which serves as the chancel, though it is more like a separate chapel: anil a Romanesiulue chapter house of oblong form of great interest alljoins the choir on the north. The great arcades of the choir show a marked dirergence, the whole choir widening from the crossing toward the east enl: the lady chapel, woreover, is not set on the axis nor yet parallel with

SCANDINAVIA

the north wall of the chnir (see liefinements in Design, where the general subject of these divergences is treated).

The cathedial at lund is an excellent

Scandinafia, Fig. 3: Swedish Housf, close of 17th Century.
The roofing ha- bran earred wer the coping of the gable, injuring the outline: compare Fig. 4.

Romanesque church apparently eompleted in the cleventh century, but injured in its original features by restoration. The cathedral of U_{p} sala is of the thirteenth century, and of in-

SUANDN゙AYLA, Fig. 4: 17TH ('extury Doorway, Castle Touid, Westgotland, Sweden.
The heraldic mehevements are unusually well disposent.
telligent Gothic building, although carried out in the unusital material of briek, in this resembling sone almirahle builtings in North Germany (spe Germany, Architeeture of, l'art IV.). The cathetral at Linköning is also a

SCANDINAVIA

Gothic elmreh ; this and the chureh at Lund are of stome.

Early woolen honses are not rare, and an excellent system of hog honse builling has been used for these, sumetimes combinet? in the same loniding with the shab construction mentioned aliove. Round logs were usel evell for the roof timbers, hat generally set lengthwise and heary enough to carry the whole streteln of rouf. Must of those of mudwhitend antiquity are small, one story high, or with a partial upper story ; but a farmsteal at [iusstal contains a seventeenth century house of considerable size, and barns of

Scandinavia, Fig, 5: Sweninh Decoration of Inlaid W'hod; Palac'e at Kalmar.
the mineteenth century built carefully in the ancient manner.

The neoclassie architecture of Scandinavia is largely a matter of the residences of the nolility, though there is an ahmirable brick church at Claristianstal. Some of these resitences are of extraordinary interest, containing a character of lowh psemdo-Remaissance lesign reminting one of gook sevententh century German work, but of still greater independence and daring in the treatment of the semiclassical details. The heary timbered roufs and the phasterel walls, both claborately puinted in pulychromatic designs, the umsually elaborate wooten dadoes and doorpieces, make the interiors interesting, and the exteriors of such buildings as the Crown Prince's palace at Stockhom and the castle of Gripstom are as picturesque as anything on the maintand of Elurope. The rlose of the seventeenth century and the eighteenth century have

SCANTLE

left civic buildings ol graver and more sedate aspect, and the admirable cathedral church at Kalmar in sweden has to be studied ly all interestel in church architecture.
J. C. C. Dahl, Denkimule piner sehr ausitebildeten Holzbutukust aus den frihhesten Johrhunderten in den inurrn Landsehuften Norvegens; Dietrichson urd Munthe, Dir Holzbothkunst Jormegens
 A. Numch and Schirmer, The rathedrel of Thrometheim, published liy order of the Norwegian government. Christiania, I8:!) ; I1. J. Kimmien,
 tekter, Stockholm; Ymark, IMe Acchitektur der Remaisstmere ill scherplen; Von Minutoli, Ler Dhom zu Droutheim unt die mittheltertiche (Mristliche Brenkunst der Scundinttisehen Vormennen.

- R. S.

SCANTLE. A gauge by which slates are cut to the proper length.

SCANTLING. 1. In carpenter work, the measurements of timber in its breadth and thickness, as in the plrase, a timber of 4 by 10 inches scantling. By extension, the timber itself; more especially the pieces of common sizes as commonly obtainable in the market. Thus, studs 4 by 4 , rafters 2 by 8 , and the like are scantling, when very heavy timber would not be so designated. (See Lumber.)
B. In stone cutting and Iressing, the length, breadth, and thickness. In this sense rare in the United States.

SCAPE. Same as Apophyge.
SCAPPLE. Same as Scabble.
SCARF. The oblique joint by which the ends of two pieces of timber are miterl lungi-

Scarf, as used in Joining Timbers, which are thei said to be Scarfed.
tudinally so as practically to form one piece: the two parts being usually cut with projections and recesses which mutually fit one another, and these are sometimes forcetl together and tightened by keys or wedges in various ways, and secured by iron straps and bolts. Also the part cut away ant wasted from each timber in shaping it to form this joint.

End Scarf. One formed by the insertion of one end into the other in a manner approaching a mortise and tenon.

Hook Butt Scarf. One in which the timbers form, in part, butt joints with one or more oblique cuts, by which they are hooked together.

SCARFING. The process of connecting two pieces of timber by a scarf joint.

SCARPAGNINO. (See Abbondi, Antonio.)

SCHINKEL

SCENOPHYLACIUM. Same as Diaconicon.

SCHADOW, ALBERT DIETRICH;

architect ; b. 1797 (in Berlin) ; d. Sept. 7, 1869.

He was trained in Italy, aul on his return in 1835 was made Hof baumeister in Putsdam (Trussia), and in 1839, Nchlossbcumeister in Berlin. With Stüler he built the Schlosskitpele (Berlin).

Seubert, hunstler-lexicon; Borrmann, Denkmüler cou Berlin.

SCHADOW, JOHANN GOTTFRIED; sculptor ; b. May 20,1764 ; d. Jan. 27, 1850.
lle was a pupil of the Dutch scmptor Tassaert in Berlin, and in $178 \overline{9}$ went to Rome. 1n 1788 he superseded Tassaert as comrt sculptor and secretary of the Academy in Berlin. In 1793-1794 he made the marble statue of Frederick the Great at Stettin (Germany), and in 1795 began the quadriga and metope reliefs of the Bremdenburger Thor in Berlin. He made the statue of Luther in Wittenberg in 1821. Schadow was in 1816 director of the Academy in Berlin. He published Letren von den Knochen und Muscheln (1830) and Polyklet oder ron den Mausen des Menchen (1833, text 1 vol. 8 ro, 1 vol. folio), ete.

Friedlaender, Gotifried Schador; Dobbert, Golfiried schudou in Zeitschrift fïr Bruccesen, 1887.

SCHAUBERT, EDWARD ; architect; b. 1800.

He studied in Breslatu and Berlin, and in 1830 went to Grecce, where he held several public offices. He was associated with Ludwig Russ (see Ross, L.) and Christian Hansen (see Hansen, Chr.) in the restoration of the temple of Nike Apteros on the Acropolis and in the publication of Die Anropotis von Athen .. der Temple der Nike Ipteros (1839, 1 vol. folio).

Seubert, Fünstler-texicon.
SCHINKEL. KARL FRIEDRICH ; architect; b. March 13 , 1781 ; d. Oct. 9, I 841.

In 1797 be entered the Academy in Berlin and studied under David and Friedrich Gilly (see Gilly, F.). In 1820 he was appointed professor in the Academy at Berlin and in 1839 Oberlundbaudivector. He visited 1taly, including Istria and Sicily, France and England. In 1834 he nade a design for a royal palace on the Acropolis at Athens which, fortunately, was never exccuted. Anong the most important of his buildings are the musemm in Berlin (1824-182s), the Royal Theatre in Berlin (1819-1821), the fine Nicolai Mirche at Potsdam, the Königs-llache in Berlin (1818), the Schloss- Wache in Dresden, the fine architectural school in Berlin, the Charlottenhof and Casino at Potsdam, etc. Schinkel was much interested in the construction of Protestant churches in

SCHLOSS

the Gothic style, the most important of these leing the Herder Kïrche in Berlin. He mate a design for the empletion of the cathedral of Cologne, which was never executed.

Wolzogen, schinkin wls armitect, Multre mul Finnstphillusoph: Ziller, schimkel (H mustlerMonoprophition); Kugler, schimkel (in hilline Schriften); Waagen. Schinkel (in Klrine Nohrif(en): Kratseheth, , Nohinkel, in Seinen lorhätniss zur !! hehischen Baukunst.
schloss. In German, the residence of the fendal lord of the sail, a terme corresponding closely to "chatean," ant eontaining the significauce of the two English worls, " castle "aml " manor house."

SCHLÜTER, ANDREAS ; sculptor and architect; b. Nay 20, 1664 (in Hamburg); f. 1714.

After the death of his father, Gerhard Schliiter, a sculptor, Andreas became a pupil of the senlptor Saporius in Danzig (West l'russia). Between the ages of twenty and thirty he visited Italy, and in 1691 entered the service of Johann IIl. Sobieski, King of Poland, at Warsaw. Here he attracted the notice of Prince Friedrich of Prussia (afterward Elector Friedrich III. aut in 1700 King Friedrich I.), who in 1694 made him court sculptor at Berlin. After 1696 Schhiiter built the greater part of the palace of Charlottenburg in Berlin. In 1697 he mate the model of the equestrian statue of the Elector Friedrich ILI. in Königsherg. The famous equestriau statue in Berlin of the Great Elector Friedrich Wilhelm was begun by Schliiter about 1698 and placed in position in 1705. Schliuter superintended the seulptural decoration of the Zengleans: (Berlin), and made the series of twenty-one masks of dying warriors in the inner court of that building. Abont 1699 he was made arehitect of the Schluss in Berlin, aud held that ottice until 1706 , when he was superseded by Eosamler (see Eosander). In 1713 he was chief architect of the Russian court and diel the next year in Saint Petershurg.

Senbert, Fïnstler-lesiken; Adler. Ans Andreas Schenter's Leben; Mosler, Sirhtithr in Sansontino us. s. us.; R. Dohme, Die Makken Sterbender hrieger.

SCHMIDT. FREIDRICH FREIHERR von ; architect; b. Oct. $2.2,1825$; d. Jan. 23, 1891 (in Vieuna).

He was educated at the Polytechnische Schule in Stuttgart under Mauch, and mate a special study of stereotomy and stone cutting. In 1843 he was employed as a stune eutter on the cathedral of Cologne. In 1856 he passel the state examination in architecture in Berlin. Sehmidt devoted himself especially to the Gothic style and built many churches in Germany. In 1859 he wom first prize in the competition for the Rathhous in Berlin, but dide not earry out that work. He was made professor of architecture at the Academy of

SCHOOLHOUSE

Milan in 185^{7}, and began the restoration of the church of S. Ambrogis in Milan, which was interrupted ley war of 1859 . In this year Sclmidt was apmointed professor at the Aeademy in Tiemma, and in 1, 62 was marle architert of the cathedral of S. Stephen in that eity, the tower of which church he finishect in 1864. He designed the Ruthhaus in Viema, which was finishell in 188:3.

Reiehensperger, Frivelich, Frifher rom Seftmint ; Farrow, liecrnt Derectuments in Jiemuat Meyer, Fomerswations-Lexicion.

SCHOLARSHIP IN ARCHITECTURAL training. (See Fellowship, 13.)

SCHOOL. In Architecture, same as Schoolhonse, 1.
schoolhouse. A. A building devised, or appropriate for use as a sclool.
B. The dwelling honse provided for the use of the schoolmaster or schoolmistress, generally attachel to or adjuining a schoul (Great Britain).

The gratel class system in the schools of the United States has been developed essentially from that of the Teutonic countries of Europe, rather than from the school systems of Englind and Franee, which, while varying one from the other. differ radically from the Tentunic systems. While in Germany and Austria there are no rooms, as in the Cnited States, in which the whole school, or several classes of the school, are assembled for gencral exerrises, and for entertainments of varions kinls, such assembly halls, used for the same purpose, are not an unnsual feature of Swiss schouls. In Germany and Anstria the "Aula" is used ondy for the anmal examinations. So far as the disposition of the plan is concerned, however, these examination halls are as sugrestive as if their use were the same as that of the American "Assembly Halls." The German "Aula" is generally given a rich monumental treatment, as if to express the dignity of the state, while, as is mule, the "Assembly Halls" in the Unitel States have had little more architectural character than the class rooms. In Switzerlani, the assembly halis are primarily provided as places for recreation, and are handsomely finished.

Since in Germany and Austria there are no coliective exercisex, each graded class remains in the class room assigned to it, except when it passes as a class to the rooms assigned to instruction in drawing, music, and other special studies, or when the class grees, either in a borly or in seetions, to its gymnastic exercise or to the shower baths, as is required three times a week of every pupil in Prussian schools of the lower grales.

As far as coerlucation of the sexes affects the planning of schools, we find in Switzerlame practically the same conditions as in the United States; but in Germany and Austria, as in 422

SCHOOLHOUSE

France, no comlucation exists, and consequently the plans show an absulute, anl, as even sume educators of these rery conntries maintain, an malesirable, division of the sexes. In the United States, livisiun of the sexes in the primary amd grammar grades is manly confinet to the basement : and in many cases is besides ouly an imaginary line in the playgromol.

In Siwitzerland, as in the Conited States, and more recently in Englaml, the advantage of providing the pupils with fresh and pure air appears to be equally well appreciated, and this consideration brings into school construction features rarels found in Germany and Austria. For the past twenty years in siritzerland, and the past fifteen in the U'miterl States, the best schouls have been phanmel so that the purils' out-ot-thoor clothing should not only be excluded from the class rooms, but from the corridors. Special enelosures with ontsile light, thoroughly warmed atul specially rentilated, called in the United States '• warlrobes." are built immediately adjoining each class room.

U'ntil hut recently few Cerman schools have been so planned that especially assignel alcoses are proviled off the corritors in which the unt-of-luor clothing ean be hung; previonsly all wraps were hung on pegs about the class rooms. The hanging of clothing in corribors is an alleriation, but a correction. of a poor condition ; for. as the movement of air is naturally from the colder morridors to the warmer class rooms, especially where warmed fresh air is artificially supplied to the class rooms, the foul onlours from the clothing must tind their way to the class rooms.

In the United States, hat and coat hooks are set only on the side walls of the wardrobes ; the top row of hooks is placed, in primary schouls, t feet, in other schools, 5 teet, above the fluor. The minimum hanging space is 30 rumaing feet for a class of fifty-six prupils. Above the upper row of howks, or immediately above the baseboarl, is set a shelf for orershoes, etc.: aud umbrella stands are proriderl. The width of these enelusures is not less than t feet : they have a lloor from the curridur and one from the class room.

Class rooms of Europe and in the Unitel States are usually 3 ? feet in length; those of high schools in the latter country are sometimes eren 8 feet longer. A greater length than 32 feet makes it difitieult for the teacher's moice to reach without strain the pupils in the last rom of seats, and at a greater distance the pupils' work on the blackboards at the end of the room cannot be readily seen from the platform. On the Continent, as in Germany, for instance, 32 feet is the generally atopted length of a elass room, althongh 30 feet is preferres by most of the European anthorities on school construction. In the German erhomls analogus to those of the grammar grades in the Enited

SCHOOLHOUSE

States, the class rooms are generally 32 feet long, 2.2 feet wide, and 13 feet ligh, and accommodate, upon forms seating four each, fifty-six pupils, giving a floor area of $12!$ square feet amol an air enclusmre of 163 culje feet for each pupil. In the schools more recently built in Prussia, as in the Gemindeschule, No. 204 , of Berlin, most of the class rooms are approximately 32 feet long, 20 feet wile. 13 feet high, and accommoulate forty-six pupils, giving a floor area of 14 square feet and an air enelosure of 182 eubie feet for each pupil.

The grammar class rooms built within receut years in Boston, Massachusetts, anl in many other eities of the United States, are 32 feet long, 28 feet wite, $13 \frac{1}{2}$ feet high, aceommodating fiftr-six pupils, seated at single clesks, giving a floor area of 16 square feet and an air enclosure of 216 eubic feet for each pupil.

While the areas above noted are much in excess of those fomd in the latest and best Prussian schouls, they fall far short of those adrised br Dr. Risley, the most recent medieal writer upon this subject, who alvises a class room 32 feet loug, 24 feet wide, 15 feet high, to accommodate forty-fire pupils of the grammar grade, seated at single desks, giving a Hoor area of 19 square feet, aml an air enclosure of 250 cmbie feet for each prupil.

The seating of the pupils of American sehools at indivilual desks, which elsewhere obtains only in Switzerlanl, and there. the writer malerstands. in nome except the upper granles, is not likely to be discardenl in America. In the hest practice the minimum floor area and the minimum cubical area of air for each pupil, 16 square feet and 216 cubie feet respectively, should be maintaiued, and, with these factors ietermined, the question of the satisfactory lighting of the class rooms remains the principal consideration.

The code of rules established by the French government for the construction of sehools fixes the minimum allowed height of a class room at 13 feet, and where the light comes from one side only, reguires that the minimum height of the room sball be two thirds of its width, measured from the inner wall to the face of the outer wall of the building, In a brick school fitterl with double sash, a class room lighted from one siv'e only, 32 feet long, $2 x$ feet wide, accommodating fifty-six grammar school puyils, wonld require a height of 19 feet ; a room of the same length, $-2 \frac{1}{2}$ feet wide, would aecommoulate forty-eight pupils. and would require a height of 1% fect; a room of the same length, 2 I feet wide, would accommodate forty pupils and would require a height of 14 feet. It will be scen that this French rule requires a greater height of ceiling than that recommenderl by I_{1} : Risley, i.e. 15 teet in height for a room 3 ? feet long, 24 feet wide, accommodating forty-fire pu-

SCHOOLHOUSE

SCHOOLHOUSE

pils. It is probable that in the clear atmosphere of the Unitel States a romen womld have on the average throughont the year murh better lighting than would a room of like di mensions in any part of the north of the Continent of Earope, or in England. Even rooms os feet wide are fairly well lighted by the funr wimlows on one side of a roon but 133 fect high. It is probable, therefire, that if the elass rooms in the American grammar sollools: were given a width of 24.2 feet, they womld he well lightel if given a lieight of $13 \frac{1}{3}$ teet. Providing, of comse, that aderuate lighting can be siven by other means, extreme height of stories and hence of stairways shonld he avoiden ; but it is possible that the standard of 14 feet 3 inches, aulopted in the more recently huit schouls in the eity of New York, maty be that finally alopted in the grammar schonls of the United States, especially in those of several stories in height. With this ceiling height, cemomy of space can be gained by placing two tierof toilet rooms in the height of a full story. In the United States, with ceiling height noted above, class rooms with windows on one side only, and 2 se feet wile, wonli probatily be fomm not to be ill lighted ; but American architects should not lee content with the lighting which can be given a room lighted from one sile only, 28 feet wide, with 13 feet of ceiling he ght, which are the enstomary dimensions of grammar grade class rooms in the United States, the ceilings in the primary grates leeing 1 foot lower.

The dimensions given the best American class rooms tor the graumar grade assure ample light only for the corner rooms, where, disregarding theoretical oljections, a good diffinsion of light can be gainell lyy taking it from the hacks as well as from the left-hamd sides of the pupils. The insile roms, even in most of the best ilesigned sehoolroums of the United States, are plimned to accommodate the same number of pupils as the corner rooms, muder conditions of lighting which are approved by no antherity on the subject. Dr. Cuhn says, "There never can be too much light in a sclioolrom," and he has in this opinion the support of all who have given practical consideration to the lighting of schoolhouses.

In writing exercises it is advantageous to have most, if not all, of the light from one sille only, and that on the left of the pupil, but otherwise the cquantity of the light and not the dirertion from whence the light comes is the important consideration. It is, therefore, better with corner class rooms 28 feet wile to have four windows in the long wall, and at least two, if not three, in the other ontside wall. A window directly opposite the teacher's desk is oljectionable, and hence, as is often flome in France, and sometimes in the United States, the portion of the wall directly opposite the teacher's desk
should be blank, and the winduws on either side of this space should be placed as near the corners of the room as the comstruction makes possible, or as may be advisable for the extermal appearance of the huilding. In the schools of the Continent, the class rooms are seldon mere than 22 feet wille, and the regulations generally provile the lighting of class roms from one side only : lout this regulation is respected in the majority off, hit not in all, cases.

From the foregring it would apmear that, as far as the lighting of the corner romms of American schools is concerned, they might retain their present large dimensions ; lut that, if their height is not increased to 14 or 15 feet, they should have, in the rooms which have light from one sile only, nut more than $£ \frac{1}{2}$ feet of wilth, and in such roons forty-eight instead of fifty-six pminils shomld lie aceommolated. Class rooms in primary schools, if given a ceiling height of 13 feet, shonld he 32 feet long by 22 feet wile, and thus furnish acemmodations for fifty-four instead of filty-six pupils.

In Germany light from the north is permitted at the Dacks of the pupits : in France alditional winlows are permitted in the wall (1f)rsite that throngh which the main light comes, but light is shat off from these wimlows when the room is octupied. The common-wense view of the lighting duestion appears to he that all possible light should he gained for a class room, providing that, if from a side of the luilling expused to the sum, the major part of the light comes from the left-hand side of the pripits, and that none comes in their faces, and that on a sile of the buikling exposel to the sum there should be nor windurs directly opposite the teacher's desk. The eonditions seldon exist which permit the construction of a scluol with the urientation which its designer wond give if the choice of lucation were to be malle by him.

There is by no means a unamons opinion in regard to the best method of placing such buildings so that they may have the most advantageons exposure to the sun. Most authorities agree that the eastern expusure is that most desirable for class roons, but others whose opinions are also anthoritative maintain that the northern light is preferable for these ruoms, providing the windows are furnisined with doulde sash, and that the rooms are thoroughly warmed and rentilatel. I'rubably most would agree that greater adrantages would he gained in a building whose main facade had a sutheastern exposure, by which the sun comid shine on three faces of the builling for the greatest part of the year. There is substantial agreement that, on the whole, a westerly is less lesirable than a northerly exposure, providing the lmilling is well heated and ventilated. An casterly exposure is the best for class rooms;

SCHOOLHOUSE

SCHOOLHOUSE

the question of the relative merits of the northerly and sontherly exposme for class rooms may be left to be decided, as the alvantages of a stealy, elear, northem light, or that of the healthful and cheerfind light from the sonth, may be given the greater impertance.

In the United States class room windows are, in the hest practice, made 4 feet wide between jambs; the window stouls are usually set 3 feet above the floor. Sometimes in that como try, and generally in Germany, the window stools are set at a height of about 4 feet to prevent the pupils from looking out of the windows, and to that end the lower sash of some latest (ierman schouls are glazed with ribbed glass; on the other hant, in some of the Swiss cantons the stools are set $2 \frac{1}{2}$ feet high, with the whect of making it easy for the pupils to look out-rif-thoors.

In all well-designeal schoothouses the top of the windows is placed as near the ceiling as the fimish will almit. Transom burs should not he permitterl, both becaluse such features cut off too much valuable light, ant because opening of windows by the teacher is thereby facilitated. In a well-lesigned and properly regulated warming and rentilating system the introluction of outsinle air by such means is umecessary, and it is detrimental to the working of a good system. Wimbows evenly distributed in the class room walls give a better diffinsion of light than that given by groups of mullioned windows of erual glass area. Where arched windows are used, their lieight, and consequently the height of the room, shonld be increased that the glass area may effinl that of the spuare-lieaded windows of height proportionate to height and width of such a room. Double rums of sash are ilesirable to aid in economizing fuel, to check draughts from the windows, and to help shut ont dust and noise. Under normal connlitions of site, the basement windows should have a minimum height between masonry jambs of \& feet, and preferably $4 \frac{1}{2}$ feet. The basement windows should be stepped down with the grade to give greater height of winlow wherever feasible.

In the United States a movable platform 5 or 6 feet by 10 feet is provided for the teacher, for whom also a wartrobe I fout 4 inches in depth, and a bookense 10 to 10 inches in depth, is built, if possible, flush with the wall, and placerl as convenient as is possible to the platform.

Black slate is the best material for blackboards. In the United States the blackhoards are usually $4 \frac{1}{2}$ feet high, and are set upon all available wall surfare of class and recitation rooms, in primary schools \because feet 4 inches, ind in other schools ? feet above the floor, with a chalk receiver $\frac{23}{4}$ inches wille.

Sheathed dandees are often fouml to be infected with vermin; those of "ganged mortar," with
wooden chair rail, ant phain ogee hospital baseboards run out of 3 -inch plank lave been found cleanly and serviceable. Concared angles of phastered walls and of walls and ceilings facilitate the cleaning of the builaing. Inaccessible dust ledges should be avoided. As little wood finish ats possible should he used, and to that eml Keene's cement for door and window trims is advisalle. In short, it is as fully important to take precantions against dust lodgment and the use of absorbent surfaces in a schoolhouse as it is in a hospital.

Rift Georgia or Florida pine or maple are hell in the United States to be the best upper flooring for schools.

Doors should open towarl corridors, and should have a glass panel set with bottom 4 feet above floor, and transom lights over.

A picture moulding should be set on the walls of all class rooms, recitation rooms, and assembly halls.

Light shades of blue-gray or green-gray are required for the wall painting of class rooms by some German authorities, and these are probably the best colours for the purpose. Plastered walls should be painted in oil to the top of the batekbards ; above this height the walls and ceilings may be tinted with water colour, with ceilings a very light buff or ivory-white water colour tint. Corridors should have walls painted in oil colour $5 \frac{1}{2}$ feet high.

In the Unitel States a master's office is reцuisite for large schools, and private rooms, with toilet rooms adjoining, for teachers of both sexes, shonld be provided in all schools.

It is held by some authorities that no toilet rooms should he placed in the hasement, but that all plumbing shombl be in a selarate, wellwarmad building. The writer is not alone in his opinion that there is no need of thus increasing the cost of schoolhouse construction, providing a strong and certain ventilation to an anuple asjirating shaft throngh the phonbing fixtures themselves is provided. The toilet rooms, when placed in the basement, should immediately aljoin the playrooms for eaeh sex, and should always be shat oft therefrom by fly doors with spring butts. Where space permits, the basement may well be used for gymnasiums and for rooms for manual training and cooking selools. In the German schools portions of the basement are used for bathing rooms, prorided with shower baths only, each scholar being rectuired to take such a hath three times a week. In a very large schonl, if the size of the lot permits, the boiler and coal room may be well assigned to a separate building adjoining the school. In schools of moderate size, such an arrangement has not sufficient alvantage to warrant the increased cost of construction.

Except for lwiler and coal rooms, where brick parement laid on edge shouhd be nsed, and for

SCHOOLHOUSE

rooms used for gymnasiums or for school purposes, there is no better Hooring for hasements than the best brands of asplalt, $\frac{3}{4}$ inch thick, laid on a concrete bed. Wuorlen flows in the basement should be without air space, laid on serceds belded in concrete, with waterproof paper between the upper and lower tloors. If the site is champ, as, for instance, on "made land" in Boston, a coat of hot asphalt, or, at least, of tar concrete, may woll be laid on the concrete before laying the screals.

In European schools living apartments are proviled for the janitor in the large schools, and in many cases, and esen quite generally in the smallest rural schools, like provision is made for the master. There is no advantage apparent in assigning space in a school bulkling for the master's housekceping: he can rent his habitittion elsewhere for much less than the sum which should be deducted from his salary to compensate the city or tuwn for the interest on the expenditure on the portion of the sehool buidding he would occupy.

In addition to the main entrance, there shoukl be ontside separate entrances to the basement for each sex, and there should not be less than two exits from the first foor, and not less thim two staircases from the top to the first floor of every school builling.

A sheltered porch, or better, a vestibule of ample dimensions, should be provided, in which early comers may find shelter, without being given admission to the buiding proper. In Switzerland such vestibules are repuirel for all schools. In the United States, basement entrances are sometimes arrangel so that the pupils may have access to the playroom and toilet rooms before the hour at which the school exercises hegin. All entrance thoors shoult open ontward to guard against disaster in case of fire or panic. Onter restibule doors shouht be hung with double action swing butts. Ten feet is the minimum width for a school corridor; 12 feet is preferable. Corridors should be given all the light which the conditions of the plan and of the economical construction of the bounding walls permit. The basement should be shut off by tinned loors fitted with spring butts or doorchecks; the staircases also might be well shut off on each floor hy like protection from fire.

Staircases should preferably be of masonry, or metal construction throughout; but, if the cost of the huililing must be kept within strict limits, and staircases of wooden construction are used, they should be thoronghly fire-stompenl with brick or with terra-cotta blocks; as the minimum precaution against fire dauger, the soffit should be wire-lathed.

The treads of iron stairs shonld be envered with rubber mats, or, better, with combined steel and lead treads, not less than $5 \frac{1}{2}$ inches

SCHOOLHOUSE

wite, set into a rebate cast in the metal tread. In primary schools the height of risers should be 6 inches, and in other schools not more than $7 \frac{1}{3}$ inches. l'osts and bilusters shouk he of the plainest and most reatily chaned design. Hand rails of 2_{2}^{1}-inch iron piping have proved serviceable and of sutticiently good appearance. Hand rails on the walls, except it platforms, are requisite. Some anthorities hohl that school staircases should not be witter than $3 \frac{1}{2}$ feet, so that only two files of pupils, each proviled with a hawl rail, can pass, and so that the possible crowding between the files, in case of panic, shonld be prevented. The excellent discipline of American school children, which has been proved by alarms of fire, justifies, however, the reteution of the more comfortable width of $\overline{5}$ feet, which has generally been alopted in the schools of the United States. There appears to be no alvantage in a greater wilth than this. There should not be more than fifteen ant not less than three risers between laulings, and landings should not be less than t feet between steps.

When structural steel is low in cost, it wond not appear to be extravagant to alvise that the first fioor of all schools of more than one story in height shouhd be built of incombustible materials; not even the narrowest appropriation justifies the construction of such a builing withont a wire-lathed basement ceiling. How much further "fireproof" construction shoutd be carried is a matter of judgment in each case. The main danger from fire in a schoolhouse is not from outsile, but from the inside, and that danger again is practically confined to the basement. If the basement ceiling is properly protected, the staircases thereto shut off by fire doors, and if the plastering of the walls is directly on the brickwork, and with the partitions, if not solid, as is preferable for the exclusion of vermin as well as for fire protection, at all exits properly fire-stopped, there is little danger from fire to the inmates of the school. The danger from panic makes it alvisable that schools of over three stories in height should have their fioors constructed of incombustihle materiak, as the knowledge of such precantion increases the confidence of the inmates.

Twenty years ago the warming and rentilating system used in the Swiss schools was in advance of anything to be found in ally other country. The writer does not know whether Switzerland has retained the same relative superiority in this respect; but it is probable that the scientific warming and ventiating of schoolhouses has, with the use of the plenum fan in ventilation, heen more perfected in the Unitell States than elsewhere. Experience shows that in the United States a school building is best warmed by direct radiation, without reliance upon an increased temperature from the air de-

SCHOOLHOUSE

livered by the fan, and that this marhine should be employed for the sole purprose of supplying an aldegnate amome of fresh air wamed to 70° Fahrouheit. This methen of warning and of supplying fresh air is alwisable, except perhaps in schook of six or less roums, and even in surh eases al plemun lian run ly a gas congine may be allvantigeonsly nsect.

With such a system of warming and rentilating, the direction and velocity of the wind cannot, from time to time, affect the evenness of result which is the pramoment conlition of success in a waming and rentilating system. With a system of warming and veutilating by "indirect radiation" a miform certainty of result camunt always be attained, and with such a system, the first cost of which is less than in the "direct heat" and "fan" air supply system, the ronsumption of fuel to give a satisfactory result is greater under even conditions.

1n Gemimpeschule No. :204, Berlin, the summer and winter rent outlets in a class room accommolating forty-six pupils have an area of .35 metres square, i.e., abont 1.7 -I square feet. This building is warmed by direet ratiation, there is no speeial supply of warmed fresh air for each rooms ; sheh fresh air as is supplied to the inmates must come from cracks in the windows or from the corriders in which are hung the pupils' clothing. In a well-warmed and well-ventilated American class room which accommodates fifty-six jupils, the air inlets and outlets are $4 \frac{1}{2}$ square feet for the lower rooms, ranging up to 6 square feet in the third story. Where the plenum fan is usel for supplying warm fresh air, the air outlets remain as above, but the air inlets are reduced in area 25 jer eent to 30 per eent. Air outlets should be arranged on inner walls wherever found most convenient.

The upper of the two air outlets is prorided with a register which is opened in the summer only, and is set as close to the ceiling as possible, while the lower ontlet is fitted with a register fare and is set as close to the floor as the baseboarl will permit. Air inlets are set with botton of register face not less than 7 feet above the floor ; 8 feet is a preferable beight for these openings.

The construction of the Latin and English High School building in Boston, Massachusetts, begun in 1857, marks an inportant period in the sehool architecture of the United States, as it was the first application in that country of sound principles of plaming adapted to the needs of graded sehools. The construction of this building was not, however, beneficial in so far as it affected the system of instruction or the plan of the high school, at least as thuse needs han been up to that time understool in that country. The plan of this Boston school was avowedly based upon that of the Atrerlemishe Gymme-

SCHOOLHOUSE

sium at Viemna. This type of plan meets well, in the jrincipal features, the necessities of American schools of the primary and grammar grates, hut its alloption for a high school tended to divert the natural development of the academic schools of the United States, whose traditional systems were hased uron that of England ; puinils of several elasses being congregated in large schoolroums, wherein certain recitations are heard, while other pupils are busy with their studies, or pass from this large room to other rooms for recitation in speeial subjects. This was a system which jermitted somewhat of the freedom of a collegiate institution, and it would appear to develop, the self-reliance and broaden the experience of the puril.

The adoption of the gymnasinm type for the Boston high school, from the mere copying of its features of plan in new high school buildings, appears to have changed this system of acalemic construction, with the result that the American high school in most cases exhibits today in plan and arrangement an elaborate development of the graded grammar scliool. We generally find in high schools "wardrobes" adjoining each class rom, a feature derived from the necessities of discipline for pupils of the primary and grammar grades, and not in harmony with the freer sjirit which had been characteristic of the academir sehools.
In the Cambridge High School, built about 1887, the building which, a hove all others, most attieeted for goorl the architectural design of American schools, is a marked example of the effect of the above-mentionel Boston school ujon the American high school type. This Cambridge sehool has no feature of its flan which differs from that of an Amerieau grammar school of the highest type of to-day, except that the class rooms of the former school are 28 by 40 feet, instead of being, as in grammar schools, 28 by 32 feet.

Neither has the Brookline High School, begun in 1894, or the Spriugfied High School of about the same date, or the Cambridge Latin School, begun about 1897, any feature especially characteristic of an acalemir school, and all could as well be nsed for a large graded grammar sehool, exeept for the greater length of elass rooms, as for the purpose for which they were designed. It need mot be said that the responsibility for this condition rests entirely with the several school boarls, and not upon the architects of the several bimildings. There has lately appeared in the Unitell States a tendency in high schools to revert to the former acalemic type. Rooms for the pupils' out-of-door elothing, fitted with individual lockers, are being provided wherever found eonvenient, in place of the wardrobes immediately adjoining each schoolroon. There is again a tendeney to assign large schoolrooms for the accommodation

SCHOOLHOUSE

of at least two classes, insteal of placing each glanled class in a separate room.

In the Mechanic Arts High Soloool of Boston the writer believes the first temblency was shown, in the eastern United States at least, to difterentiate the high from the grammar schom type. This tendeney does not appear in the introunction of han! training as complementary to the ustual mental training, but in the huilding of large "locker rooms " in place of "wardrobes," and that of schoolroms seating seventy or mote pupils of two or more grades instran of chass rooms for a more or less number of pupils of the same grate. This schuol was lwgin in 1893. In 1894 the Brighton High School was begun, and the feature of locker romms, derived directly from the Mechanic Arts School, was introducel, but the class rooms were designed only firr single gradel classes. In 1898 the South Boston High School was begun, which has also the locker room method, and provides also tour "donble class rooms."

It thus seems prohable that the American high schools will gradually become agsin ditterentiated from the graded grammar schooks, and that the American high school systems will again follow the academic methods from which they appear to have been turned, mainly ly the enthusiastic almiration of a single superintendent of schools for Teutonic school methods and school phans.

In the C'nited States the institutions for the special training of teachers are called Normal Schools. These schools are modelled essentially upon the early system of the high schools of that country, - the academic system. The students of the several classes have their desks in a large general room, and pass thence for recitations to special class rooms for laboratory practice, or to lectures. For practice in the art of teaching, "model departments," composed of clase rooms for pupils in the kindergarten, primary, and grammar grades, are either placel in the same or an adjacent building, or in conveniently located public schools of the eity or town.

While manual training in its restricted sense has been much less willely introlucerl in the United States than it has in England amb on the Continent of Europe, the most important and most characteristic development of the American school system is the " Hammal Training" or "Mechanic Arts" schools. In these schools manual skill is not taught for its own sake; the object is to enmourage intellectual activity throngh the knowlelge of materials, of natural forces, and of the use of torls ats well as through books. Manual training is but one, aml that not the most important, part of the instruction which is given in American schumls of this class.

Machinery for wood and metal working, car-

SCHOOL OF ARCHITECTURE

penters' benches, forge shons, an!, in some cases, monling amb modelling rooms are provinded, but there are ako llaughting rooms, laboratories, recitation rooms, an! schoolroms; these latter ronus are not all arrangel for a single graded clask, but for pupils of different grades of alvaucement, thus, as notel above, reverting in a measure to the academic system of high school instruction, which the people of the Enited States inherited with their English traditions, and which is essentially the system which prevails tu-day in all grades of English schools.

- Emann M. Wheelwhant.

SCHOOL OF ARCHITECTURE. In monkrn times, an institution fur the professional training of architects. (See Architoct, The, in Englaml ; France; Italy.) This article is devoterl to the Eocole rles Bermat Aifs, which is the mincipal institution in France for art edueation, necupying the buidings of the Eeole on the Quai Malarquis an! the Rue Bomaprote in Paris. These buildings are principally the work of the architect Duban and his successor Counart, and occupy the site of the former Musee des Petits - lugnstins. In 188: the Hotel de Chimay was acopired and added to the selool.

The school is divided into three sections, those of painting, seupture, and architecture. The present article is confined to the lastmaned of these.

The origin of the School of Fine Arts is coincilent with the foumdation, under Mazarin, of the Aculémie de Printure et de Sompture in 1648 , and of the Itculemie dratitherture under Colbert in 167]. Instruction in architecture was given by the members of the latter until the abolition of all the acalemies loring the Revolation. After the foundation of the Actulemie des Beanre Aits (as a section of the Institut de Frumce) in 1803, instruction was given by the acalemicians; athl it was not till 1819 that regular courses in architecture were established in the school.

The regulations of 1819 have been repeatedly modified since then. The most important change perhaps has been the institution of the otticial, or school, ateliers, in 1863, a movement which met at the time with much opposition. The sehool is placed under the direction of the Misister of Fine Arts. Its immeliate administration is now in the hands of a director, appointed by the minister. This position has been held since $18: 8$ by the seulptor Paul Dubois.

The organization of the school is strictly that of a miversity: that is, it prescrihes the work to be done in its various courses, provides lectures and instrnction in these, institutes and julges competitions in design, tlawing, and modelling, conducts all examinations, and gives all awards. It does not, however, compel attendance on its courses, or any but a minimom

SCHOOL OF ARCHITECTURE

of partiepation in its competitions or examinations. It is sufficient, during a year, to render two competitive lesigns, of to attend two examimations in the sciences: or to render one design and attend one examination, for a student's name to remain on the roll. At thirty the himit of age is reached, and he is dropped. Accordingly there is no fixed number of years for the course, and the Bemonste Hount of the German universities is a familiar figure.

To enter the school the student prasses examinations in elementary design, drawing from the cast, modelling, arithmetic, algebra, elementary aml deseriptive geometry, and history. Of late years the great number of applicants has imduced the indministration to increase gradually the diffienlty of these entrance examinations.

The courses of the school are gratuitous, and foreigners are almitted on the same footing as Frenchmen. liecently, however, so many foreigners hatse presented themselves that the number admitted has heen limited to a certain percentage of the entering class.

While the intent of this article is to speak prineipally of the study of design as pursued by the students of the school, it is necessary to speak brietly of the course in general. The standing of the student depends on the number of "ertemes" which he obtains. A eertain number of points is attaehed to each recompense given either in design or in examination. The stuctent on entering the school becomes a member of the second class. He is obliged to obtain a certain number of these valeurs before admission to the first elass. There are at present six in architectural design, one in archæology, two in lrawing from the cust or the figure, one in modelling, one each in descriptive geometry, stereotomy, perspeetive, and mathematics, and two in construction.

The time requisite for this work varies very much in different eases ; except where the previous preparation has been exceptionally thorongh, between two and three years is the average.

In the first class the student's time is mostly given to the study of design, with some archreology, modelling, and drawing from the figure. When five "rolemos" in this class have been obtained, and unter rertain other !onditions, he may obtain the "Certificut d Etudes de r'Ecole."

The highest honour given is the "Iniplomé d'Architecte." 'To be eligible for this the student must hare obtained in the first class at least ten colou's in architecture, one in ldrawing from the figure, and one in modelling. He must also have passed at least one year in superintending the construction of a building under a goverument architect.

The examination for the diploma itself com-

SCHOOL OF ARCHITECTURE

prehends the complete working drawings and specifieations of a projected building, the subject of which the student may seleet, subject to aproval ; and a searching examination on the ilifferent parts of this project, on the elements of phrsies and chemistry as applied to construction, on the history of arehitecture and the law relating to building.

Of the total number admitted to the school, less than half euter the first class, and a small minority receive the diploma. From 1819 to 1893 the total number of students was abont 4000 ; of stmlents of the first class about 1500 , and of cliplomes somewhat orer 300 .

The number of foreign students at the school has been very considerable, Switzerland and the United states furnishing the greatest number.

The honours and awards of the school are, in general, open to Fremohmen and foreigners alike, as are also the special prizes, of which there are about twenty-five. The exeeption to this is the Giamd Prix de Rome, which is, however, not properly a school prize, althongh awarded by the sehool. This greatest honour of the French architectural stutent is upen tu all Frenchmen between the ages of fifteen and thirty, whether members of the school or not, and is given to the rictor in a competition in design only - the project of a monumental luilding. Founded (for the architects) in $17: 2$, it entitles its winner to a stay of three years in Rome at the expense of the goverument. and the certainty of a position as govermment arehitect thereafter.

It has already been said that the organization of the school was that of a university. Until the institution of the three sebool ateliers in 1863 , there was no aetual designing done within its walls, every student being necessarily the pulil of some outside instructor. At present, the pupil of one of the three school instruetors is absolutely on the same footing with those belonging to the outside ateliers, of which there are now about a dozen. Each atelier has its instructor - pertron. These putions are practising architects, of reeognized standing, who give up a portion of their time to this work. The atelier is thins the important unit of this federal system ; its members are animated by the strongest exprit du comps, are bound by the strong lomil of custom to help each other in their work, and are united in loyalty to the ideas of the patron. The triumphs are triumphs of the atelier, which cast a lustre on all its members.

There are six architectural competitions (projets) a year in each class. On the appointel morning the stulents of each class meet in the court of the school, answer to their names, are handed a programme prepared by the Professor of Theory, and are then imprisoned in stalls (loges) for twelve hours, or as much less as they please. During this time each one makes

SCHOOL OF ARCHITECTURE

a sketeh on a small scale of the proposed hrilking, without access to looks or advice. This sketch is handed in and numbered, the student himself keeping the traeing. The next day he presents this at his atelier, where it is subjected to a severe critieism on the pat of the putron. The rendered lesign must agree in all essentials with this sketch; if it is tho unpromising on examination, the stutent is comselled to irop it and take up other work. Nore often he is alvised as to its prossibilities of development, referred to examples, and cneouraged to make what he eall out of it.

This system has been fonnd suceessful in many respects. It insures a certain imlividuality in the work, and prevents the possililities of blind copies. It confines the work of the student also within certain fixed limits, - those of a certain conformity to his sketch, -avoiding the successive trial of one seneral schome after another. Anel these artifirial limitations imposed by the school take the phace of real linitations which ofeur in architectural pratetice - those of cost, special conlitions, or the idiosyncrasies of the elient.

The usual time given for each moget is two months. Of this time from one to two weeks only are given to making the actual drawings, the remainder being taken up with the study of the problem. The French methonls of study have heen so generally imitated in other schonds, especially in those of the United States, that it is hardly netessary to describe them. Nowhere is tracing paper held in more homonr: lieginning with the smatlest scale, a great number of successive studies are made, and ronglly remuered before the final drawings are touched. These stulies are made with the advice and criticism, not ouly of the pation, but (esperially in the ease of the less advanced stmilents) of the inetter men of the atelier; aud there are often warm informal discussions in which all take part. The aid of the elder men is given as a matter of course, and when the final drawings are male, all hands turn torand help. The younger men, esperially, pay for the advice they have received by working for their ehlers; and many a one in his tum has had a ditticult bit of rendering helped out by more skilled hands than his own.

The study of the plan is especially insisten on, ant in the awards great weight is always laid 1100 it . It is, too, ill article of faith, that while the handsone plan is not neressarily good, the good plan will generally be handsume. Accordingly, much stuely is given to the presentation of the plans, so that they may be easily reat, and that the results of so murh study may be at once apparent.

It is held that as the aetnal stmulies of the architeet must be largely in clevation, the finished drawings should be so presentent, and that

SCHOOL OF ARCHITECTURE

an important part of arehitectural edncation consists in the alility to tramslate these elevations into their solid forms. It is only exceptionally that perspertives are required in the rembering of a projet, although in the atehers partial perspectives, as aids to study, are often male. The comventional shaduws are always used, both in stulies and funshed hatwings, and their correct projection is always demanderl. .

The emmpleted drawings of any given projet are delivered at the sthool at the appointed time, and exhibited. The awards are given by a jury consisting of the eight arehiterts, members of the lustitut, twelve other jemmanent members, and nime who are renewal from year to year. Finally, the Protessor of Theory delivers a lecture on the problem, often containing criticisms of the premiated designs.

These exhibitions are orcasions of the greatest interest to the students who have taken prart, and they are fundamentally different to those in other schools. For here are gathered together, not simply the imbivitual ethorts of stulents, all working moler one intinence, and secking the solution of a given problem, hat those of some fifteen difterent architectural sohook, eager rivals, representing ditlerent illeas, and all prepared to critiofse the suceesses and failures of the other ateliers, and to profit by them. The awards, ton, have a sperial value aml interest, becanse they are given by an indepenNent body, in which the putrons are in a minority.

It ramot be too strongly insisted uron, that in the atelier system lies the essme of the School of Fine Arts, ame that to it is lue, in large measure, its success, ind the enthosiasm felt for its teaching by so many of its old students. The atelier, as las been said, really anterlates the selrool, which accepted them as it found them; and to change this feature would be to change the entire chameter of the shlool. The opposition to the establishment of the school ateliers in 1868 only ceasel when it wats firmly established that these were to have no preredence or alvantage over the others, and that there was no intention on the part of the administration to place architectural education in it few otheral hames. It is significant that the student signs himself "P'npil of M. ——and of the Sehool of Fime Arts."

It may be added to this sketch, necessarily incomplete, of the training of the sehool, that it is common for the student, during a portion of the time that he spemls at it, to devote some time to work in an architect's office, not infrectuently in that of the putron.

The roll of the pupils of the school inclutes the names of nearly all the prominent French arehiterts of the last seventy-five years, and not a few well-known names of foreigners. This
roll, with other information, is contained in Les Architedes Bileres do l'Enole des Beana Arts, by David de l'mamm, Roux-et-Delaire, (Paris, 1835), to which the writer acknowlcdges his indebtedness. - Walter Cook.

SCHULZ, FRANZ; arrhitect ; b. 1838 ; d. Oct. $2.2,1870$.

Educated at the Academy of Viema under Friedrich von Schmilt (see Schmilt, R. von), be devoted himself to the study of mediaval art. He jublished Profanbuntem des Mittelalters in Rom mul untỵgend; Die Luudenkmüler

Senbert, Fïustler-lexikon.
SCHW ANTHALER, LUDWIG MICHAEL ; sculptor; b. Aug. -26, 1802; d. Nov. 28, 1848.

His father, Franz Schwanthaler, came to Munich, Bavaria, in 1785, anel was made court seulptor. Ludwig was edncated at the Mmich Academy. In 1826 he won a travelling stipend, and visited Italy, where he attracted the attention of Thorwaldsen. In 1834 he was appointed professor at the Academy in Munich. Among his most important works are the decoration of the Glyptothek, Munich ; the pediment group on the Wathatha near Regensburg (Ratisbon) representing the Hermann Schacht, the decoration of the Propylea in Munich; the Mozart monmment in Salzhurg, Anstria; the Goethe monmment in Frankfort ; the colossal statue of Bavaria in Muich, and other works.

Raczynski, L'An Momerne ell Allemague.
SCIALBO. Same as lutonaro.
SCISSOR BEAM. The tie of the Scissor Beam Truss (which see under Truss).

SCKELL, FRIEDRICH LUDWIG: landscape garlener; b. Sept. 13, 1750 ; 1. 1820.

Stutied landscape gardening in Paris, and in 1773 went to England and worked under the influence of Brown and Chambers (see Chambers). Returning to Germany, he laid out many parks and gardens, and in 1804 was made Ifofortemintendent at Munich, Bavaria. He laid out the park at Nymphenburg and the English garden in Munich under the direction of Count Rumford (see Thomson, B.).

Seubert, Kïnstler-lexikon.
SCOINSON ARCH. An arch carrying a part only of the thickness of a wall, as behind a window frane ; or one of slight reveal forming a Hat niche or recessed panel.

SCONCE (I.). A. Any construction which gives shelter by sereen or roof, as a shed or corered stall. (Compare Booth; Cabin; Cot; Hut.)
B. A seat in an open chimney place (Siotch).

SCONCE (II.). A candlestick or group of branches, each forming a candlestick, springing from an applique, so that the whole shall seem
to project from the wall upon which the apphigue is hung.

SCONCHEON. The part of the side of an aperture from the back of the exterior reveal to the iuside face of the wall, usually forming in the masnory a rebate or internal angle in which the wooten frame is set. (Compare Scoinson Areh.)

SCOPAS : sculptor and architect.
Scopas was born in the lsland of Paros in the Agean sea. In 352 b.c. he assisted in the sculptural decoration of the mansoleum of Halicamassos. He built and decorated also the temple of Athena Alea at Tegea, which replaced the ohd sanctuary destroyed in 395 B.C. Some of the sculpture of the pediments of this building was discovered in the excavations made in 1879. A passage in Pliny, which has been doubted, indicates that he was employed in the decoration of the columns of the Artemision at Ephesus. A famous statue by Scopas was a Bacchante in the great theatre at Athens. The temple of Apollo on the Palatine in Rome, contamed an Apollo Citharoedos by Scopas, which is probably represented by a statue in the Vatienn.

Urlichs, Skopas, Leben und Herke; Collignon, Histuire de la Scutpture Grecque: Furtwängler, Meistermerke (translated as Masterpieces of Greek Sculpture).

SCORING. Same as Scrateling.

SCOTCH CROWN. The peculiar termination of the tower of S. Giles's church at Edinburgh, consisting of eight pinnacles, from each of which a sloping bar carried on a half arch and resembling a Hying buttress rises, the whole eight meeting in the middle and supporting a central pimacle. The term is applied to other terminations of towers in which only four sloping bars occur; and this form is not peeuliar to Scotlanel. It occurs in S. Dunstan's in East Londun, and elsewhere.

SCOTCHING. Same as Scutching.
SCOTIA. A hollow moulding; especially, such a moulding used in the base of a column in Greco-Roman architecture and its imitations (called also Trochilus). (See Attic Base, under Base.)

SCOTLAND, ARCHITECTURE OF. That of the modern kinglom, mited with England in 1707. This may be considered as a provincial school or branch of English architecture. At times it has shown wide departures from the contemporary phases of the English type. both in spirit and detail ; but these departures hardly constitute a distinct style. Differences as great separate the Gothic schools of the Ile-de-France and Brittany, or of North and South Germany. The long-contimued political independence of Scotland operated less effectively than one would imagine ; Sootland acknowledged the ecclesiastical primacy of Canterbury and York, and Scotch
PLATE XVI

SCOTLAND

arehitecture has in general heen more English than it has been anything else. lint it has heen English with a difference: more rugged anul pirturesiute, less consistent, less clegant ; and, owing to scautiness of resources as muth as to any other caluse, deficient in gramleur and richness. Scotland has always heen less wealthy than Buglanl, and is, therefore, not unly less rich in civic and selohostic buildings of innmertance, but less opulent and sumptuons in the extent and adormment of its religious and domestic edifices. Frequent invasions by the English, especially under Elward I., Edw:urd II., and Richard II., resulting in a terrible de-

SCOTLAND

are a few round towers resembling those of Ireland, in one case - at Egilsey on Orkney forming an integral part of the church cedifice (Ahernetlyy, $86 \overline{5}$ A.1) ; Brechin, 1000 ; Egilsey (ir. 1100). The square towers of Restennet priny ant of S. Regulus ("s. Rules") at saint Andrews mark the transition to the Normanized style of the twelfth century.

The reign of Datrid I ., who asecnded the throne in 1124, was marked ly an extramemary activity in the fomming and eulargement of monasteries: an antivity which contimed through a large part of the century, and was stimulated on the architectural side by Norman

Scuthand: Abbey of lona, South Alsle of Cholr; myided into Thiee Chmpartments by Two Flying butthesses of Phimitive Type.
struction hoth of castles and of monasteries with their churches, corerel sicotland with ruins, nany of which are now preserved for their picturesqueness and their historic associatoms.

Previons to the Norman conquest the larger churches were generally of woud, the convents mere assemblages of rule cells. Whils there are many ruins of stone churches of the serentheleventh centuries, they are tho sumall and rough to merit the name of arehitectural works (S . Ronan's chapel ; Teampull Beamachadh ; Filean Mor; S. ('armaig; chapels in the Orkneys). The monasticism of these ceuturies was purely Celtic, and long resisted all eflort to assimiliate it to Roman systems and ideas. More important as the chief monuments of this Celtic periond
influences from the south. Parish churehes were still insignificant, lut the conventual churches were often of imposing size, with vaulted side aisles and massive sifuare towers having either tlat or "saddlehack" roots. Most of these churches are in ruins, but the finest of them all, S. Magmus's cathelral at Kirkwall on Orkney, is in perfect preservation. It is, however, a purely Norwegian work of cir. 1137, a fine example of the Northern Nomman style, vaulted throughout. Dunfermline Abbey (I I25, nave only extant), with its massive western towers: Kelso Abbey in Linlithgowshire, built at the end of the twelfth century, with a "ruciform plan, a long choir, and is tower over the crossing; and Jedburgh, near Kelso, a complete

SCOTLAND

design with vaulted aisles, transepts, woolenronted mave and ehoir, peshytery, and central tower, - are the most impertant purely Seoteh churches of this period, severe and massive cxternally, with sparing ornament, hut rigorons and ronsistent in design. As compared with English churches the 'outch examples are smaller and simpler: the choir, often longer than the nave, has msually no side aisles: the details are less rich, the compmition more massive. Sometimes, however, the aisle vanlt ribs and the arch mouldings are richly carved, and wall ar-

Scotland: Jedbergh Abbey: Part of Chome.
catles of interlacing arches are not uncommon (Dalmeny chureh, Linlithgowshire: Lenchars, near Saint Andrews, ete.). In the Transition, which followerl a little later than in England, many Norman elements were persistently retained, and round arches are not uncommon even in Early Pointed work (Coldingham prioryruins partly embolied in modern parish church ; Dryburgh Abley, Berwickshire; and many others: the conventual huildings at Dryburgh are less ruinous than the clurch itself, which dates from 1230). To the Early Pointed period belong a number of fine churches, partly or wholly ruinel. Of S. Anirew's cathedral, Fifeshire (1160-1275, ruined 1559) the west and

SCOTLAND

east ends and part of the south side are alone extant. Arbruath Abbey in Forfarshire (11761233) is in much the same condition. Buth show a large atmixture of Norman details. Holyrood Abhey chnreh near Edinburgh, one of the most elegant and mportant examples of the style, built in the first half of the thirtcenth century, and of which only the ruined nave has survivel the vandalism of the sixteenth century, also displays Norman interlacing areades in certain parts. Dmblane cathedral, Perthshire, was the first important church to be completely built in the Pointed style. Its one-aisled choir with its flamking lady chapel is still perfect and in use. It is not surpassed by any Gothic church in Scotland except Melrose Abbey and S. Mlnngo's cathealral at Glasgow, which is slightly later in date, with a central tower of the fifteenth century. This cathedral, commonly called Glasgow cathedral, is a complete Gothic design 330 feet long with three aisles in both nave and choir, but no transepts; and with a fine sacristy and an especially beantifnl lower church (usually miscalled the crypt) below the choir ($1233-1258$). The ribbed vaulting of this lower church is remarkably fine, and equal to anything of the kind and period in Great Britain. The nave and choir of the cathedral have wooden ceilings ; the aisles are vaulted. Elgin cathedral (Morayshire), an almost equally fine church with a beautiful octagonal chapter honse, is now completely ruined, and little is left of Brechin cathedral but its Celtic tower, west front, nave arches, and fragments of the choir. Phuscarden priory is also a notable ruin of a fine churel.

It is to the rebuilding of churches ruined in the Border Wars that we are chietly indebted for examples of the Decorated or Middle Pointed style of the fourtecnth and early fifteenth centuries. The most conspicuous and beantiful example of the style is the ruined abbey of Melrose. Notrace remains of its monastic buildings, some of which were no doubt very ancient. The church, whose ruins are of exceptional heanty, was erected hy order of Robert Bruce, after his death in 1329 ; ravaged by Richard II. in 1385 , and finally ruined in 1544 : the present ruins date chiefly from the reconstruction after 1385 . It has three aisles, with a southern row of chapels, transepts, and a short choir. The traceries of the east window and south aisles and transepts, the rich buttress pimacles, niches. and canopies, the elaborate vaulting of choir and nave (the latter replaced in 1618 by an ngly pointerl barrel rault) and the clegant details of almost all its parts, give this church a place among the most beantiful in Great Britain. Its style is nearer to that of English late Decorated chmrches than is that of any other Scotch edifice of the period. Although its chief mason, Morrow, was born in Paris, he appears to have been

SCOTLAND, ARCIITERTTRE OF. PL.ITE Il

Kelso Abbey; the upper figure gives the riew from the northeast, the short northern arm of the transept ending in a wall with the complete gable on the right. The other high wall is the southern wall of the tuwer seen from within, and the arches
on the left are those of the south wall of the choir. The lower figure shows what remains of the west front of the short nave. the western wall of the tower rising above it, and the south transept on the right.

SCOTLAND

of Scotch blood, and there is little or nothing to suggest French design in the laidling. Very different in character is the contemporary church of S. (iiles, Edinh inrgh (1387 ; enlarged in the fifteenth century), almost lhric in its severity of detail. Its massive central tower was in 1500 aldorned with the famons "Scotch Crown" (which see). This very elegant feature is peculiar to Seotch architecture (King's College, Aherdeen: S. Nicholas, Neweastle, probably by Scoteh builders; others formerly at Linlithgow and Haddington). The most complete example of the style is S. Michael's at Linlithgow, a late

SCOTLAND

Scotlant. The fifteenth eentury seems to have Irought to Scotland, not only a decline in taste, lout a deeline in craftsmanshij as well. In the art of vaulting, this retrogression is especially nutalbe, as shown by the reversion to plain round or pointed barrel vanlting, even for the midhle aisle. So emphatic was the aversion to groins that the transept saults were stnpped against solid gable walls in the planes of the nave clearstory walls, in order to awoid the groined intersection with the nave vault. Hust of the churches of this period are parish ehurches and relatively uninteresting. The cathedrals of

Stotland: Kelso Abbey; Naye and South Transept from N.E.
Decorated chureh perfectly preserved and in use; it shows something of the same contrast of severe and almost rude masses with bits of highly ornate detail as S. Giles. The ruins of New or Sweetheart Abbey amd of Lincluden College may also be mentioned.

With the close of the fourteenth century the Decorated style passed into the Perpendicular, but in the momments of this later style there was, with one or two exceptions, none of that elaboration of fine detail which characterizel the corresponding English style. The huge windows filled with Perpendicular traeery, the rich traceried panelling, and the elegant fan vaulting of England have no counterpart in

Paisley (mostly 1445-1459), Dunkeld (nave, 1406-1464; choir mostly modern), and Aberdeen (S. Machar, nave only extant, $14 \div-1440$) were the largest churehes of this period. The first two have the characteristie Seoteh plan, with three-aisled nave, short transepts, and long choir without side aisles; Paisley is the most elegant in details, S. Nachar the most rugged and simple of the three. At Perth the church of S. Johu is a large and well-preserved elurch, but uninteresting in design. Far rieher than any of these is the incomplete but perfectly presersed collegiate chureh of Roslyn near Edinburgh, built in 1446 . The choir, whieh with the sacristy was the only portion erected, is 60
feet long, with side aisles and a double aisle accoss the east end. The whole is barrel vaulted, the aisle hays having tramserse vaults sprong from strught arehed transverse lintels, an inartistie and very un-Gothic arrangement, only tolemble in a small edifice. The interior, though profisely carved, hardly merits the prase it commonly receros; the execution is somewhat coarse, and hardly supports the allegation often made that the buihlers were Spanish or French.

Of the civil and domestic architecture of the C'eltic perion and twelfth and thirteenth centuries there are no remains, and the history of Scoteh military architecture begins only with the Norman period. Even the most important castles of this perioul, such as Dunstaftinage, hothwell, Yester, C'arlaverock, cte., were of the simplest chataver - mere heavily walled enclosures with angle turrets and a keep. It was not until the fourtenth century that notahe advances were malle in castle building. The majority of the Sootch castles were small but massive and compact strongholds - a keep or tower, or a simple L-shaped edifice. In the fourteenth century there took place a general enlargement of these into castles with courtyards, and many new castles were built (Balvaird, Roslyn, Ruthen, Edinburgh, Linlithgow, Dirleton, Tantallon, and Stirling). Of these Stirling is the finest, with its parliament hall, and Linlithgow, long the farourite royal residence, comes next in architectural interest; but they are harilly comparable with the magnificent contemporary castles of England and France. In the sixteenth centmy castle buikling took on a more artistic and domestic character, in which the idea of the fortress, no longer impregnable against artillery, gradually disappeared, a change which became complete in the serenteenth century. Until the time of Charles I., however, and even later, many medizeval features were retained; such were the ronnd corner turrets corbelled out at the top to a square plan, stepped gables, circular stair towers in the angle of two wings, and a general severity of mass and detail. Fyvie castle, in Aherdeenshire, begun in 1400 but much altered in later centuries: Glamis castle (mostly 1578-1615), and Thirlstane castle (midlle of seventeentl century) are interesting examples of this treatment. Meanwhile the fashions of the Renaissance were making their way in Scotland, coming in from Englanl, and gradually replacing the corbelled parapets and stepped gables of the Scotch castles with the pilasters, pediments, romm arches, and cornices of the Anglicized classic style, and, above all. introlucing a new element of regularity and symmetry into the jlans. But the formal classicism of Inigo Jones, and later of Christopher Wren, foum little farour in Scotland, and even in the later castles there is a picturesqueness
wanting in the English examples. Drumlanrig castle in Dumfriesshire well illustrates the style. Its chief lator monuments are Holyrood palace (begm 1528 by James $1 V^{r}$., extenled by James V., burned 1650, finally rebuilt by Charles II., 1671) ; Heriot's lospital, Elinburgh (16281659), a yuadrangular structure with central court, very effective in the massing of its bays, parilions, and chimneys, and adorned with corbelled parapets, angle turrets, Gothic details associated with Elizabethan "strap-work," and a very rococo portal ; and the now demolished Glasgow College, a rambling pile in much the same style, hut less successfully handled. These buildings are less interesting internally than externally, and generally inferior to the great English residences and colleges in grandeur and elegance of interior disposition and adornment.

There was but little church building done during the seventeenth and cighteenth centuries, and the ecclesiastical work of this period is almost wholly confined to minor structures, such as the richly carcel gallery fronts of Pitsligo and Bowden churches (1630 and 1661), and elaborate canupied tombs in hack, white, and red marble, e.g. the Nontgomery monument at Largs (1636). The Renaissance in Scotland was as emphatically provincial as the medieval styles had been; this is shown in the persistent reteution of old-time and ont-of-date details, and the mixture of incongtuous elements long after the style had in England and elsewhere reacherl a harmonions and definite form. Noreorer, the severity of Scotch taste or the poverty of the Scotch artistic imagination rendered impossible that sumptuousness of decorative detail which seems essential to the best results in Renaissauce design. Until recent years very few buildings in Italian or classic style had been erected in Scotland; by filr the best known is the college of Edinburgh University, by the brothers Adam (I789), a dignified but rather uminteresting pile.

Since the beginning of the ninetcenth century Scotland has shared in the general development of Eritish art, and the chief difference to be noted hetween the more recent architecture of the two countries is seeu in the effort to retain the picturesque and semi-mediaval features of the Scotch castles of the seventeenth century in many of the modern Scotch buldings, e.f. Inremess castle, the municipal buildings of Aberdeen, and many large country seats. The classic reviral is represented by the works of Sir Thomas Hamilton amd W. H. Playfair ; among its most notable prorluctions are the High School (18.25. Hamilton) and Royal Institution (Playfair) at Edinburgh, both remarkably successful and elegant dexigns; the Royal Exchange and Justiciary Courts at Glasgow; and the somewhat affected and singular, but interesting efforts of Alexander Thomson ("Greek Thomson ") to

SCOTLAND, ARCHHECTURE OF, PLATE HI

SCOTT

alapt Greeks details to modern Protestant chureh design. Most of the charehes erected since then lave been in the revived Gothie style, and in nowise different from contemporary Eng. lish work; e.g. S. Dary's cathedral, chapter house, and library, at Edinburgh (Sir Gi. G. Soutt), S. Andrew's cathedral, Inverness (Alexamber Ross), s. Benerliet's Monastery at Fort Augustus (P. P. Pugin), aml many parish churches. Other examples of the Victorian trothic are the Scutt monument, Elinburgh (1814, by George Kemp), amd the very ambitious and elaborate Glasarow University buildings ly Sir G. G.

Architerture uf seotlond. Of a more popular chameter atre 11. C. Butler"s Soblloml's Rumed
 ambl Monsions off Scollotel. 'I'he laroer' and mure edebrated monuments are leseriberl in monocraphes athl in the works of Billings (Bumominl atul Erole-
 others.

- A. D. F. Mambin.

SCOTT, SIR GEORGE GILBERT ; architect; 1. 1811; 1h. March 27, 1878.

In 18.2 he was articled to James Edmeston, and in 1832 entered the office of Henry Poberts. lu lstt he won first prize in the competition

Screen. Fig. 1: Low Brunze halling, Aix-la-Chapellf; Probably ath Century, and from Italy.

Screex, Fig. 2: see Fig. 1.

Scott (1870). This revived Gothic has been of tate years, as in England, largely supplanted by free versions of the Fenaissance styles, inclining sometimes toward the Italian and sometimes toward the French in general chararter. As early as 1861 the Ellinhorgh Pust Oftice (Matheson) was erected in the Italian style. The most elaborate and surcessful among recent mblic buildings in Scotlaml is perhaps the Municipal Building of Clasgow (1880, Wm. Young) in a style lased upon the Venctian Renaissanee. In general it may he said that architpcture as now practisen in Scotland is in 110 essential different from that of England.

For the earliest Scotch architecture. rude monuments, and stone crosses, see Skeme. Cellic Sirntlunt: Anderson, Sothtomt in Eurly Christian Times: and Fergusson, Rule Stome Ufmuments. For the general historv of sentch architecture, Macgibbon and Ross. The Erelesidnticnl Arehiterture of Scotland and Costrllated and Domestir
for the church of S. Nicholas at Hamburg, Germany, to replace the building burned in 1842. This he built in the German Gothie styto of the fourteenth century, with a tower 475 fect high. In 1847 he was appointed architect of Ely cathedral, and architect of Westminster Abbey in 1849 , where he restored the chapter house, momments, anl northem portal. His Gleaningo from Il'estminster Alb,y was published in 1862. After competition he was appointerl in 1858 architect of the builling of the War and Foreign oftices, London. His first designs were Cothic, but he was required by Lord l'almerston's government to sulstitute a design in the style of the Italian Renaissituce, areorting to which the buihling was erected (begun 18fi). He afteward completed this blork of buildings by ereeting the Home and Colonial Officos. Between 1863 and 1868 Scott lesigued and built the Albert Memorial in Hyde Park, Lon-

SCRATCHING

don. In 1866 lie wis one of the six competitors fur the Royal Conuts of Justice in Lombon (see Street, Sir (i. E.). He wom the gold medal of the Soyal Institute of British Architects in

1859, and was president of that buly from 1873 to Isjo. He was appminted professur of armiterture at the Rosal Academy in 1868. His lectures were puhlished under the title Medi-

sir Gilbert scott. Recullertioms; Stephen-Lee, Dictionary of Xetiomal Biourrophy.

SCRATCHING. The roughening of the first coat of plaster, when fresh, by seratehing or soming its surface with a point so that the next coat may allhere to it inore firmly. Also called seoring.

SCREED. A narrow strip of plastering brought to a true surfare and elge, or a strip or bar of wook, to gruide the workmen in plastering the aljoining section of the wall surface.

SCREEN, Any strmeture of any material having mo essential function of support and serving merely to separate, protect, seclude, or conceal. In churcharehitecture, suecifically, a decorated partition of woor, metal, or stone, close or upen, serving to sepramate, atually or in sentiment, a chatrel from the church. an abisle from the nave or choir, the chancel from the nave, etc. In this sense, a sereen replaces the Jube in small churches. In early houses of some importance, a partition by which the entrance lobly is separated from the great hall. An open colomate or arearle, if serving to enelose a pourtyarl, wr the like, is sometimes called a screen. (see Cloncel Screen; Choir Screen : Sanctuary Sireen.)

Screen of Oak: Northfleet Chitrh, Kext; c. 1300.
in the leath, which may be flit or rommted. Gimlet screws are those wood serews which have a sharp pointed end so that they can be driven, at least into soft woon, without the preparatory boring of a hole.

SCREW JACK. Same as Jack Screw.

SCRIBBLED ORNAMENT. Decorative eflect prochuced by lines, curves, and scrolls carelessly distributed over a surface.

SCRIBE (r.t.). To mark with an incised

Pardon Screen. A screen surrounding or placed hefore a confessional, to hicle the penitent from public view during the act of confession.

SCREEN CHAMBER. An apartment formen by a screen seprating it from a larger area.

SCREEN WALL. A screell of some solidity as differing from one which is pierced, especially in the intercolumniations of a colomiate.

SCREW, A solid cylinder laving a ridge womml aromd it in a spiral direction evenly; though sometimes the piece has rather the look of a threat being cut into the solid eylimler. In buililing this is used in the form of a Bolt (which see, sense A) and in the form of a Wood Screw (which see below).

Wood Screw. (Often by abbreviation simply serew, which is the term in use anong conpenters.) A screw usen to replace a nail, nsually intended to be driven by a screwdriver, fur which purpose it has a slot

Goreen, Fig. 3: see Figs. 1 and 2, this being a detall uF a third and very simblar sfleen.

SCROLL

SCREEN OF OAK: H.NDDOROLGH CH1 M H, OXFORDSHIRE; C. 1480.

SCULPTURE

however, that form of relief which hiss at decidedly rounded and varied sufface approaching thereby somewhat more nearly to the look of natural form, together with all production of form in the romm, as it is called (see Relief), is consitered seulpiture. The Egyptian and most other conctro-momex relief is of this clinutcter. the figures being as freely rommed as in ordinary basrelief, although they do not project beyond the general surface of the material.

Relief sculpture of the kind above named is the most common form used by the Egyitians. It leuds itself peculiarly to decoration in polychromy, and is eapable of great excellence in the way of narrative and expression. By means of it Egyptian architecture was more immerliately helped hy its scolpture than was any architecture jurevious to the time of the later Romanespue or even that of
a consentual establishment for the copring of mannscripts.

SCROLL. An ornament composed of entreal lines like rolutes, and sometimes of double Hexure passing on from one volute to another.

Vitruvian Scroll. A scroll of great simplic-

the Gothic styles.

In the Assyrian and other buildings of Mesopotamia it seems that the senpiture can hardly have decorated the exteriors very much, nor even the interiurs in the true sense of the term "to decorate," that is lis inceasing the general ity, withunt leafage or the like, but generally haring the section of a flat balml.

Wave Scroll. Same as Vitruvian scroll. So ealled lecause of a suggestion of sea wares in regular succession.

SCULLERY. A room, generally annexel to a kitchen, where dishes are washet.

Plate Scullery In Creat Britain, a separate soullery for cleaning plate. It shomlel eonnect directly with the butler's oftices. - (Kerr.)

SCULPTURE. The art and the practice of carring in harl material, whether in relief or in intaglis. By extension, the producing of firms in soft material, as by monkling, thit always with a view to artistic or semiartistic results, the copying of natural forms, or the embunting of design in form. The distinction letween the mere incising of lines on a smooth surface ame sculpture is not capable of being fixed exactly: the enlargement and unequal widening of the incised lines passes insensibly into seulpiture in low relief, or in concavoconvex relief. In general,

Screes of Ct't stune dividing a Chapel: Cithedral of. AN-LA-C'HAPELLE; 1 TTH CENTURY.
splendour of the apartments more than the presence of portalle objects of beauty would decorate them. The chaf sipecimens which have come down in fair preservation to modern times are seulptured slabs, the work being in very low relief upon a soft alabaster-like stone. In this the work is of extraominary interest and of expressional merit. The well-known winged and hmman-headed bulls and similar creatures of religions significance are really relief sculpture, a luge hock being workel on at least two of its sitles in such a way that at view of it taking in the front and long sitle would show the semblance of a statue in the romm.

Persian sculpture of the early kinglom seems to have been much of the same general character. The artistic differences are very great, but the relation which the seulptures bear to the buildings is not unlike in kind. The bull-headed

SCREEN SERYING AS CHOIR SCREEN: FYfIELI, CHURCH, BERKSHIRE; c. 1480 .

Sculpture, Fif. 1: Aqurian (see Mesopotamia) : Aiabaster slab froy Sevvicherid's Palace, Morid of Kovvunilik.
half capitals which mark the architecture of Persepolis are a nearer approach to sculpture in the round than anything we have of Assyrian or Babylonian work used in connection with buildings.

Of Hittite and other Phomician sculpture we 457
works which would remain are first the very few separate statues and busts which have heen buried in the gromml, and second, those reliefs which are so large anst are worked upon such massive hases of native rock or of walling, that the centuries have spared them. Our illeas of

Scluptlere, Fig. 2: Iiumay Fraize prubably uf time of Augustus; in the hateran hlisevm, Rome.

Sculpture, Fig. $4:$ Itallan Romanesque, loth Cextury; Chereh of S. Asdrea, Pistoja.

Scllftcre, Fig. 13: Frevce Gothc; Botrges Cathedral; Window ofer West Portal.

SCULPTURE

the power of the westem Asiatic nations to decorate baildings by means of elaborate scolpture are likely to be changed at any moment by the making of new diseoveries, and even the Lycian tombs and other proto-Greek works pmint to a freer use of senlpture, at least in the alom-

SCULPTURE

Very different was the leeling of the Romans under the Empire daring that great perinal beginning, apparently, with the early lays of Augustus, or even a little before it. and cuasing with the Great Plague and the political disturbances of the last Antunine emperor, - a period
 stmeture. Even the resulting use of polychromatic painting would seem to have failed of necessity in uniting the thought of the sculptare of incident and representation and the half-arehitectural, half-swal ${ }^{\text {p- }}$ turesine furms which we know as anthemims, egg and dart mondings, ivy leaf pattern, meanders, and rosettes. A buidling without the sculpture of human figure would have been still a highly organized, and in a sense completed, temple or portico, and the sculpture would have been associated with the same and no greater feeling for its necessity than we shond feel as to the putting up of a group in a modern city park.

Sculpture, Figs. 5 and 6 : German Pomanesole: Church at Brafweller on the Rhine:
elaborately painted in bright colours, sometimes much less fully adorned in that way. A memorial arch, also, is to be considered rather as the base for a great system of sculpture to be rested upon its top, than as a gateway (see Nemorial Areh) ; and although these sculptures have in every ease disappeared, the representations given on Roman medals are sutticjent to explain to us the Roman feeling toward them. Even in the decline of the Empire, and in the complete collapse of the once great power over

SCULPTURE

SCULPTURE

scripture possessed lay the leman artists, the Aced of Constantine is adorned with fragments taken from the previous holding deflated to Trajan, and they are combined in a new memortal building in a not unsuccessful way.

Recent discovery and the comparison of fragments leave no doubt of the existence of a

Sculpture, Fig. 7: Gervins Romanesque; 12th Century: Portrait Effigy: Abbey bf Arastein on the Rhine.
highly differentiated non-Greek school of sculptore, as partly shown by Wickhoff (op. cit.). Fig. \because illustrates the kind of leafage characteristic of this school, which flourished at least from 25 bic. until the decline of the Empire in the second century. In sculpture of human subject, the extraordinary draped figures in the

Sculpture, Fig. 8: French Gothic Cornice ; 13th Century.
friezes in the Lateran Museum are the best examples. In many of the best qualities of sculpture this school is unsurpassed. One mollification of the sculpture of the imperial school is that which is found so abundant among the stone-huilt buiklings of syria. There is a Greeks and also an Oriental influence to be found in this, shown especially in Fig. 3, but there is also a strongly Roman intuence shown
by some of the capitals figured under Syria, Architecture of.

The architecture of the far East has always depended very largely upon sculptured form, which often invades what the European world

Sculpture, Fig. !: French Gothic: Cornice; 13th Century.
has thought the architectural province proper; and supporting members such as pillars, as well as those less essential to the building's lite, are found carved into extremely spirited and often, to our eyes, grotesque forms of conventionalized humanity and of imagined beast and bird. The rock-cut buildings of India, and the stone-built Buddhist and Jana structures of the same peninsula, are distinguished by very extraordiary abundance of sculpture, an abundance Which, to the unaccustomed eye, seems disagree-

Sculpture, Fig. 10: French Gothic: Bergendian School; Crockets up a Capital.
able as affording no relief - no reserved spaces to separate part from part of the highly wrought representative design. This feeling never fails to disappear to a great extent as custom diminishes the strangeness of the dispositions. It is caused, so far as India is concerned, largely

SCULPTURE

by the absence of any necessity of sheltering scolpture from the weather. In a much less degree the same shock of strangeness is prociuced when masonry buidings not highly decorated are foumt in the West Inties, standing safely

Sculptere, Fig. 11: French (iuthic; Burgu'Ndian Suhuol: One (roeket of a Capital.
without copings and similur devices against the ruinous effect of moisture which will freeze after percolating the joints and pores of the structure. The Indian stonemason, free from any such anxiety, and working in a gentle climate amid the most generous and ample forms of plant and animal, has teveloped a school of sculpture from which the Westem word ean learn a great deal whenever it seeks new paths.

Of China we know little; that country must have possessed an architecture as abundant, as

Sculpture, Fig. 1\%: French Gothic: Cathedral of Chartrem: Base is North Porih.
its few remaning or traditionally kown monuments are important and curions (see China, Architecture of). In Japan, on the other hand, the ancient art has been wonderfully preserved, and this has for us the curious lesson that

SCULPTURE

sculpture, in what we consider perishable matertials, is prartically everlasting if it is cared for. The temples and palaces of Japan are built of wood, and the senlpture is of patmels carved in relief or often piered, the carving showing on both sides relieved partly against that hackground and partly aganst empty space. The climate is not mblike that of the Eastern United States, varying between the climatic conditions of Buston and Charleston. The earved panels are therefore set where rainwater

Sculpture, F゙ıf: 14: Cayopy of the Bishop's 'ThRove: ANCIEvt ('AfVed OAK Stalls; Cathedral of Palermo.
will not reach them easily, and they are, furthermore, protected by different appliances whith the extraordinary skill and patient care of the Japanese workmen have tanght them to nse ; but the seulptures are from one thousand to some six homdred years ohl, and apparently as well preserved in all essential particulars as could be wished. Indeed, the more elaborately protected pieces have suffered the most, as we now see them, because of the gratual peeling off of the carefully laid coats of gesso or its equivalent. Where laequer of the true sort has been used this min has, perhaps, not taken place: lut highy finished pieces of lacquer-

SCULPTURE

work are generally kept for interiors. More recent times in dapan have developed a system of carved and pierced panelling for the decoration of lmikings other than temples. 'lhere is also a certain tendency toward the use of the admirable pottery of Japan, buth glazed and mglazed, in the prohtuction of triezes and partels of this sort, and sjecimens of these exist even in our musemms, their effectiveness grathy diminished by the indoor light and by the disappearance of their proper surroundings.

In binope a long epoch, from the hegimning (11) the thint to the close of the tenth century - eight handred years - is, indeal, not mumarked by the production of important works of decorative art, but this decoration sehtom
landscape painting in its later development was in the nineteenth, is shown first in Italy; and such scolptures as shown in Fig. 4, in them mingling of clumsy and moreal modelling with well-developed cffect, are partly expressive of a vast and widespread tendency. At a time hardly later, the German stonecutters were producing capitals like those shown in Figs. 5 and 6, and the same spirit shows itself throughout the world of Western Europe, the churches, porches, and rloisters of which were otten very completely wrought into carrings of expressional value. In all of this there is no classical feeling at all. The treatment of the homan figure at this time was not more essentially nonclassical than the treatment of amimal and leaf

Scelpteref Fig. 15: Late Itaifan fothic: close of the 14th Century; Viterbu, Italy form (see Fig. 7), but it is more easy to reeugnize ; and the tendency toward portraiture, toward record of the mature of portraiture, though not inchading precise likemesses, and the abundant supply of legemary detail in the form of bas-relief, taking its most perfect Ilevelumment in the middle of the thirtecnth century, was carried on without panse or check and With constantly dereloping skill, if with less artistic variety, for two hundred and fifty years.

The leaf sculpture of the Gothic
takes the form of seupture in any true sense, and still more seldom takes the form of architectural seupture following any natural development. A few buildings have seulptures eren of considerable size, in which a certain Roman Imperial influence, or even an influence from the Byzantine empire (at the height of its artistic power during the years previous to the iconolastic fury at the berimning of the eighth century) survives, as in the charch at Cividale (see Italy, Architecture of. Part IV.). As European society refines and strengthens itself, and what are called the Dark Ages lifcome less dark, sculpture is the last of the arts to show any advance. When, however, it does begin to have life, this is not the old life - the sculpture is not classical at all. The feeling which was as modern a thing in the eleventh century as
epoch is famous because nothing like it was ever before achieved ly man, and becanse it offends no one to see the forms of regetation treated in a conventional manner (see Figs. 8 to 13) ; lut the use of animal form, and even of the human form, is equally seen and demonstrably as excellent for its purpose as the nse of leaves and flowers. In every case, the sculptors of the day were the greatest masters of artistic abstraction that wo know. Not that the individual merit of this or that piece of work can exceed that of Egyptian or even of some Assyrian pieces, but that the anoment produced was so incredilly great, and that this vast amount of delieate art was proulucel at a time when Europe was thinly popmlated, ill goremed, and poor beyond anything that we can now imagine.

The use of Gothic sculpture by the Italians

SCULPTURE, FIG. 17: PISCINA AND NICHE: EARLY 1GTh CENTURY: CHURCH OF LA FERTE BERNARD Fio 1. Front elevation. Fig. \because, Getion thrmuph wall and side elevation of piscina and canngu. Fig. 3. Plan above piseina. Fig. 4. Plan helow ficina showing consoles of base. Figs. 5, 6, A. suall details. Fig. S. Plan above large niche slowing the open tabernacles set diagonally.

Sclepture, Figi. 16 : Fiexich Remaissance: Earliest Period: Tumb of Philipfe de Comines; abutt 1510.

SCULPTURE

was never so thoroughly combined with architectural design as in the North, but in itself, this sculpture, as it remains to us, is of surprising beauty. The presence of many and rich s'ul]oturel details is that which makes attractive and even irresistilly charming many a building whose constructional merit is slight, and whose value as a piece of proportion, of composition, from whatever puint of riew it is considered, is but slight. Figure 15 gives a single iustance of the way in which figure sculpture is combined with leafage and both with the architecture of an claborate fifteenth century portal, and the presence of the painting in the tympanum of the flowrway exemplifies further the combination of these representative arts with the constructional art of building in the truly characteristic Italian way.

The sculpture of the Renaissance in Italy assumed at once entirely new form. The rlelicate scrollwork which inrests the faces of pilasters, the belt courses, and the encrusted panels, is the ctuly of Roman painted originals; and it is evilent that the Renaisance bilders, when they legan to builel somewhat in the Roman taste, had realy at hand a school of sculpture which himl taken form previonsly (see Fenaissance). The art of the sculptor took its new form before the "revival of art" hat its say in architecture. It was long ivdeed before any serions attempt was made to reproduce Foman forms with any completeness, and at no time was the -ecret of Poman decorative sculpture learned or even gnessed, as far as their works can show it, ber the neoclassic architects. In the Jorth the Renaissance, beginning nearly a century later than in ltaly, retains traces of the mediæval feeling of the builders in sculpture as well as in plan and the arrangement of interiors. Figure 16 shows a piece of work which is certainly not Gothic, and yet which would never have existed in its actual form but for the influence of the Gothic sculpture. This tendency is shown curionsly in Fig. 17, where the delicate architectural carring of a niche and its rery complex series of canopies is so combined with actual representative sculpture that no one can say where the architectural limit is orerpassed. Here the forms are entirely neoclassic and the details of the sculpture are so equally. hut the dash and abundant freedom of the whole is far enough from anything which classical inflnence wrould have inspired in the Northern mini. It is not until the century is well roundel, since the begiming of the classical revival in Italy, that anything in the North becomes classical in its disposition. Figure 18 gives one of the earliest instances of such classical feeling. for in this, though the action of the figures, especially of the S. Martin in the niche, is partly medieval, the disposition of the architectural parts and even the grouping of the

SCULYTURE, FIG. 18: FLEMHSH, 1533; RETABLE IN CHURCH OF NOTRE DANE, HAL, BELGIUM.

SCULPTURE

figures in the ronlels show kouthern feeling at least -a strung influence from laty which is, at one remove only, a (irmo-limmanthence.

Tha temdency away from traly decorative proeesses, which is characteristio of European perples sine 1780 or thereabout, shows itselft in ard hiteroture at a semmerhat carlind day. Jiven the lniklings of the eatier gears of the righteenth contury slonw a tembancy to very slight amb thin arditertural soupture promerly so calloml : leconative enough in the somewhat fantastic way of the Romeon style, hut limited to few parts, to low relief, ant to thin and bare alesigns. This was heljed ont by the nse of almost tree standing statues mowlelled with extrambinary skill for their places on the front on interims of haidings, but these figures have nu minor soulpture lealing np to them, they are set upnin the buildings as if with the builders of Greek temples the eighteenth century artists had derided that a buidling had no use for salpture except to hohl it up in a favonrable point of view. Since the retmon of properity and tranquillity after the Napolemic wars there has been min real progress in the way of arehitectmal soulpture. The really surprising work of the Fremeh sonlptors has been almost wholly confine tol the putting up of statues on jedestals, on brackets, or in miches. And when a building is mulertaken in a style such that surface decoration in serollwork and patterns can hatdy he onitted, the copying from ancient work of the same style is hardly disguised ant is never to be ignored. The English more than other nations have produced sculpture that had newly imagined forms combined closely with the bulling in its structure : but as there is but a comparatively feeble school of representative aud expressional seulpture in Englanl, this excellent work of their architectural sculptors has mot obtained that intluence over other mations that might well be desired. If the French would for a while build frankly in the style of their own Renaissance, accepting the necessity of corering large parts of their buildings with delicately wrought sculpture, great things might ensue ; but the ditticulty caused ly the very high jrice of trained manal labour in the twentieth century seems likely to make that impossible. Sumething, however, may result from the freer use of terra cotta.

- R. S.

[^5]
SEABROOKE

SCULPTURE GALLERY. A room especially provined for the exlibition of sculpture (see Gallery, ('). It is generally fomm that sompture is best seren by a well-ditfised light, as even that munelled muler the "studio light" of the artist's workrom is haneled as if with a view to being put ont of doors, - this being traditionally and properly so. Diftused light, however, is hard to get by means of a skylight, and even the light of a lantern of of clearstory, thongh partaking of the nature of window light, comen geucrally fom a point tow high above the piece and falls unom it in too strougly marked a heam to show sempiture to the best advantage. This anjlies especially to sondpture in the romal ; rdief sculpture may be taily well seen in a bicture gallery of the misual sort undess the relicf is very high.

The whd halls of the central musemm at Athens, plain, bave romms with windows on one side and ligh ul, afford the hest possible light for the piecesset near the wall opmosite the windows. Similar dispositions are nsed in the Naples musfum. In sume of the romens of the Mmich Gly ${ }^{\text {ituth }} \mathrm{k}$ (whif hase) the same thing is lone for louth siles and with fair snccess, but this building is su elainnately wrought ant with a view to its architectmal etcet that the most was not made of its capacity as a sculpture gallery. The ideal arrangement seems to he to himik a large ant high rom with windows high in the wall on the two "llosite sides, and to shelter the pieces harhed ag:inst each wall from such rays of light as might filter upon them directly from above - a thing which can be done by simple architectural devices. - F. S.

SCUNCHEON. Same as Sconcheon.
SCUTCHEON. Same as Escutcleon.

 14:0: YEU'HAMP CHAPEL, WARWICK.
SCUTCHING. A method of finely dressing stone with a hammer, the heinl of which is compused of a buntle of steel points. Also scotelning. (See Lress, the verb: Stone Cutting; Stone Iressing)

SEABROOKE. THOMAS ; abbot.
Elected Feb. 16, 1450, ahhot of the catludra!

SEALING

of Gloncester, England, he began the beautiful tower of that church which wats finished after his death ly Robert Tully. Seabrooke repaved the choir of his catherlral.

Britton, Cuthedral Antiquities.

Scutiheon of Sheet Irun with Wrought Iron Mrop Itandef C. 1480 ; Ryaksh Churi'h, KENT.

SEALING. A. Fixing, as a piece of wood or iron in a wall, with cement, plaster, or other building material, or with melted lead or sulphur ; firr staples, hinges, etc.
B. Closing the chinks, as of a log house, with plaster or clay.

SEAR. Name as Saw Curf. (See Kerf.)
SEASONING TIMBER. The poress of hrying or hardening timber by removing its natural sap by exposure to the sun and air, or by placing it in a kiln. Kiln-dried wood is the only wood fit for interior finish.

SEAT. 1. A place of aborle, a residence. Rarely nsed in modern times except in combination (see the sub-titles) ; though such phrases as "seat of the Marquis of Blank" are common in England.
B. Any structure atlorting a place for a person to sit. Especially, in architectural nsage, sueh a structure when much larger than a chair or stool, so as to accommodate two or more persons; and commonly fixed.
C. A bed, surface, or piece of material arranged to support any nember of a structure ; as the hearing of a beam, the foot of a column, or the like.

Country Seat. In Great Britain, a rural resilence of some inportance. The use of the term generally implies a complete establishment with othices, stables, kemels, and an enclosed park in addition to the family honse proper. In the [Tnited States the term is more loosely usel of any country bouse or villa of some pretensions. (See Châtean; Villa.)

Hunting Seat. (Sec muder H.)
SEATING. A. Seats, in sense of Seat, B, taken collectively : esperially, a quantity of seats more or less carefully arranged, as for an audience. (See Seating C'ipacity.)

SECTION

B. Same as Seat, C; especially the flat bed of that part of a sill which is cut with a loges as to leave a horizontal space at cach enel to receive the jambs stone or brick jamb.
C. The process of securing a proper seat or learing ; as for the foot of an iron rolumn hy planing oft the beating surface so that aroy point may do its enfual share of work in snstaining the smerimembent load. An iron plate on shoe aranged to provide against lateral movement, and to enlarge the bearing area, is gencratly interposed hetween the foot of the columu and the foumdation piece on which it rests.

SEATING CAPACITY. The fitness of a building or a rown to acommodate an audiance properly placed on hendes or chairs, or in boxes, stallis, or the like, perhaps also in ditferent divisions, according to the rlasses of the audience. In ordinary calculations, to determine the seating capacity of a room, it is customary to consiler a width from clbow to elhow of each person's seat and the distance from lack to back of the chairs or benches; thas, $\because-$ feet 6 inches hy 3 feet is liberal, and a more common arrangement wonll allow $-\frac{\text { feet } 2}{2}$ inches of wilth with 2 teet 9 inches from back to back of seats. If, now, to this space of 6 square feet for each person be adhed the neressary lobbies and the like, it may lue safe to allow $7 \frac{1}{2}$ square feet for each person to be accommodated on the ftoor. This, at least, is the way such calculations are made.

When private boses are to be arranged in a theatre the question of seating capacity lisappears, as each box is treatel as a private room, with or without a loblyy, and with weight given to other considerations.

SEA WALL. A retaining wall set where the lam has to be protected against the waves of the sea.

SEBASTIANO DI GIACOMO; of Lu gano: architect.

In 1504 Sebastiano undertook the completion of the church of S. Giovami Grisostomo. In 1505 he contracted to huild the choir of the church of S. Antomio di Castello, inne in I507, in assuciation with Lenpardi (see Leoparti), presented a molel for the Sowola della Misericordia, all in Venice.

Panletti, Ringscimento. Vol. II.
SEBENICO, GIORGIO DA. (Sce Orsini, Giorgio.)

SECOS. Same as Sekos.
SECTION. A. The surface or portion obtainel by a cut made through a structure or any part of one, in such a manner as to reveal its structure and interior tletail when the part intervening between the cut and the eye of the observer is removed.
B. The delineation of a section as above defined. In general scale drawings, sections usually represent euts made through a structure

SEDILIA

on vertical planes, in contratistinetion to cuts made on horizontal phanes, which are Plans.

SEDILIA. A luw-hacked seat or bench, within the simetury, to the sulh of the altar, for the use of the ofticiating clergyman at the Eucharistic celchation ; wide enough nut only for the celebrant to be seated, hut also for the deacon and subleacon. The back is made low in orter to allow the restments to hang over,

Seimlia with Piscisa: r. 1?g6. Rutaben Church, Nurthamptunshike.
so that the clergymen will not injure them by sitting upon them. - C. C.

SEFFRID ; bishop).

Seffirid, second of that name, was hishop of Chiehester, England, from lle0 to loot. In 1186 the chureh was greatly injured hy fire. The repairs, which extented through eleven yeurs, were so consilerable that the church was rededicated in 1199.

Winkies, Cathedral Churches of Englund and Wales.

SEMPER

SEGGIO. In ltalian a clair; a seat in sense 1).

SEICENTO. Belonging to those years numbered from 1600 to 1699 ; that is, in gencral, of the seventeenth century, (Compare Cinque Cento; Quattro Cento ; Tre Cento.)

SEKOS. I. In Greek archatogy, the satuctuary; a place more or less forbidhen to the pullic. The term is sometmes usel for the whole enclosure of the naos, sometimes for a part of it, this lepending upon the opinion held he morern scholars as to the usage in the eatice of any temple or sacred enclosure.
13. liy extension, a santuary, shrine, holy phace, or reserved chamber, as in Egyptian temples or in early Christian churches. (Also

SELLYNGE, WHLLIAM: Mior.
Prior uf Cimterbury, England. Began the central tower of the cathedral of that city in 1472 .

Wharton, Anglia Suera. Vol. I., p. 14.).

SEMICOLUMN A column halt engaged in a wall. (See Engaged Column.)

SEMIDOME. A lialf dome or Conch, such ats oceurs uver a semicircular apse.

SEMINAR ROOM. A room for stuly; especially, in a college lihnary, a room jurided for the pursuit of a particular liue of iuvestigation by students, under the direction of a professur.

SEMPER, GOTTFRIED : architeet : l. Nov. 29, l803; d. May lō, 18.9.

He went to Paris to stury architecture, and was later associated with Gartuer in Munich and Gan in Cologne. In 1830 he risitet southern Italy, Sieily, and Greece, studying the use of colour in architecture, which he puhlished in Bemerkungem ïber bemulte A Irkitektur mal Mustik bei den Ilten (Altona, 1834). In 1834 he was appuinted profersor of arehitecture in the academy at Dresten. He built the Syagogue in Dresten (1838-1840), and the Hoftheater (1838-184l). Other buikings in Dresden by Semper are the Gothie finntain in the Post-platz ($1: 13-1844$), and the Villa Rosa (1839). In 1847 he hegan the new musemm at Dresden. Somper left Dresten during the political disturbances of $1848-1849$ and settled in London, where he supported himself as a designer for metal work and decoration, and wrote some of his smaller essays on art and architecture. In 1855 he was appointed director of the archi-

SENATE CHAMBER

tectural section of the l'ulytechmische Schule in Zuridh, Switzerlanl. In Zurinh he built the Polytechaicum (1858), the whservatory (1861), the city hospital, and other buihlings. lle bailt also the Rathhans in Winterthur. During this period he wrote his important work, Der Stil (ed ed. Mmich, 1878-1879, 2 vols., 8 vo). In 1871 Semper was made arrhitect of the new Musemms and the Hofburgtheater in Vienna. He made the plans for these buildinss, which were, however, executed by Baron fon llasenauer (see Hasenauer), who changed them consideraly. The exterior of the two museums is probably much as Semper designed them.

Sommer, Goftrial Semper in Zeitschrift fïr Bemeesen, Wol. B6, 1p. 30.i402 ; Die solune Sempers; Die 5 . \boldsymbol{K}. Hofmusem in Wien; Farrow, The Recent Ifevelopment of lienur; Harvey, simper's Theory of Eicolution in Atrchitecture.

SENATE CHAMBER. A hall for the accommodation of a legislative body; specifically, in the United States, a hall for the sittings of the higher brauch of a legislature. (See Legislatire, Honse of.)

SENATE HOUSE. A buitting in which a legistature holis its sessions. (See Senate Chamber; also, for the Roman Senate, Curia and following titles.)

SENAULT, GUILLAUME; architect.

City architect (mûtre al'unve) of the city of Ronen, France. March 12, 1500, he took part in the deliberations concerning the construction of the Pont Notre Dame in Paris. He appears for the first time in the records of the château of Gaillon, near Ronen, in 1502, and worked on that building until December, 1507. The part of the chattean callet the "Grant llaison" which he built is still in existence withont its decoration. In 1506 he was consulted concerning the construction of the Tour ble Beurre at the cathedral of Runen.

Deville, Comples de Gaillom; Revue des Architectes de lu Cuthédrale de Rouen.

SENS, WILLIAM OF. (See William of Sens.)

SEPARATOR. In iron framing, a small casting phaced between two beams which are comected by bolts passing throngh the casting to maintain them at a fixed distance apart.

- W. R. H.

SEPTA. (Latin, Septum; an enclosure or bounding wall.) A large enclosel and covered area or portiens, serving for a bazaar or exehange; especially, the Septa Julia near the Campus Martins, which was a magnificent

SEPULCHRAL ARCHITECTURE

bniding decorated with many statues and Wivited into seven aisles by rows of columms, with rostra for public orations, houths for shops, ete. Its remains lie muder the Pralazzo di Venezia, and thence northward for 1100 teet. (Also Sippta.)

SEPTIZONIUM. A buidding in Rome built by Septimius Severus, and known to form that part of the imperial pabace on the l'alatime Ilill which rose above the Forum at its northwestern extremity. The worl "septizoninm" indicates a buikding with seven bands, but there is no evidence that there were really seven orders of columns, one above another, as is often assumed. The earliest modern records of the

building are drawings by sixteenth century artists, and these show only three superimposed orders. The building was wholly destroyed in 1588-1589. - (Lanciami.)

SEPTUM. (See Septa.)

SEPULCHRAL. Having to do with a tomb or other burial place, or with a cenotaph.

SEPULCHRAL ARCHITECTURE. That whose purpose is to give magnificence or beanty to tombs upon which large sums are to be expenderl, and to give fitness and good taste to the smallest tombs, and, ly extension, to headstones or slabs. Some architectumal styles have been especially rich in splemild tombs, but acrording as these are independent structures standing in the open and visible from all sides, or as they are placed within large buildings such as churches, do they assume, in the one case, an eflect of ponderons solidity, of which much the most striking example is given by the pyramids of Egypt, and, in the other case, do they appear rather as decorative appendages most commonly attached to the inner face of the wall, and more

SEPULCHRE

rarely stambing free upon the parement. The largest and most sumptuous sepulehral momments are rarely spoken of as tombs. Thus, neither the pramids, nor the Taj Mahal, nor the wonderful lmitlings erected in memory of the Mohammedan rulers in northern India (see India, Arehitecture of, and Duskm Architecture), nor the Mansulemm at Halicarnassus are gencrally called tombs, and the memorial church built essentially for the purpose of covering a monument or several momments, such as the church of Brou at Bourg-en-Bresse in southeastern Frauce, could not properly be considered a tomb. All these buiklings, lowerer, come umber the heal of sepulchral architecture, and it will be noted ly a comparison of their designs with the other huildings of their times, that no pectuliar manner of building or of decorative treatment, nor even of soulpture and inlaid detail, has ever been appropriated to sepulchal as distinguished from ecelesiastical or civic architecture. In fict, sepulchral architecture on a large scale, and treated with great splendour, can only difter from other buildings of the same epoch in the comparative freedom of its plan and arrangement. As its chief object is splendour, and as it rarely needs to be appropriated to practical uses in any way, there is, on the one hand, a great freerlom allowed the clesigner, which, if he is very able, and is of an epoch of growth and of intelligence, may result in a building of great magniticence. On the other hand, there is no suggestion in the plan itself, the result of which may well be, especially in times not of the most prosperous ant rigonrous artistic life, that the lesigner will be deprived of that suggestion which the necessary plan and structure of the buiding atford, and will produce a meaningless work. It is from this reatson that moulern large tombs and other memorial buikdings are seldom of much artistie interest. - R. S.

SEPULCHRE. A. A tomb: a care or structure for purposes of interment.
B. A receptacle for relics, especially, in a Christian altar.
(\therefore Same as Easter Sepulchre, below.
Easter Sepulchre. A shallow arched recess or niche in the north side of the chancel, for the reception of the sacred elements between their consecration on Mamoly Thursday and the Easter High Mass.

Holy Sepulchre. The sepulehre in which the bouly of Christ lay between his burial ansl resurrection. Its supposen site is marked hy a church at Jerusalem.

SEPULCHRE LIGHT. A special lamp suspented in the Holy sepulehre, and in all churches built to recall that sacred place.

SERAGLIO. A. An enclosed or protected plave : hence, a Harem.
B. A palace: The Seraglio, nsed as a

SERLIO

proper name, the great palace at Constantinople.

Several different etymologies are giveu, and this term, as well as serai and Serail, is used indifferently in many senses. Sir Hichard Burton, deriving the word from the Portuguese cerrer, writes it Serraglio.

SERAI; SERAIL. Same as Seraglio in botb senses. In semse A it has been applied to a Cararanserai or Khan.

SERDAB. A small chamber comected with an ancient Egyptian tomb. (See Mastaba.)

SERLIO, SEBASTIANO: architect and writer on architecture: b. Sept. 6, 1475 (at Bologna, Italy) ; d. before 1555 (at Fontainebleat, France).

The date of Serlio's birth is established by the records of the church of Tommaso della Braina in Bologna. Abont I5l5 he went to Rome and was intimately associated with Baldassare Peruzzi (see Peruzzi). who, at his death in 1536, hequeathed to him his notes and drawings, which were afterward used by Serlio in the comprestion of his books. He seems to have gouse to Venice abont 153. . He measured the ancient momments of Verona, and was the first to ilraw the ruins at Pola in Istria. In $15+1$ he was established in France by Francis 1. as consulting architect at Fontainehleau. Veither in Italy nor in France is there any building of importance which can with certainty be ascribed to him.-(Miintz, lienaissance, Vol. III.,]. 298.)

Serlio commenced the publication of his works with the fourtl) book, entitled. Reqole generali di Arelitettma di seluntiano verlio Bolognese sobra le cinque momiere aleqli edifici... Venezia. 15.3i. The thirl book appearel next with the title, Il terzo libro di Selnastiono Brilumase mel quale si fitprano e si desrivono le intichite di Romu. . . Tenezia. 1540. The first book followed: Le memier livere d'smhtecture de N'úbastien Serlio Boloqnois, mis en lanque firançise pur Jélun
 was pullished with the first. Le semond lirre de Perspective de sébustien sedio Bolormois, mis en laurue firtuçase par . Jhum Martin. The fifth bowk was published next : (uinto librorli Architetture di sebustianes serlio nel qualo sitmuttu di dicerse forme di Tempj . . . (ो Puris. 1 Eyf. The sixth book was published at Lyons: Extraordinario libro di - Mrleitetture di sm, asticuu Sertio . . tienta porte di opern Rustive mista con diversi orlini . . . in Limue. 15j1. The serenth luok was bought hy Strada the Antiquary, and was published after Serlio's death : Il settimo libro d'. Arekitethra di Solmstiumo Serlio Bolomese, nel quale si tiatta di molti arcillenti, etc.. ... Francofurti ud Moenum, 15̃̃. An eighth book, on military architecture, was also hought

SERPENTINE

by Stralia with Serlio's collertion of drawings, but appears mot to have been pmblished. The first eomplete editions of his works was printed at Venice in 1584. (See Scamozzi, Giovanni Domenico.)

Charvet, Sélutstion Srmio ; Léon P’ilustre, Lat Rennisstmep fhe Freture; Müntz, Remtissumore; Amorini, Elogio, de Seloestieno sorloo: Iromis, Integmeri e Srallore militori bolonmesi ; Redtenbather, Arehilmhlur alere Italieniswen himmiswente; De Laborde, Comples des Batimmonts du lieng.

SERPENTINE. An alterd rock ronsisting essentially of a hydrons silicate of magnesia. Used to some extent for builling purposes amb the finer grales as marbles. (See Verdantipue Marhle, uuder Marble.) - G. P. M.

SERVANDONI, JEAN NICOLAS ; architect and painter ; b. May 22,1695 (at Florence) ; d. Jan. 19, 1766 (at Paris).

Servandoni stmlied painting under Penini amd architecture unler (ilovami Rossi, and later was estahlished in P'aris as director of decorations at the opera. In 1732 he won the first prize in the competition for the construction of the façate of the chureh of S . Sulpice in Paris. (Sue MacLaurin and Chalgrin.) At S. Sulpire also he built the organ loft and decorated the chapel of the Virgin. In 1742 he built the great altar of the cithedral of Sens (Yonne, France), and in 1745 that of the cathedral of Reims, and about the same time that of the charth of the Chartremx at Lyons. In 1752 he touk prot in the competition for the creation of the Place Louis XV., now Place de la Concorde, in Paris (see Gabriel, J. A.). In 1755 Servandoni was made eourt architeet of King Augnstus at Dresden, Saxony. He built the great staircase of the new palace at Madrid, Spain, and was employed at Brussels. Servanloni was especiably successful in organizing fëtes, processions, and the like.

Chennevières, Serventomi in Revup des Arts tipcorntifs; Mariette, Aheredario; Lance, Dictomnetire.

SERVANTS' HALL A room where the servants of an establishment take their meals an I may meet socially.

SERVICE PIPE. The pipe by means of which wate:, gas, steam, or other fluid is carriel? from a streat main into a building. (See Wiater Supply.) - IV. P. G.

SERVICE ROOM. A room used for the service of the table, usually in immerliate connection with a dining room, as in a large honse. Callei also sildobat room. It should be casy of access from the dining room and from the kitchen, aml is commonly fitted up with closets or dressers for crockery, glass, table linen, ete., and with tibles for carving, and also for the adoming and arranging of dishes. In the United States, the room used in this way is generally wallel Butler's Pantry.

SERVING ROOM. Same as Service Fioom.

SEWER

SET (r. t.). Tuset in position, as stones in a wall.

SET (r. i.). To become hardened or permanently fixed, as phaster.

SET. The form assumed by any piece of material or simple structure when it has yielidel to pressure so as to have lost in phot its origimal form. Commonly used only in the sense of l'ermanent Sit (whieh see leduw).

Permanent Set. The permanent form assumed ly a piece of material whose elasticity has been overcone by long ontinued pressure or liy a simple structure, is a truss or huilt beam under the stme conditions.

SET-OFF. Same as Offiset.

SET SQUARE. A dranghtsman's tonl, nsed with a T sifuare, for drawing lines at right angles (Sce Triangle.)

SETT. Sime as Siet (in.)

SETTIGNANO, DESIDERIO DA. (Sce
Desiderio da Settignano.)
SETTING COAT. The seemed or third coat, i.e., generally the final roat, in painting.

SETTING OUT. The work of rorrertly locating a lonikling upou the site which it is to occupy, accorling to the actual shape and dimensions of its ground plan, or of laying out any part of the work on a lmilding.

SETTING-OUT ROD. (See Rol.)
SETTLE. A. A seat or bench; specifically, id wooden bench with high back and arms for two or more reople, placed near the ehimney or at the foot of a bed, and otten provided with a chest or cofier underneath.
B. A part of a plattorm lower than another part, as one of the successive stages of ascent to the great altar of the Jewish Temple.

SETTLEMENT. A grarlual sinking of any part of a huilding, whether by the yiedding of the fommtation, the rotting of timber, or other imperfection. (See Leaning Tower.)

SETTLING.' Same as Settlement.
SETT OFF. Same as Sct-ofl (see Offset).
SEVERY. One bay of a vaultel structure, that is, the space within two of the primejpal arches (see Trimsverse Arch, mmder Arch, annd Are Doubleau). The term is evidently derived from the Latin ciloniom, which torm, from its original meaning of a covered rucptacle, took first the signifieance of a romolel canopy (sce ('iberium), then of a covered vessel or chaset to hold! the Host (see ('iborio), and also of a domeshaped strncture of any kind, whence comes the present meaning of a compartment of vaulting, whether dome-shaped or not. (Written also (illory and eivery.)

SEWER A conduit of brickwork, or a vitrified coment or iron pipe chamel, intemen for the removal of the liquid or semiliguid wastes from labitations, inclurling in some cases the rain water falling upon ronfs, yards, areas, and courts. We may distinguish street

SEWERAGE

sewers and house sewers, the former being laid in the public streets, amb intended for all the houses and lots composing a eity block or blocks, the latter being the lateral branches for each building. The New York Building Department defines the honse sewer as "that part of the main sewer of a building extending from a point two feet outside of the outer face of the outer front wault or area wall to its connection with a public or private sewer or cesspool." (See House Drainage.) - W. P. G.

SEWERAGE. A system of sewers for villages, cities, and towns. Where sewers receive housebold wastes only, the system is called a "separate system," and where rainfall and sewage are removed in the same channels the system is callel the "combinel system." - W. P. G.

SEWER GAS. More properly Sewer Air. The contaminated air of sewers, house drains, soil, waste, and vent pipes. It is a meehanical, ever-varying mixture with common air of a number of gases tue to the decomposition of animal and regetable matter, such as carbonic dioxite, carbonic oxide, ammonia, carbonate and sulphide of ammonia, sulphuretted hydrogen, and marsh gas. Sewer air also contains organic rapours, and some mieroseopic germs or bacteria.
-W. P. G.
sexfoll. (See Foil.)
SGRAFFITO. The scratehing or seoring of a surface, as of fresh plaster, with a point to produce decorative effects. Sometimes, in plaster work or pottery, the scoring is done so as to reveal a surface of different colour beneath. The process is sometimes carried far, even to the decoration of large wall surfaces. (See Grattito.)

SHACK. A rude hut erected for canping. Also appliel to more substantial though still rude structures of logs, boarls, or even stone, frequently roofed with earth. - F. S. D.

SHADE. Same as Blini (n.), B.
SHADES AND SHADOWS. That branch of deseriptive geometry which has to do with the laying out and representation, on a drawing of any olject, of the shadows and the resulting shates formed by or on the object ; the position of the source of light being assumed at pleasare.

When an opaque object is exposed to the sunlight, a portion of its surface is illuminated, and is said to be in light. The portion turned away from the light is dark, and is said to be in shale. The line upon the surface which separates the light side from the dark side is called the line of shade.

The dark space beyond, from which the light is cut off, is called the object's shadow in space, or invisible shadow. The invisible shadow of a solid or of a plane figure is taken as a prism or cylinder; of a right line, a plane; and of a cursed line, a cylindrical surface. The invisible shadow of a point is a right line, a line of

SHADES AND SHADOWS

shadow which has the same direction as the rays of light.

If a second solid object intercepts this sladow in space, a portion of its surface is darkened. This is called the east shadow or visible shadow. The cast shadow of a solid object, or of a surface cast upon a surface, is a surface; of a line, a line; of a point, a point. If the surface that receives the shadow is a plane, then the cast shadow, if a right line, is a right line, being the line of intersection of two planes. No surface which is in shade or in shadow ean receive a east shalow.
The shadow east by one object upon the surface of another is its projection upon that surface, the rays of light being the projectors (see Projection). When the source of light is at a finite distance, the shalow is a radial projection, or perspective (see Perspective). When it is at an infinite distance, the shadow is a parallel projection. Shadows cast by the sun are, practically, parallel projections ; all others are ratial projections.

It is obvious that the line of shade upon the surface of an object determines the shape of its shatow in space, which is bounded by the inrisible shatlow of the line of shade; and also the shape of the cast shadow, which is bounded by the visihle shadow of the line of shade. To find the east shadow of a body it is sutticient, therefore, first to find its line of shade, and then to find the shadow of this line.

The rays of light are commonly assumed to be paratlel, as if coming from the sun, and their direction to be such that they make the same angles with the planes of projections that the diagonal of a eube makes with its sides $\left(35^{\circ} 15^{\prime} 50^{\prime \prime}\right)$. The projections of such rays upon the planes of projection are at 45° with the ground line. The advantage of this is that where one portion of an object projeets in front of another portion, the width of the shallow shows exactly the amount of projection, thus giving information as to the thirl dimension.

The shadow of a point upon either plane of projection is found by drawing the projections of its line of invisible shadow and finding the point where it pierces that plane. The shadow of a liue is found by determining the shadow of a sufficient number of points in it. For the shadow of a right line east upon a plane surface, it is sutficient to find the shadows of its terminal points. The shadow will be the right line that connects them.

The shadow of a surface is bounded by the shadow of the line that eneloses it, and that of a solid by the shadow of its shade-line. When the solid is bounded by planes, the shade line is made up of right lines, and its shadow is casily formd. When the solid is bounded by curved surfaces, a special device is used to find the line of shade and its shadow. Auxiliary planes are
passed through the objert, parallel to the direetion of the light and perpendicular to the horizontal plane of projection. Lach of these planes cuts the horizontal plane in a line at 45°, and cuts the vertical plane in a vertical line. The? section of the object itselt is an oval, or other closed figure, set edgewise to the light. The shatow in space of this section is a plane figure lying wholly in the anxiliary plate, and lommbed by the İnes of invisible shadow cast by the extreme points of the section, those, mamely; at Which the rays are tangent to the sertion. These are two points in the repuired shate-line upon the surface of the object.

The projections of these two tangent rays, in the vertical plane of projection, are limes at 15°, tangent to the projection of the section. 'ihe cast shandow of the section lies wholly in the vertical line in which the anxiliary plane cuts the vertical plame of projection, and ocrmpies so much of this line as is includen between these two rays. The joints in which they pieree this jhame are two points in the cast shatow of the sharle-line.

The shadow east upon the horizontal plane of projections may be found in the same way, and the auxiliary planes taken parallel to the rays of light may, if more convenient, he taken mumal to the vertical plane imstead of to the horizontal one.

When the sharlow cast by an ohject falls, not upon one of the planes of projection, but upon another object, each anxiliary plane is made to cut them hoth. As both sections lie in the same vertieal plane, and stand elkewise to the light, the sladow of the first will fall exaetly mpon the edge of the second, and the shathow east by the two extreme points in the slateline of the first object will give the extreme points of the shadow cast by it unon the seeond. All four points can be determined in the vertical plane of projection, by drawing tangent rays at 45° from the projection of the first section to that of the second. If the object is of such shape that one part of it thows a shadow upon another part, the two parts are treated as sejarate objects.

When a right line and a cylindrical surfiuc are botli parallel to one plane of projection, and one is normal and the other is parallel to the other plane, the projection, upon the first pane, of the shadow cast by the line npon the cylindrieal surface is a true section of that surface.

When a right line is normal to either plane of projection, the projection of its sharlow m that plane is a right line at 45°, irresuective of the form of the surface upon which it falls.

In the case of curves, moullings, rings, ete., it is consenient to use amsiliary phans perpendicular to the one plane, and at 45° to the other, anl either by the use of a supplementary plane of projection, or by the process of revo-

SHAFT

lution (see Projection) to time the true sections made by each of these planes. 'The tangent rays which determine these plames of shate and shadow are drawn upon these sections at an angle of $35^{\circ} 15^{\prime} 50^{\prime \prime}$.

In architecture the objects are for the most part mate wy of parallelopipeds, eylinders, cones, and spheres, and their shalows are mostly cast upun plane surfares, parallel to the plames of projection. The shapes of their shatluws present, acrordingly, lut little variety, and ean casily be lamed hy heart, so that they an be drawn finm memory. - F , D. Shbrman.

SHAFT. 1. An upright olject, ligh and eombaratively small in loorizontal dimensions. The term is applied to a lmilding, as when a tower is said to be a main shaft; to an areliitectural member, as when a high building is satil to present a more elaborate bisement and a less adorned shat ahove: or to a single stone, an obelisk, menhir, cathstone, or the like. Even a elassical column like "l'omprey's l'illar," made up) of capital, shaft, and base, is called in popular writing "a tall shaft." In modern nsage, often, a straight eneloserl space, as a well extending through the height of a building, or through several stories, for the passage of an elevator, to give light to interior romms, or the like. Commonly, in combination, as elevator shaft; light shaft.
I). Specifically, the principal part of a column; that which makes 11p from two thiris to nime tenths of its height, amb which is comparatively simple and uniform in treatment trom end to end. The shaft of an Egyptian colunn was often diminished in size at the bottom, like the under side of a cup, and set without a base; then tapering to the neek. In Myceniean art the slaft was uften smallest at bottom, increasing

Shaft of Double Fusifuna Shape, Carven with LeafArie: Cluister at Relem, Portugal.

SHAFT

in size upward by an even taper；and this form，thongh often spoken of as whimsical and sure to be ahandmed，has its prototype in the trunks of certain paln trees，which，when used

Midwall Shaft：Winduw in Chureh of Gerstode，Germany
as verauda posts and the like，are of very happy eftect．The shafts of Doric columns of the sixth century b．c．are about six times as high as they are in greatest diameter；and these have an entasis showing a very visible curve． （For the shafts of the develuped Grecian and Greco－Roman columns，see those terms， and referenres under them．）In the earlier Milde Ages，classical columns were so often taken for the new buitd－ ings，that their forms were inevitably copiel？in new work；but the result of Romanesque work，in making common the semi－eslindrical buttress piers within and without brought in a change，and free colums also were made cytinutrieal，with－ out taper or swell．This custom pre－ vailed without change throughont the epoch of Gothic architecture：and was only replacen，not monlified．by the rein－ troduction of classical forms in the fif－ teenth and sisteenth centuries．－R．S．
（For the proportions of nearlassic archi－ tecture determines by the diameter of the shaft，see Intereolumniation ；also Colnm－ nar Architecture and references．）

Angle Shaft．（See muler A．）
Elevator Shaft．（See Shaft above，defini－ tion，A．）

Jamb Shaft．One of several slender col－ umns，serving for the adormment of a deep jainb，

SHARPE

as of a Gothic or Romanesque portal．Less often a single column，set at the augle between the jamls amt the face of the wall．

Midwall Shaft．（See Midwall Column，un－ der C＇oltmm．）

SHAFTED IMPOST．Iu mediseval archi－ tecture，all arrangement of shafts，wrought in the mass of a pier or janb，so that correspond－ ing grompings of archivolt mouldings may start from their caps at the impost line．

SHAFTING．In medieval arelitecture， the system of gromping shafts in a chstered pier，or in the janb of an aperture．

SHAFT RING．In medieval architecture， a monded bank encircling a shaft ：common in early English work．（See Ammulated．）

SHAKE（I．）．A rongli split shingle about 3 feet long，usually of ash．Uset on the roofs of log cahins，especially in New York．－F．S．D．

SHAKE（II．）．A（rack due to natural causes，orcurring in the interior of a tree or \log ． The term is commonly but erroneously used also as synonymons witly check．

Cup Shake．One occurring between two annual rings．

Heart Shake：Star Shake．One radiating from the centre of the trunk．

SHALE．A fine－grained，thinly bedcled arenaceons rock．－G．P．M．

SHAMBLES．A slaughter bouse；ly extension，the stalls on or in which butchers expose meat fur sale．

SHANK（I．）．One of the plain spaces between the channels of a triglyph in a Doric frieze．C＇alled femor by Viturins．

SHANK（II．）．The shaft of a column； obsolete．－（C．D．）

Midwall Shaft：Abeey of Mïnstermafeld，Rhenish Pressia．

SHANTY．A hut：a small temporary building of a rough character．

SHARPE．EDMUND，M．A．F．R．I．B．A．； architect；b．Oct．3l，ISOY；1．May ミ，İ゙ー．

SHAW

Receivel the degree of 13, A. at S. John's College, Camhrilge, in 1833, and M. A. in 1836. In 1832 he was elected travelling Bachelor of Arts for the University, and spent three years in the stuly of architecture in France and (iermany. He became a pupil of John Rickman (see Rickman), and in 18:36 establishell himself at Lameaster, England. He was a profound student of medieval architecture, and published many important works on that subject: Architectural I'anellels (1848, 1 vol. folio with supplement) : Decoruted IIZ dors (1 vol. 8vo, 1849) ; The Secen Periorls of English Architecture (1 vol. 4to, 1851), and numerous articles in arehitectural periodicals.

Stephen-Lee, Dictionary of Yational Biography.

SHAW, HENRY, F. S. A.; architectural draftsman ; b. July 4, 1800 ; d. June 12, 1873.

Employed by Jolun Britton (see Britton) to illustrate his Cathedral Antiquities of Great Britain, making especially the plates for Wells and Gloncester. He published Dresses and Decorations of the Middle Ages (1843, 2 rols.) ; Decorative Aits of the Middle Agpes (1851, 4 to) ; Detuils of Elizabethen Architecture (1839, +to) : Encycloperdia of Ornoment (1842, folio) ; Specimens of Aucient Furnitwe (1836, 4to).

Redgrave, Dictionary of Artists; Avery Architecturat Library, Catalogue.
shealing. Sume as Sheiling.
SHEARING FORCE; SHEARING
Load. Same as Shearing Weight.
SHEARING STRENGTH. (See Strength of M:1teri:ils.)
shearing weight. That kind of breaking weight or furce which acts by shearing ; i.e. by pushing one portion of a member or material past the adjoining part, as by a pair of shears. (See Strength of Materials.)

SHEATHING. In carpentry, a corering or lining to conceal a rough surface or to cover a timber frame. In general, any material, surh as tin, copper, slate, tiles, etc., prepared for application to a structure, as covering.

SHEATHING BOARD. A board prepared for sheathing purposes, often with tongue and groove fir jointing.

SHEATHING PAPER. A coarse paper specially prepared in varions grades and laid with a lap under clapboarls, shingles, slates, etc., to exclude weather, or between the upper and under flooring, for deafening. When made with asbestos or with magneso-calcite it is used for fireproofing.

SHINTO

SHED. A roofed structure, usually open on one or more sides, for storage and for shelter of workmen and material ; especially one with a lean-to roof.

SHED LINE. The summit line of high ground, as being that at whieh the watershed begins; hence the rilge of a roof.
shed roof. Same as Penthouse, Def. A.
sheeting; sheet piling. (See Excavation ; lille.)
sheiling. A hut for temporary shelter. Especially, a rongh shelter for shepherds and sheep in Scotland. (Also Shealing.)

SHELF. Any ledge, wide or narrow, made of a board or other thin material, set edgewise and horizontally, for supporting small objects; as in closets for house linen, china, glass, etc. In general, a flat ledge, whercter or however occurring.

SHIM ; -ING. A piece of wood or thin iron used sometimes to raise a part to the proper level, sometimes to fill up a bad joint.

SHINGLE. Originally, a thin parallelogram of wood (in the United States generally 6 inches by 18 to 24 inches), split and shaved, and more recently sawn, thicker at one end than the other; usel for covering sides or roofs of houses, about 4 or 5 inches of its length being exposed. Shingles are now sometimes made of metal in the form of tiles.

Shingle-roofed. Roofed with shingles.

Shinto; shintoo. The moral corle or system of Japau. Slhinto shrines are plain wooden structures, withont images, thatched, and approached by passing muler one or more torii, or perches emmposed of two posts bearing one or more cross beams, generally carvel. The latter are accepted as symbols of Shinto.

1
Sheathing. Diagonal and Vertical, as with Rough Bualids on a Frame of Studs and Ties; the scheme shows is German.

SHIPPEN

SHIPPEN ; SHIPPON. In local British usage, a stable for cattle.

SHOE. A piece of stone, timber, or, more commonly, of irm, shaped to receive the lower end of any member ; cither to protect the end, as in the case of a pile which is to be driven into harl gromul, or to secure the member at its junction with another. In this case, commonly adapted to prevent the penetration or rupture of one member by the wther, as in the case of a plate under the end of a pust or under the nut uf a tie roul.

SHOOT (n.). A. The thrust of an areh.
b. Same as Chute.

SHOOT (r.). In carpentry, to dress an edge; especially to trim two arljoining edges with great care, so as to make a cluse joint. (Comprare List, v.)

SHOOTING BOARD. A. A slab of woon or metal used by carpenters, and provisled with a device for holding an object while it is being shaped for use.
B. An inclined boarl fitted to slide material from one level to another.

SHOOTING BOX. A building intended as a dwelling for persons engaged in the pursuit of deer, wild birds, or the like. The term includes the necessary outbuildings. (See Hunting Bux.)

SHOOTING GALLERY. A long room with a target at one end, arranged for practice with firearms.

SHOP. A. A place where goods are offered for sale; in this sense, employed in Great Britain for large and elegant as well as small estahlishments; rare in the United States, but perhaps increasing in frequency in the Eastern cities. In the British colonies the tendency seems to be, as in the United States, toward the use of the word Store. The term Shop Front is in common use in America for the glass door, show windows, etc., of what is otherwise called a store. This has become an important part of street architecture in modern cities, althongh it cannot be thonght to have been treated successfully except in a very few cases. The interior and exterior of modern shops are often costly aml treated with a good deal of architectural pretelision, but the conditions are against the introluction of anything of permanent value into the constructive architecture or the adied decoration.
B. A place in which work is done ; usually distingnished from a factory by the smaller number of worknen empluyed or the less extensive use of machinery. Thus, a carpenter shop is smposed to be a place where much work is done by band or by the aid of the simplest machines. In this sense, often used in combination, as machine shop, workshop, repair shop, and the like.
C. By extension of the usage B, the work-

SHORING

men employed in a shop, including foreman and master; as when a certain establishment is spoken of, or a principal is said to have establisherl an excellent shop.

SHOP FRONT. That portion of the front of a building which is especially arranged to afford extensive show wintows for a shop or store; characteristically, it is a screen of wiodows, glazed with large sheets of plate glass, the door being in a recessed vestibule, and the structural supports being reduced to a minimum, so as to give the greatest possible space for ilisplay of goods.

SHORE. A piece of timber to support a Witll, usually set in a diagonal or oblique position, to hold the wall in place while the under part of it is taken out for repairs, or for the cutting of larger window openings, or the like. (See Shoring.) - R. S.

SHORE UP. To hold or support by means of Shores. (See Shoring.)

SHORING. The process of supporting a building or part of one upon Shores.

Fig. 1.
Under this head will be included the proress of raising buildings, and the process of moving buildings from place to place.

The ordinary method by which buildings are shored is shown in Fig. I, which is a cross section of a wall held by needles throngh the medium of jack screws resting upon temporary wooden blocking. In supporting a snaall weight, - as in the case of removing a single pier between two windows, - one or two upright timbers may take the place of the crib work shown. Many other methods of shoring parts of buillings are used, such as by pumps, or large square timbers having jack screws inserted in the lower end, which bear on temporary foundations of timber, their upper ends being inserted either under the walls, or in notches cut in them. It is also eustomary to hold isolated piers or iron columns by cramping them with timbers and belts, depenting upon friction and utilizing any convenient indentation, or bars passing through holes that have been ilrilled.

A part of a building raised to position with 496

SHORING

the serews removel is shown in Fig. 2. If the wall is only to be underpimet, the new substructure is built up between the nealles, which are about four feet apart, according to eireum-

Fig. :
stances: then wedged with iron or slate and left for the mortar to harden until the neerlles can be remored. The holes thus left are then filled in with masonry.

If the building is to be removed, long intermediate needles are introlucer, ruming from wall to wall so as to hold the hililing together These are supported on very howy string timbers, shorl with hardwood saddles on the under side. Rollers of beach or maple are inserted, resting on the temporary platform or wooden cribbing, and then the screws and short needles are removed. If there is room enough to get them in, the long needles are inserted first, and the raising is done by screws under them until the proper beight is reached for inserting the stringers and rollers. These expedients have to be varied constantly according to circumstances, and it is necessary always to bring the whole weight upon the long stringers, so that when the power is applied to them they will earry the building along without straining. Allowances are always mate for settlement in the foudation platform over which the building is to be moved, so that it is always going slightly up hill. The apparatus generally usen! for moving is a capstan or windlass operated by one or two horses, and sometimes two capstans are userl. The chain, which is given a good hitch around the windlass, is a long one, rumuing through many pulleys attached to the stringers, and other pulleys fastened to iron bars which are driven in the gromal. This equalizes the strain on all parts of the building and furnishes the multiplication of power that is necessary.

Shoring is oftener required for making repairs or altecations to buiklings than as a preliminary step to moving them. The alterations may involre a considerable raising of the whole superstructure. The trussed roof of a heer storage bouse in Milwankee was raised 30 feet,

SHORING

the masons following the honse raisers until the desired height was reached. Some extrandinary alterations have been made in buidings that have heen shored up. The entire original Chamber of Commerce Building at Chicago was held on temporary foumbations and steel needles until the steel and concrete fommation of the present fourteen-story building were put in. In the Chicago Opera Hunse hock, which is a comparatively new twelve-story building, but was built with coursed fumulations of concrete and stone under the interior columns, a tier of iron culums was held up and new fomulations of concrete aml strel built under them, so as to insert bascment columms and provicle a clear open cellar, withont disturbing the business of the first story.

For the shoring and raising of wooden buildings, wouden screws were first used about 1840 ; the method in which these were employed is shown in Fig. 3. The post shown pertormed the ottice of the modern pump, and was placed under any part of the huilding requiring temporary support. This primitive apparatus was supplanted by the use of wronght-iron screws about the year 1850. It was soon found that, by reason of the softness of the metal and the knocking ahout and mugh handling to which they were suljectel when not in nse, the threads became injurel and woudd not work in the nuts or sleeves, and they were abandoned. Next, cast-iron screws eame into use, and as they were rough and the joining of the mould had to be obliterated to make them work, their threads were cut by machinery. But this was too expensive, and some one invented a way of casting seamless screws which were so smooth and perfect that they could be used just as they

came from the sand. These serews are still the standard for all orlinary work. An illustration is given in Fig. 4. They are $2 \frac{3}{4}$ inches in diameter and 2 feet long; the pitch is $\frac{3}{4}$ inch,

SHORING

and they lave a raising distance of 14 inches without shifting. Their lifting power is five tons to one man with a 4 -foot lever, which is an ordinary iron bar with one eul slightly bent to regulate the distance that it enters the head. It is only in exceptional cases that steel serews with cut threads are used for lifting ; but long steel serews ${ }_{-2}^{3}$ inches in diameter have been used witl pumps during the last ten years for pushing horizontally, in cases where buildings have to be tumed on a pivot, or pushed into places where a windlass cannot be used.

Hydraulic jacks are used only in connection with serews at extra heary points. The most expert house raisers will not use them unless they ean catch the weight on screws in case of accident to the jacks. They were employed many years ago at San Francisco for raising entire buildings. In 1862 the Franklin House at Chicago was raised with hytraulic power. One pump was used for all the jacks, which were set in the walls. This method has gone entirely out of use.

The moving of frame houses throngh the streets has heen a matter of rery common oc-

Fig. 4.
eurrence, especially in the large cities of the western part of the United States which have grown so rapilly during the last forty years. Where property increased so rapidly in value and there was always a lemand for cheap buildings in outlying districts, it was rery economical to move the light balloon frame buillings occupving central lots which demanded improvements. The construrtion of elevated viaducts for railroads has been the canse for moving great numbers of buildings of a heavier character.

The new foundations of the Chamber of Commerce Building, at Chicago, were put in in the winter of 1890 and 1891 , ant this is the first time that steel beams were used for neerles. They were 27 feet long between bearing points and the following sizes were used: 15 -inch, 50 1bs. per foot, regular pattern: S-inch, 60 lls. per foot, special pattern; [2-inch, 60 lbs . per foot, special pattern ; and 15 -inch. 80 lhs , per foot, special pattern. Iron beams had been used for this purpose as long ago as 1875, the contractors preferring Belgian beams rolled to extra thickness so as to providle against the possibility of their breaking lown in the web.

One of the most important uses of shoring is in preventing the settlement of old buildings

SHORING

caused by the erection of new ones on adjoining lots where the soil is compressible. When this is done a new foundation is built for both buildings, atter shoring up the old one in the usual way : Fig. 5. The weight of the old building is then transferred to the new fouudation by placing a row of short pumps and serews on it, directly under the wall and as the new building settles the screws are turned upward from time

to time until all the settlement has ceased. Then the pumps are gradually removed and the wall underpinned: Fig. 6.
lt is believed that brick huildings were first moved in 1850 at Buston, Massachusetts, iu the widening of Tremont, Washington, and Hanover streets. This work was done by James Brown. He afterward tonk into partnership fanes Hollingsworth. Together they first devised the methorl now in use for turning

SHORING

builtings on pivots. Buildings are not supportel entirely on pivots for this process, hout the pirot is used for keeping them in jusition, the main weight heing on the rollers. The power used is mainly appliell by long steel serews, set at varions points ablout the bnilding. Brown and Hollingsworth movel to Chirago in 1857, and the first brick builhing raised in Chicago was the Thayer building in Randolpls Street, between State and Dearbom, in that year. The second was at the eomer of Madism and Market Streets, raised in the spring of 1858. The third brick buitling raised and underpinmed in Chicago was the Commercial College lonikling, State and Rambluh Streets, in the spring of 1859, and was done muler the direction of the writer of this article. The Tremont 1house, the largest hotel in that city, was raised 9 feet in 1861 ; and this was the largest undertaking of the kind up to that time. This feat was deseribed and published all over the eivilized world. After that nearly all of the lorick and stone buildings then stanling in the business section of Chieago were raised to the new grade of the eity, which was established to admit of effective sewerage.

Many buildings have been muved over water. Frame buildings at Chicago are moved on floats across the rivers that intersect the city and to considerable distances on the same. At Eureka, Callifornia, also, many buiklings have been moved across the water. Many of the state buildings at the Worlu's Cohmbian Exposition were moved away entire, and the Delaware state building was moved aeruss Lake Michigan on floats.

The following are anong the most remarkable instances of house moving :-

In the winter of 1887-1888, the Brighton Beach Hotel at Coney Lisland, near New York, which was gradually being underminenl ly the sea, was movel back from the beach 595 feet. This builhing was of wood heavily framed, three and four stories high, having five large tonvers six and seven stories high, and weighed 5000 tons. It was 460 feet loug and 210 feet deep, aml was broadsile to the sea. It was first raised by screws and then lowered npon 113 Hat cars standing on 24 parallet railroal tracks which were huilt between the blocking. To each of these "als was given a nearly equal weight of 44 toms. The $2 t$ trains of cars were conpled together rigilly. The transfer of the weight to the cars was mate by hydranlic jarks. The huilding was moved by an arrangement of falls amd sheave hocks, there leing 34 of the latter and 12 sisfolld purchases, the main blowk of each purehase being attached to the cars, while the opposite block was fistened hy chain slings to the track on which the car rested abont 100

SHORING

feet distant from the building; the power employed was from six locomotives standing on two tracks in trains of three each. Six ropes were attachel to each train. The building was muved 117 feet on the first lay, and on other days at about the same rate. The whole was plamed and execnted ly Benjanin C. Mliller, of Browlilyn, New York.

In October, November, anl December, 1895, the Emmantel Baptist Church on Michigan Boulerard, Chieago, was movel 50 feet sumth. It was built of stone, covering 93 by 161 fiet, the greatest height of the roof leiug albout 100 feet. The stone tower with slated woolen sjure was 24 by 24 feet and 225 feet high, weighing 1430 tons, the whole weight heing 6652 tons. It was first raised by 17530 -ton steel screws

Fig. 6.
under the tower and 11005 -ton cast-iron serews muler the rest. The berl on which it was moved was formed of $60-\mathrm{lb}$. steel rails on a heary grillage of timber. The rails were bunched in threes, fours, ant fives. Sixteen hundred steel rollers were used, and this was the first use mate of them for the purpose, as hard wool rollers would have been irushed. They were 2.5 inches long and $\stackrel{2}{2}$ inches in diaueter, being tempered to corresponal with the rails. The weight of the buiding was carried on 15 -inch I beams, in bunches of two and three respectively, but the rollers were not in contact with the under sitle of these beams. They were separated from them by linings of Bessemer steel $\frac{1}{2}$ inch thick by 12 inches wide and 2 feet long. These linings were forgel with a bevel of 2 inehess at pach end so as to permit the feeding of the rollers, and were enslioned to the I beams with heavy carwheel paper. The illustration (Fig. 7), which shows two sections of the work under the tower, will serve to show these dispositions, as well as the method of aplying the motive power. The steel rail rumers hal

SHORING

a rise of l to 360 to allow for settlement. Extra heary timbers were finstenced parallel to the north wall of the church to serve as a resting hase to muving forse. Heary iron chains at 10 feed intervals held these to the ground sills, transferring the moving fore to the compressed groumd under the building. Sixty long steed s"rews, in punps, with capacity of 5 tons each, were hisel to aplly the moving force, with one man tu eady serew. They were placed between the ahutting timbers and the upper timbers of the superstructure. The 50 feet of movement wats covered in 6 days with 60 men. After mowing, all the parts of the church wbich were out of plumb betore anything hall been done were straightened and the whole left better than ever before. The contract was taken by H. Sheeler, and the eakulations and superrision were by Charles H. Rector.

In 1893 the Normandy apartment building, a three-story briek and stome structure at 116 to 122 Latlin Street, Chicago, which happened to

SHORING

of each with one hundred tous of sand to balance them. They were successfully put tugether on the new foundation, anchoren, amd finished oft as a new building which has never shown any effects of the operation. The necessity for meserving the proper level of the phatform and providing igainst its gradual settlement in this ease will be readily appreciated, hut the whole operation was condueted without failnre or aceident. This is the first time that a brick buidding has leen cut in two and united again. This work was done by L. P. Friestedt under the direction of the writer.

There are two remarkable facts connected with the art of house shoring and moring. One is that it is purely an empirical art. Those who have practised it most and brought it to its present condition are not what are considered scientific men, or men of mathematical or theoretical training. The most of mathematies that is employed is in estimating the weight to be lifted and the necessary area of the temporary

Fig. 7.
be on the right of way of the Metropolitan Elerated R. R. Co., was moved backward, turned 90 degrees, and made to face on Tan Buren Street, whieh is at right angles to the street on which it had stood. The building was 94 by St feet and estimated to weigh 8000 tons. The work was successfully done by L. P. Friestedt.

One of the most remarkable instances of honse moring was in the ease of the tbree-story apartment buililing at Chicago, moved from 147 and 149 Centre Street, to 171 and 173 Sheffield Arenue. It was on the right of way of the Northwestern Elevated R. R. Co. There was no possible direction in whieh the building could he mored as a whole on aceount of obstructions, for it was 49 by 72 feet in size, so the building, which was a comparatively new one, was eut into two sertically through its greatest axis, and movel in two seetions, one following the other, on the same platform; the aggregate distance travelled was nearly s00 feet and three corners had to be tumed by each seetion. The sections had brick walls only on one side, and it was necessary to load the floors
foumdations required. Everything else is the result of repeated experiment. Another faet is that there are no records of any thsasters that bave followed attempts to more or raise heary structures. One reason for this is that the system follorred is such that, if any piece of material used fails, there is always another to take the strain, and it is one that necessarily requires the constant shifting of loads from one point to ancther in order to carry on the work. When it is understood that a large part of the work of house shorers is to make sate buildings which give eriulence of insufficient supports or foundations, it will be realizel that the house raiser is constantly ohliged to face dangers eaused by the mistakes of others, and caution is almost an instinct with him.

Very little work of this kind has been done in European countries, though the greatest interest in what has been done in the United States has been excited abroad, and the most reliable aceounts of them ean be found in foreign journals. Notwithstanding mauy instanees in which American contractors have been eonsulted in other countries, where their services might

SHOT

have prevented much destruction of property, there is no record of any of them having been thus employed. ${ }^{1}$ The reason is that such matters are first referrel to engineers, who cannot mulerstand, withont mathematical ulductions, how the American operations have hen carried on, aml consequently cannot be convincel that they are safe.

Furthermore there are no puldished treatises on this subject to which reference can be made. (For work done in Europe in the waly of sil?)porting buildings while they are in course of alteration or repair, see footnote and Underpiming. See also Shore ; Needle.)

> -Peter B. Wight.
shot. Having its edges straight and true, said of a loard or plank.

Riley, Building Construction.

SHOT TOWER. A high builling for the manufacture of shot, which are formed by dropping molten lead from an upper story or platform into a cistern of water at the bottom. The mass of leal sublivides into drops during the descent, and the size of the shot is fremuently regulated by perforated screens or sieves, having openings of various sizes, through which the lead is pouren.

SHOT WINDOW. In Scotland, an unglazed window, generatly circular.

SHOULDER. The projection or lreak made on a piece of shaped wood, metal, or stone, where its width or thickness is suddenly changed, as at a teuon or rebate, the break being usually at right angles.

SHOULDERING. The raising of the upper edge of a slate with mortar so that at the lower elge it maty make a rluser joint with the slate which it overlaps.

SHOULDER PIECE. A piece of material secured to another part or parts so is to form a shomiler.

SHOW ROOM. A room especially allapted to the cffective display of whects on sile.

SHOW WINDOW. A Shop Window, arrangel for the display of goods to persons in the street.

SHREAD HEAD. Same as Jerkin Heal.

1 Since this was written infurmation las heen received that in carrying out the extensive municipal improvements lately instituted in Bualapesth, Ilungary, there has been secured the assistance of L. P. Friestedt, of Chicago, who performed the remarkable feat of moving a large lorick building, in two sections, aml remiting the same. The clanges in street lines inctuded the ground occupied by several important buildings, some of them monuments of medireval art. These have been successfully saved by moving them, while others at this writing are being moved and reconstructed. The authorities would not allow the work to be done until very heary surety bonds were given. -P . B. W.

SHUTTING SHOE

SHREADING ; SHREDDING. Light furring strips of wool secured to the umber side of rafters to give nailing to sheathing or laths.

SHRINE. In aschitecture, a receptacle for sacreel relies, most often the boily of a saint. The shrine is then a toml) in a Choir, Chapel, or Crypt, such as that of S . Edward "the Confessor" in Westminster Abbey. Portable shrines are male fur smaller relics, often of very rich material and inlendilly adomed.

SHRINKAGE. The contraction of materials by cooling, as metal, or by drying, as timber. In the latter case, shrinking is at right angles with the direction of the grain. (See Seasoning Timber; Wood Construction.)

SHRIVING PEW ; SHRIVING SEAT.
(See Confessional.)
shroude. Sime as Crowde.
ShUte. Same as Chute.
SHUTTER. A movable screen, cover, or similar contrivance to cluse an opening, especially a window. In the United States the term is commonly made to inclule all varieties of hinged and swinging Blinds, as well as any solid or nearly solid structure to close all opening tightly at the outsiide. These latter would not be spoken of as blinds.

Box Shutter. Au inside folling shutter, so contrived that when not in use it can be folden hack into a recess proviled for it in the deep window jamb. Usually the upper and lower sections are separate, for imlependent opening and clusing.

Louver Shutter. One fitted with lonver boards, i.e. with slats set diagonally amb immovable, ats distinguishod from aulustable slats. (See Folling Blini, B, under Blind ; Rolling Slat, muder Slat.)

Rolling Shutter. A shutter made of thin, sleuler strips secured ellge to elge by hinge-like juints, so that the whole combination results in a flexible structure which can be rolleif and mo rolled, usually at the top of the opening. These may be of wool, but are most often of iron or stecl, and usel to protect openings from fire, burglars, etc. Rolling shutters, an invention of the secoml half of the ninetentla century, are wholly distinct from shutters with rolling slats.

Venetian Shutter. One with slats; pither with rolling slats held together ly a strip which canses them all to more or to "roll" simult:meonsly, or a Lonver Shutter.

SHUTTER BAR. A har for locking a pair of window shutters on the inside, generally pivoted on one leaf and dropping into a socket on the other.
shutter lift. A small shutter bar with a hanlle for convenience in openiug or closing and locking shutters.

Shutting shoe. A device of iron or stone with a shonder, sunk in the middle of a

SIAM

gatcway, as in a carriage drive, against which the gate is shat and secured.

SIAM, ARCHITECTURE OF. (See Farther Imlia, Arvhiterture ut.)

SICARD VON SICARDSBURG, AUGUST : arehiteet ; b. Dee. f, l's13 ; d. June 11, 186s. A pupil of Edward Van der Null (see Null), and was assuefated with him in all his principal undertakings, especially the Hofoperahuns: in Vienna.

All!
SICILY, ARCHITECTURE OF. Although Sicilian monuments are very distinctive, they hare a great deal in common with those of the nearer provinces of the mainland. Of the prehistoric proples the rematins are mainly not architectural. Phouicians and sieuli left polygonal aml uther primitive constructions at Cetalu, Mt. Erys, and Motye, or Mutya. The series of pure Hellenic monuments begins earlier here than in other parts of the Hellenie world, and eomprises the largest groups of Greek temples. The Doric order is used consistently, no example of Ionic being known previous to the Fioman periol. Through sicilian temples and those of the southern mainlan 1 at Tarentum, Pestum, Netapontum, and Croton, a consecutive idea of the development of the Duric style is obtained, from its begimnings e. 600 b.c. to its close in the second century b.c. This region is the real home of Doric. The existing monuments in Greece proper are less numerous and conseentive. After the proto-Doric of the early Megaron of Demeter, near Selinus (e. 600), the earliest examples of the eolossal monumental style are two temples at Sycacuse - the Olympieiou and the Appolonion - with their contemporary at Tarentum. They are of the perinteral hexastrle type that ever after ruled in Sicily and on the mainland, with but few exceptions. Selims furuishes in temple C of the Guilebook an almost contemporary example ($1.600-575$), the ollest of a series of nine temples on this site, Whieh, although haully preservel, are historieally of the greatest value. The next in date at Selimus is temple D ; theu temple F : both prohablve earlier than 550. With them should be elassed the finely preserred temple at Piestum called the "Basilica," and the fragment of the okl temple at Pompeii. A trifle later are the temple of "Ceres" at Piestum and the two temples at Jetapontum. These latter presage the alloption of new forms: but the transition from the archaie into the developed or eanonical Doric is hest exemplifiel by the colossal temple G at Selinus (ef. temple of Hercules, Akragas), and the efually eolossal and umsual temple of Zeus, or Olympieion, at Akragas (Girgenti), Works of the cluse of the sixth and beginning of the fifth centuries. Up to this time no real staulard prevailed for propurtions and forms, but a growing tenleucy toward uniformity aud
harmony shows itself in these transitional building*. Then commenced the style aptly termed "canonical," because henceforth eertain eanons were to obtain. The earliest examples are three of the temples at Selinus, A, O, and \mathbf{E}, the temple near Hinera, three temples at Akragas (Athena, Hera, and Ceres), and the later prarts - especially the west front - of the temple G at Selinus. (C'f. Temple of Gela.) These are all anteriur to c. 450 . Then comes, in the latter half of the fiftlo century, the last important group - the temples of Segesta, of Concord at Akragas, that upon whieh the eathedral of Syracuse is built, and that of Poseidon at Piestum - all posterior to the Partluenon. After this there are straggling monuments, such as the propylun to the Megaron at Selinus, three temples at Akragas (Dioseuri, Vulcan, and Asklepios), and even later, a few that conform to the Hellemistie style of the third aud second centuries, such as the little prostyle temple B at Selinus, the prostyle at Taormina, the CorinthianDoric temple at Pastum, and the Ionie-Doric oratory of Phalaris at Akragas.

For unity's sake temples of the mainland are emmerated and characterized with the Sicilian. Certain general facts emerge from the series. The earliest temples had a single farade to their cellas, the "canomical" had two by the addition of the opisthorlomos. The earliest allowed the irregularity of a wider metope at the corners; "canonical" eounteracted it by narrowing the corner intercolumniation. The disposition to regularity in the later style is shown, for instance, in placing the columns of the peristyle on the axis of the cella walls, and the tendency to lightness is shown in the inereasing height of the columns in relation to their diameter and the change in the shape of the eapitals. Certain loeal distinctions must also be reeognized. All the temples of Selinus had an arlyton, or holy of holies, behind the main rella, perhaps of early Greco-Oriental origin. It was also used in some very early temples elsewhere (e.\%. "Basiliea" at Piestum), but sown abandoned, except at Selimus, which appears to have been conservative. As mentionell above, the rule was to have 6 columns on the ends, and 13 or 14 on the sides. but the earliest temples were more oblong, haring sometimes 15-17 columms (e.g. Apollo and the Olympieion, Syracuse: Hercules, Akragas; C and E, Selinus). In the whole group three temples alone have more than 6 eolumns on the ends, the "Basilica" at Piestum (9-18), temple G at Seliums $(8-17)$, and the temple of the Olympian Zeus at Akragas ($\overline{1}-14$). These temples also are the most eolussal known in the Dorie order, anul have other revolutionary peenliarities. Already in temple C, and the Degaron at Selimus, the mysterions nature of the wurship was acrentuated by the closing of the pronaos, aml afterwaril at temple F, Selinus,

La Cuba, at Palermo; a building of the Norman kings of Sicily, their forms appeal to the semiontiental population of sicily. There and retans taces of decoration closely eopied from that of the Muslems. A smmar bund
remes is La Zisa; the two are of $1 \mathrm{I}(\mathrm{j}, \mathrm{j}-118 \%$. dating from the twelfth century. The pointed arches are not evi-
dence of the hulding heing fothic in its structure. They are like the similardetails of Cairene mosiues of the same and earlien epochs :
this was male more prominent by the unique experlient of closing up the intercolumniations by a high screen of stone slabs, thus "reating a elosed deambulatory. But the climax was reachen in the temple of Zells at Akragas. Here the peristyle is changel into a pesmloperistyle by a solid wall with engaged half columus, between which stants the famons colossal Atlantes, while the interior thus formed is divided into three aisles by two rows of square piers, which stand where the cella walls usnally were. This interior, so different from the regular small cella, is the closest approach to a colossal saered hall that Greek antiguity has given us. Two other temples have cellas of a size larger than the customary, also divided into nave and aisles, namely, temple © at Selinus, which has the clumsiness of a first attempt at such an innovation, with aisles of the same width, an adyton inside the cella, and a rieh pronaos with independent columns; and the temple of Poseilon, at Piestum, where the theme is treated far more harmoniously. Before this three-aisled scheme hat been developed the division of the cella into two aisles by a single line of supports had been attemptel at the "Basilica" at Peestum, and at Metapontum, hout never appears to have reached Sicily, and was soon abandomed. Of all Sicilian temples the best preservel are those of Juno and Concord at Akragas, and the unfinishe! temple at Segesta, which rival in condition those of Poseidon, Ceres, and the basilica at Perstum. At Syracuse the temple at the eathedral is in fair comlition. Nearly all the rest are extremely ruinous. The yuarries for the stone with which all these temples were built are in several eases known. That near Selinus still has lying in it some shafts cat out of the mass for temple G, and the methens usel are clearly exemplifiel.

The other (Greek remains in Sicily, though not without importance, may be dismissed hriefly. They are mainly of two classes: (I) fortifications; (2) theatres. Of military architecture two works of primary importance remain, both of the fifth century, at Syracuse and at Selinus. Fort Euryelus at Syracuse defended the west end of the city, where the north and south walls converged, and eomprised four massive towers detemling a great court, with outlets for eavalry and infantry ; connected with it was the great circnit wall of Epipole At Selimus the north end of the city was strongly fortified, especially just after the disaster of 409. It was here that were recently discoverel some interesting ronnd arches of e .407 в.c. The immense bastion in the form of a demilune that formed the arant corps of the defensive system, with its round towers, and that has been mistakenly duhbel a theatre, is the most remarkable feature. Cf. walls at Himera, Tyndaris, Eryx.

Sicily was the firourite home of Greek plays; the lowe for them was almost a mania, and fommb expression in superb theaters. The largest was that of Syracuse, with a diameter of about 500 feet, and some 60 tiers of seats with 9 cumei and one broad and one narrow preceinetio. It was built by Demokopos uneler Hiero I. ($478-467$), and restored by Hiero 11. (276-215). In far better preservation is that of Taormina (Tamromenion), with a diameter of 357 feet. Its stage, one of the finest knowh, was entirely remodelled by the Fomans, as the stages of nearly all Greek theatres were, in orter to suit the new customs of presenting dramas. The retaining walls also are a Fioman reeonstruction. Even less that is Greek remains in the theatres of Catania (diameter, Sls feet, 9 cunei, 2 preeinctiones) ; Tyndaris (diameter, $2 I 2$ feet, 9 cunci, 27 tiers) ; Segesta (liameter, 205 feet, 7 cunei, 1 procinctio), and the smallest of all at Acre.

The Romans did rery little but plunder Sicily, and left there hardly any momments of interest. They occasionally erected an odeom next to the theatre, as at Acre and Catania; an anphitheatre (Termini, Catania, Syracuse) ; an aqueduct (Catania, Termini, Aderno); baths (Acireale, Catimia, Thormina) ; or evell an entire town (Soluntum). But their constructions are now in far poorer preservation than the Greek, and present no special features.

Of the early Christian churches for which Sicily was famons nothing remains; the Mohammedan invaders destroyed then all. The only pre-Norman chureh is the little Byzantine structure at Malvagna. The superb works of Arabic architecture, glowingly described by writers, have also perished. The secom great group of Sicilian monuments commences with the Norman conquest. Its characteristics are lerived from varions sourees. The pointed areh miversally used, one form of the dome, the high plain outer walls, some forms of the mosaie and marble decoration, are Hohammedan, presumably Cairene-Sicilian. The figured mosaics, heary apsidal grouping, domical arrangement, narthex, are Byzantine. The plan of nave and aisles with cohmms, carved decorattions and mouldings, oceasional use of por hes ant towers, are mostly Nornan-Lombarl. The school is unique in architectural history for its combination of elements from so many diverse styles. There appears not to be a single normal Romanesque structure in Sicily of either the ranlterl or roofel types. Beside the C'istercian church of S. Spirito at Palermo, c. 1170, a mere importation, the nearest approach to pure Romanesque is the first large church built by the Sormans after the conguest, the cathedral at Troina (1078), showing the hand of Lombard architects from the mainland trained in the simplest style of Benedictine architecture

- square piers, square apses, wooden roof. At about the same time S. Gioranni dei Lebbrosi (Palermo) was built on a pure Byzantine scleme, lat without decoration. The use here of the pointed arch iudicates its prevalence in previous Sumanic moumments. In several earliest Notman works round and pointed arches were used together, but in the twelfth century the round arch wasabandoned. Iu the cathedral of Catania $(1075-1094)$ and other of the earliest churches Lumbard forms still prevail (cf. cathedral at S. Agostino, Ilessinal). The Byzantine plan, with central dome ou four columns, is used at the same time, as at La Ninuziatella dei Catalani at Ilessiua, but even here the details of arcarles and decoration are mustly Northern. During this same period (1071-1110) a great mass of ciril and uilitary constructions arose, less important for art than for engineering, as at Mazzara, Adermo, Paterno, and Aleamo, the latter with Arabic elements. A new period began with Roger II., who frankly subordinated Northern to Arabic and Byzantine influences. Now begins the series of really important monuments. The earliest were the palaces, in which the Moslem trpe of palace of the Mohammerlan emirs ras followed. Palermo was encircled by them : parts of a few remain in Palermo itself, at Altarello di Baida (called Minenio), and at Farara. Pows of long, slemler, pointed windows form the principal exterior decoration. Each has a beantiful chapel and a court. Saracenic raulting and Cufic decoratise inseriptions are used. In the churches built soon after these palaces, there is still a mixture of strles. The most considerable is the cathedral of Cefalu, which represents the bighest point of achierement (1131-1148). It shows that in this part of the island the Norman and Lombard element still predominated, eren thongh the pointed arch and Arab false arcade were used. In the façarle the two heary towers remind of Normands: the three-arched porch between them is borrowed especially from Bencdictine churches of the milille South (e.r. Catherlral Piperno. S. Clemente in Casauria, S. Angelo in Formis) ; the plan is a Latin cross, with almost no projection of the transept, a scheme that became popular in Sicily. The arches of the nave are lowpointed, supported on sixteen colnmas. The adjoining cloisters are beautiful, aml give the type soon followed everywhere in Sicily (S. Carcere at Catania, Eremitani at Palermo, MLonreale). The mosaics of this church are the most beautiful in Sicily, and evidently executed by Greek artists.

In and around Palerno the Oriental element was stronger. Here the gem of art was the chapel of the palace (Cappella Palatina): stilted pointell arches with capitals part antique, part Lombard, part Saracenic ; an elaborately decorated and painted stalactite ceiling by Moslem
artists; a series of figured wall mosaics by Greek Byzantine artists; decoratire mosaics and marble slabs in dadoes and furnishings, such as throne and amhone, perhaps by Cairene artists ; a central dome and tunnel raults over the transepts. Such are the heterogeneous elements in this typical strncture. The interesting church of S . Giovanni degli Eremiti, supposed to be contemporary (1132-1148), has a nave formed of two square hays, each corered by it horseshoe dome on pendentives, crossed by a transept with three smaller domes. Here the style is so thoronghly C'aireue, devoid even of Byzantine decoration, that it seems as if it might be a remorlelled mosque. The cloister, however, is of the regular Norman type (cf. Cefalù). A thoroughly Byzantine church, on the other hand, is S. Maria dell' Ammiraglio, called La Martorana (1128-1143), also at Palermo, with the usual dome on four columms, with both tumel and cross vanlts over aisles, and a typical atrinm. Though most of the Sicilian churches of this perioul have one or more towers at the façade or transept, they are mainly of Moorish or Byzantine types, and that of the Martorana is the first to show rich Norman decorative details. There is here also progress in the dome, and in general a tendency to harmonize the varions elements of Sicilian architecture. S. Cataldo combines Byzantine and Apulian styles (1161). The civil architecture of this generation was interesting : some fine bridges with pointed arches (e.g. Ponte dell' Ammiraglio), large baths (Termini, Cefalù), palaces, and castles. Perhaps the climax in palace architecture was reached under William I. (1151-1166), who built the famous "La Ziza." Its façade was 90×63 feet, π ith a main pointed portal $30 \times$ 15 feet, Hanked by two smaller portals. Abose were two stories of blind pointed arcades in narrow windows, both single and domble, which are opened. The interior has a symmetrical gromping of balls on two main floors all raulted with domes, tunnel raults, and especially domical cross raults, with abundant use of the Moorish stalactite niche ornament. This is the best-preserver trpe of the AraboSorman palace, of which "La Cuba" is a later and smaller example, under William II. (11661189), who also faroured Mohammedan art. The state of church architecture under the latter is hest shown hy the cathedral of Monreale ($1173-1182$), which, while it lacks in the treatment of details the perfection of the earlier Cappella Palatina and the cathedral of Cefalin, is richer in its architecture and shows a final harmonious welling of styles. This is probably due to the existence toward the close of the twelfth century of a national school of Sicilian artists educated by Mohammedan, Greek, and Italian masters. The plan com-

SICILY, ARCLIITECTURE OF. PLATE II

Monreale; nave of the cathedral, seen from the northwest. The choir inchndes the crossing of the transept, which is very short, and the central apse,
which is but of slight projection. There are eiglt free columns on each side of the nave besite the two responds.

SICILY

bines the wooden-roofer, thin-walled basilica in the nave and aisles, with the Greek church in the heary tramsept and choir. The columms are antirute ; capitals antique or classic initations ; arcades pointed everywhere Noman zigzag combined with Cainene battlement design and Byzantine-Moorish geometric designs in stone inlay and relief. The fixhion of imlaying the smatler columns with mosaics was now introdncel, as shown in the cloister at Nomrale - most interesting, perhaps, of Italian cloisters - and the tomls of the kings (e.g. crypt eathedral, l'alermo). Had it remanes] unruined by the barbarmas Fuga (1781-1801), the cathedral of Palemo wonld have exhibited the same style as Alomreale, with later parts showing transition to Crothic. The Normano-Byzantino-Arab style thus constituted rearted upon the mainland in Campania and other sonthern provines. Even after the German dynisty under Henry VI. succeeded the Niorman, the style contimed maffectel, though for a while (1189-1 215) phitical disorders hindered art production. The Badiazza at Messina shows the continuel strength of the Byzimatine fome and plan, with Norman profiles and ornament. But parts also, of c. $1225-1235$, especially the side portals, show the transition to Northern Gothic. To hetp the change in style came the Cistercians, Dominioans, and Franciscans, thongh these orders were less prominent here than in any part of Italy. The era of great religions structures is past ; only small churches are built henceforth under the German and Spanish princes. Under these dynasties, architecture lost some of its insular characteristics, gradually eliminating most Byzantine and Saracenic elements during the first half of the thirteenth century (e.g. stilted arches and dumes), and retaining the Norman elements. The proto-Renaissance style of Frelerick II. found lemporary lodgment, especially in civil and military architecture (e.!. Sytacuse, Catania, Rocea Orsino).

The Gothic forms did not eject the Norman until the fourteenth century, and then fomnd their finest expression in civil arehitecture thronghout the islinul. Sicily has a super, mass of little-known louses, palaces, fortresses, castles of the Diddle Ages, illustrating every phase from the early Norman to decadent Gothic. Entire towns, such as Randazzo, are mediseval. Middle Gothic palace architecture is best represented hy two rival palaces in Palermo, - Chiaramonte (1307-1380) and Selafani (1330), - with fine areaded courts and lines of three and four light windows. The eathedral of Tanmina shows the Gothic supremaey to be complete at c. 1330: compare the contemporary palaces of S . Stefano and Corraja at Taormina and the later parts of the catherral, Messina. Throughout the

SIDING

fifteenth century Gothic continned to reign, with searcely a trace of earlier local styles, hont with strong elements Ioth of Fremch (Ilonse of Anjon) and Goman and even English Gothic. Its details were more elegant and clean-cut than in most of the mainlami schools. A. the style was late in arriving, so it was very late in departing. The two rival palaces in 1'alermo - Aiutamicristo (1.185) and Abatelli (1495) - we fine instances of late Gothic. The richly senlptured rums of S . Maria at Dilitello (1501) show smme trates of Remaissance forms. But thonghout the island Gothic was used miversally as late as c. 1525 , and sporatically much later. In the latest Gothic churehes the hall type was msod, either in three aisles of equal leight (S. Maria della Catena, Patormo) or in a single nave.

Not becoming jromatar in Sieily until after 1550, neoclassic architerture produced very little before the baroceo period. Palermo wats its centre, with some examples at Catamia and Hessina. The "Porta Fclice" at Palermo shows baroceo in 1582. At Palermo, S. Eulalia Hei Catalani has a goond factule : S. Giorgio dei Genovesi (1591) has a remarkable interior, with each arch suphorted by four columns. With the development of a particularly florid baroceo thronghont the seventeenth century a number of interesting buillings were erected. At l'alermo, S. Salvatore (1628), by Amato, has an wal interior with three nicles, and its rich marble decoration is paralleled at S . Giuseppe dei Teatini. The aim at the colossal is best exemplified by S. Domenico (16t0) at Palermo, and by the benedictine monastery of S. Nicola at Catania (1693), supposed to be next to the most colossal monastery in Emope.

A. L. Frothinahim, Jr.

SICULO-ARABIAN. Haring the charaeteristics of the Buslem conquerors of Sicily, who subdued the island during the ninth century, and oceupied it without much interruption for a hundred years. The term is inaceurate in so far as anything Arabian in a national sense is assumed to exist in the artistic work of Sicily (see Arabian Arehitecture). Sicmo-Moslem would be a more accurate term, but has not as yet found curreney.

SIDEBOARD. A serving table in a dining room, often permanently fixed, movided with lockers and drawers beneath, and with shelves above, sometimes partly closed, the whole being treated as a conspicuous decorative feature.

SIDE TIMBER; SIDE WAVER. (See Purlin.)

SIDING. The covering, or material for covering, the exterior walls of a frame buikding, and forming the final finished surface, as distinguished from the sheathing, on which, when used, the siding is nailed.

Novelty Siding. In the United States,

SIGNORELLI

wooden sidling of which the boards have rabhets, or grooves, at the lower edges to lap over forresponding tongues along the upper edges, thus permitting all the boarls to be nailed flat agatinst the frame. (Compare Clapboard.)

SIGNORELLI, LUCA; bainter; b. about 1441; (l. 1523.

A great mural painter.
V'asari. Blasilifeld-llopkins ed.; Müntz, Renaissente; and in the general bibliography, Bryan, Crowe and Cavalcaselle. Nagler, s'cribner's Cyclopullu, Seubert, Vasari.

SIKRA. A permliar form of tower in northern India. (See India, Architecture ol, col. 473.)

SILE. Same as Syle.
SHLL. The luwest member of a frame, usually a horizontal, uniting two or more verti-

Sill for A Window Opening: of Stone cut With a Wanh, with Lugs under the Jamb Stunes and Saddele Junts.
cals, and, in a large structure, often forming a level base on which the uprights are erected; also a similar member, of any material, forming the lower sile of an opening whether part of a frame or not.

In the former sense a sill is an integral part of the construction, and the term applies equally to the series of long horizontal timbers laid on a foundation wall to reccive the uprights of a wooden house, and to a similar member beneath a window opening, miting the jamb pieces and corresponding to the heal ahove. In the latter, and more restricterl, sense, the term designates any horizontal member making a finish to the bottom of apening, and in this scnse is used in connection with masonry as well as framing.

The doorsill of interior foors is covered by the saldle, or is shaped into a form of a saddle. The doorsill of at door at the hearl of a tlight of steps, or one which gives entrance to a story raised above the outsile surface, is practically the same thing as the top step. Thus, in an ordinary porch, or stowl, to a city house, there are said to be so many steps beside the sill. Door and window sills alike, when of stone or

SILVER GRAIN

terra cotta, are usually cut or moulilel with a slight slope or wash on the upper surtace, and this slupe slould be stopped at each end against a lug (ree Seating). In cheap and hasty huiddings the lug is oftell omitted, and the brick wall is rested upon this sloping surface, the rrevice being made good with mortar or spawls of stone.

Groundsill. That sill of a framed structure which is nearest the ground ; as, usually, the principal sill of a framed house, which is lais on the fommation wall two or three feet above the level of the ground.

Mudsill. A sill laid on the ground for the support of the structure above; as in very slight shents and onthonses.

SILL COURSE. A. A string course or belt course which is piacerl so as to inclurle and extend the sills of a wimlow, or row of windows; or rarely of both doors and windows. The sills may be of the same height as the whole sill course, but the wash or slope and the mouldings by which the sill projects from the face of the wall and drips the rain water are not contimed throughout the course.
B. A belt cmurse set immerliately below the window sills, and upon which these latter seem to rest.

SILOÉ, DIEGO DE ; sculptor and architect. A son of Gil De Siloé. He erecterl, partly from his tather's designs, the catherlral of Gramada (Splain), at the begiming of the sixtcenth century.

Stirling-Maxwell. Amnals of the Artists of Spuin; Bermudez, Dicrimario.

SILVA, JOAQUIM POSSENDONIO NARCISSO DA; b. May 17,1806 ; d. 1896. Dia Silva spent his chiddhood in Brazil, and returned to Lisbon in 18\%1. In 1827 he entered the Aculémie des Beaux Aits in Paris. In 1833 he was appointed court architect at Lishon. He transformed the convent of La Pena into the residence of the king, Dom Ferdinand, ind restored the palace of the Duke of Pahnella.

Construction Moderne, April 18, 1890.
SILVE, GIL DE; architect and sculptur.
Originally from Burgos (Spain). Gil is known by the fine tombs of King Juan Il. and the Infante Don Alonso, which were placed in the presbytery of the Chartreuse of NiraHores (Spain) by Queen lsabella. They were begun in 1489 and finished in 1493 , and are among the latest and finest of the Gothic montments of Spain.

Stirling-Maxwell, Anuals of the Artists of Spain; lBermudez, Dierionario.

SILVER GRAIN. In certain wonds a peculiarly brilliant grain and very decorative in effect, obtained by cutting in the direction of the medullary rays : that is, by sawing the boards or planks in the direction of the radius

SIMA

of the section of the log. it is peculiarly attractive in oak, partly because of the opennesis of the other grain, with which the bruad and smooth strijes of the silver grain contrast. (See Quarter ; Wool.)

SIMA. Same as Cyma.
SIMONE DA ORSENIGO; architect.
Simone came to the construction of the cathedral of Milan Mareh 1, 1387. In a memorandum of October in the same year he is called inzignerio fubricae. He seems to have been the first supervising architect of the cathedral. It is possilile that the buiding was designed by him.

Boito, Dromo di Miltno: -Imali del Duomo.
SIMONI. (See Buwnarroti-Simoni, Michelangeio.)

SINAN, ABDULLAH, PACHA; architect.

The most important Turkish architect. He is credited with a large number of mosines, minarets, schools, palaces, etc. His three principal works are the mosque of Sultan Selim I. (built 1521-1527), the mosque of Sultan Suleiman I. (built ahont 1550), and the mosque of the Sultana Yaliteh, built for the mother of Sultam Murad III. ; all at Constantinople.

Edhem Pacha, L Archetecture Ottomune ; Evlya, Narratice.

SINGING GALLERY. A gallery for singers, often, in churches of the Italian Renaissance, richly decorated with carving ; also cantoria. (See Gallery, B.)

SINGLE FRAMED FLOOR; ROOF. One having only a single tier of beams, or joists, or rafters; that is, a floor without girlers or binding beams, or a roof without principals, having only common rafters. It tollows trom the simplicity of construction that in large spans the beams or ratters have to be trussed or in some way strengthened ; hence the common use of the term to denute a roof in which the rafters are separately braced as with tie rods and a central pin or post to each.

SINGLE HUNG. (see Hung.)
SINGLE MEASURE. In England, haring no mouldings on either silde; sail of a door. When moulded on one side only it is accounted a measure aud a hall. "When moulded on both silles it is a Double Measure.

SINK. A receptacle for waste water, often set under a fancet or tap. In modern plombing, a fixture, usually rectangular, and connected by a trapped waste pipe with a soil or drain pipe. Sinks are fitted nu) in kitchens, sculleries, pantries, and honsemails' closets. Siuks for the emptying of slop water are leeper than ortinary sinks, and are known as slop sinks. (See Plumbing.) - W. P. (. G.

SINKING. Same as Settlement.
SINKROOM. In the United States, a room in which a sink is placed; often laaring

SIZE

the water of a neighbouring spring brought in by pipes or berel-ont scantling.

SINK TRAP. A trap for a sink arranged to pernit the disclarge of water without allowing sewer gitses to escalle into the room.

SITTING ROOM. A rom arranged for the hise of a fanily or ath association of friends for private and sociable gatheriugs, distinguished from a room reserved fur the receiving of conpany in a more formal way.

SIZE. An important element in architectural design. Dimensions, as quoted in a table, are frequently mislealling, hecause a low or a slightly huilt luilding may be much longer than one of many times its nalss, its coustructive imprortance, or its architectural beanty. At the same time statistics of dimension are of value if properly mulerstood; for design in a very large buiding cannot be compared with design in a small one unless the comparison of size be also made with care. The buildings of antiynity had rarely great comparative height, but the two great Pyramids of Cizeh and some temples of Mesopotamia were remarkable in this respect ; and in any comparison of interior heights the Roman imperial vanlted halls are important. Horizontal dimensions, however, were sometimes very great among the Egyptians, and also among the Romans.

The Gircat Pyramid of Gizeh in Egrpt corers a square surface of about 754 feet on eath side, but was about $i T 0$ feet square when the outsile sheathing was complete. The second pyramid is about 700 feet square on the plan. These measurements are nut to be compared with the horizontal measurements of most great buildings, becanse these pyramids are almost solid masses of stone, probably built around and mpon a native rock, but in the main a cairn of piled blocks of limestone. The thirteen acres or more thus covered with a single mound of stone is to be compared with the six acres occupied by the Colisenm, itself considered a very massive building, although oquen to the sky and composel of an elliptical ring of seats supported on vaulting.

The great tombs and temples of the plams on the Euphrates and Tigris (see Mesopotamia, Architecture a1') do not seem to have rivalled the Egyptian buildings in size, and their mass was evidently of unburnt lrick, with a facing of hard brick, and ouly a sulstructure of stone. The restoration by Chipiez of the Challean temple in successive stages gives a base of 330 feet syuare for the actual nearly pyramidal mas.s.

Although the ahove-named solid piles of material affect no special architectural interest as towrlike masses, imposing ly their easily felt height, their actual vertical dimensions are very great. The Great Pyramid of Cizeh may be describerl as 485 feet ligh to the aprex of the sheathing, its present height to the irremular phatform of the top) being tol teet. This is
higher than the magnificent spire of Strasburg eathedral, of the monern church of S. Nicholas at Hamburg, of s. stephens at Viema, or of the Landshut church in soutl Cemany ; and only two masonry lmililings are known to reach a greater height. (see the table of heights helow.)

The Roman therme corered rast tracts of grouml ; and although this was partly open, in rave grommels and promenades, and partly corered hy low purticoes and other one-story buildings of no great fretensions, there were also margificent raulted halls whose interior dimensions are musurpassed. The thermae of biocletian have been described under Therme. The therme of Caracalla hare a great central mass 390 feet broul by i-40 feet long, without including the apselike projection of the circular caldarinn. Much of this central mass was at least two stories in height, the gromul story itself being of rery great dimensions. The largest raulted room was the tepidarium, 8. feet by 170 feet in its general dimensions, aml with projeetine transepts and apses. As for its height, the estimates ditter: it may lest be julged by comparison with the bulding next mentionel. Thus, the basilica of Maxentius and Cunstantine can be rather clusely estimated as to its size. The slam of its great hall between the walls was $8-\frac{1}{2}$ feet. but the project ing columns with the ressats above them diminish the span of the actual rault to 76 feet. This vanlt gave to the hall an interiur height of 125 feet and some inches, which is somewhat less than the height of the nave of Culogne cathedral, with this consideration, that Cologne catherlral is, like all Gothic buildings, light amd slemer, built of small separate stones. a somewhat elastic construetion, the vaults held in place by the counter fressure of other raults or of Hying buttresses : while the Roman buikding is of prodigions massiveness and built so as to form a solid shell hardly capalde of exereising a thrust upou its poulerous buttress piers.

The largest cupola in existence is that of the Pantheon in Pome, 143 feet span, and having a height from the parement within to the oculus very nearly equal to the borizontal dimension.

The interior width of some large buildings in Europe should be compared with that of the hasilica of Masentius abore. The naves of great churches are nearly as given below. The wilths are in the elear between the piers: Beaurais cathellal, the nave, $4 \geq$ feet 6 inches.

Albi cathealral in the south of France, 6.2 feet.
Gerona in northeastern Spain, 73 feet (much the largest Gothic nare. It was built long after the great French cathedrals, and was the special ettort of a great builder, comparable for originality with the eupola of Florence cathedral).
S. Paul's cathedral, Loudou, 49 feet.
S. Peter's church, Rome, 88 feet. (The style of these neodassic churches exeludes all attempts at great spans of vaulting; massiveness and a large proportion of supports to clear spaces is rather their purpuse. The great midth of the uave of S. Peter's is a part of its unapproached greatness of scale.)

It is curious how nearly the proportions of great classical, Gothic, and recent neoclassic buildings, when their transverse dimeusions are considered, seem to have been inspired by the same ilea of proportion. Thus the nave of the hasilica of Constantine. giren abore, should be compared with 太. Peter's church at Rone, 88 feet wile by 148 feet 6 inches high, and this with the loftiest of all Gothic naves, Heauvais, $4:$ feet 6 inches wile, 153 feet 6 inches high. These are the extremes: most Gothic churches would show greater width in proportion to their height.

Table of heights : -
Washington Mlomment, Washington, a plain ubelisk .

555 ft.
Cologue cathedral. two equal steeples to top of cross.

511 ft.
Philatelphia "Pablic Buildings," or C'ity Hall, to be

510 ft.
Hamlourg. Germany, church of S. Nicholas

Strashurg Citherlral
475 ft .6 in. 46.5 ft .

Landshut, South Germany, chureh of S. Martin

462 ft .
Chimney of furnace un the Firer Mulde. opposite Freiburg, Saxony

453 ft .
Great Prramid to top of existing platform

45 lt ft
Vienna, cluurch of S. Stephen, sunth tower
Fome, S. Peter's church, inclueling eross
Antwerp cathedral, north tumer .
Sadishury eathedral, central tower
Florence cathedral to top of lantern of eupola

450 ft .

Chartres cathedral, south tower, completed in the thirteenth century

340 ft .
Euildings entirely of metal are not to be compared with those of masonry. Thus, the central tower of the cathedral of Ronen, of east iron, is giren as 488 feet, and the Tour Eiffel, commonly called La Tour de trois cent mètres, is commonly rated at 1000 feet.

Of modern American business buildings it is to be noted that they resemble in external appearance the massive fortress towers of the past, of which the famous oue of Concy is 180 feet 5 inches in height from the bottom of the parell litch, while the modern buildings are light of structure, their real framework being of metal.

SIZE

New York, the Park Row Juilding
to thp of angle towers
392 ft .
Same to top of level cornice . . 338 ft .
New York, The American Surety Co.'s builting to top of level cornice.

308 ft.
Chicagro, the Masonic Temple 265 ft .
(It does not appear to which cornice this measurement is mate.)

Finally, the aggregate dimensions of some very large groups of buhblings, such as pataves, should be given. Thus, the palace of the Vatican, at Rome, has an extreme length from nonth to south of 1392 teet. This inchudes the whole farcaule on the Vialone di Bedverlere, along which visitors pass to enter the musemm. Extreme wilth from east to west, ind lading the high buillings about the court of S. Damaso, 670 fect, the southernmost of the two great courts, 211 by 488 in the clear. It is impossible to measure along any axis berause of the irregnlarity of the plan ; the perimeter may be estimated at 4292 feet.

The Louvre at Paris: the front on the Seine, east and west in general direction, 1891 fect, and that on the Rue de Rivoli about the same. Perimeter, as if the Trileries were still in place between the Pavillon Marsan and the Pilvillon de Flore, 4974 feet. The length along the axis of the great galleries and throngh the different pavilions, as if the whole building were extented in a single line, 8175 fret, or much more than a mite and a half. The length of the colonmade of the east front, 540 feet ; the Great Court as fixed in the sisteenth century, abont 400 feet square, inside dimensions.

Windsor Castle: length in one line from the Curfew Tower to the angle at the east terrace, nearly east and west, about 1460 feet ; perimeter, 3670 feet.

The Trocadéro Palace at Paris, opposite the Champ de Mars: measured in a straight line northeast and somthwest, from ont to ont of the curving wings, 145 feet. Measured along the convex curve of the northwestern wall, 178.2 feet.

The Capitol at Washington: length north and south, 751 feet. The building covers ahont three acres, or less than a quarter of the surface covered ly the Great Pyramid.
S. Peter's Church at Rome : from ontside the narthex, nearly westward, to outside the prineipal apse, T]2 feet.

Westminster Palace, London, including House of Parliament and Westminster Hall: total length on the river, including the Speaker's residence and Blackrod's residence, 885 feet. There are eight courts sturrounded by buildings which are generally five or six stories high. - R. S.

SIZE (v.). To apply size or sizing, as in preparation for painting and gilding.

SIZE (n.). Any glutinous covering uatter

SKEW
applied to the surfice of plaster and sometimes to wood as a preparation for painting, or more esperially for gilding with gold leaf. The purpose of it is to provide a perfectly unform surv face and one as little porons as pussible.

Gold Size. Such a glutinous ipplication (see Size; Sizing) as is found convenient for the subsequent application of ghld leaf in gilding. This is applied to the plaster or wonl, amd allowed to dry, partly, before the leaf is put on.

SIZE DOWN. To diminish, continually and regularly, the size of members of a series. Thus, slates are sized clown from the eaves to the ridge, in orter to increase the apparent extent of the sloping roof, and to ahd a picturesque charm to it.

SIZING. A. The same als Size (n.).
13. The application of such sizing in sense A.

SKELEETON. A frame of wood or iron without the covering.

SKELETON CONSTRUCTION. That which depends for its strength upon a skeleton; esuecially, in modern buiking heginning about 1885, a manner of building in which, white the exterior is of masomy, the whote structure is of iron or steel which supports the exterior walls as well as the roof. It is common to carry these exterior walls by means of cantilevers upon which one story or two stories of such walls are hnilt up at a time ; so that the structure may be completed and the roof put on before any part of the walls are in place. The walls may even be built in the tenth story hefore those of the eighth and ninth stories are completed, and so on. (See Iron Construction; Office Building.)

Skew Vault or Areh: the Triangle in the Plan curresponis to the Elaborate Iorizontal Moulinings in the, View, which ale the Corbelling to carfy the l'all adove.

SKEW (adj.). Set sloping : inclined in any direction, but most commonly in a hori-

SKEW

zontal plane. A Skew Arch or Skew Yault is all arehed upening or passage the axis of which makes an oblinue angle with the fare of the wall (see Skew Areh, nuder Arch). The term Skew baek, helow, is made nu' in the same way from the olsinlete term "back."
skew. Any nember cut or set so as to present a sloping surface ; especially for other necessary parts of a structure to butt against, as in a gable or the abotment of an arch.

SKEW BACK. That portiun of an abutment which is arranged to receive the thrust of

Skewback of Stone in One Block, for A Brick Arch in Three Rullucks.
a segmental or flat arel, having an iuelined face correxponding with the adjuining voussoir.

SKEW CORBEL. Same as Kneeler, A; but especially wne which projects considerably beyond the side wall. Two such stones, one on earh side, widen the gable effectively at its base; and the corbel-like projections serve as steps fur the eave gutters or wall cornices.
skew putt. Same as Skew Corbel.
skiffling. (See Knobbing.)
SKIM COAT. (See Skimming.)
SKIMMING. The process of finishing the surface of plastering with a thin coat of lime and sand putty, or plaster of Patis. Also the eoat so produced.

SKIRREH. In surveyors' work, a cord wound upon a reel or prepared in another way, for convenient delivery and recovery, userl in laying out fomblations, trenches, and the like. (See Surveying.)

SKIRT. An apron-piece or border, as the mouldert piece under a window stool, or the plinth bearl or mopboard of a room or passage, whieh last is in the United States ealled hase or baseboaril.

SKIRTING; SKIRTING BOARD. Same as Base, C. (See also Skirt.)

SKYLIGHT. A glazed aperture in a roof, whether a simple glazed frame set in the plane of a roof, or a structure surmounting a roof with upright or sloping sides aul perhaps an independent roof ; the entire structure consinting wholly, or in large part, of glazed fiames. In its more elahorate forms, a skylight may be constructed as a Lantern (which see), or may have the semblance of a lormer window from

SLAB DASHING

which it is sometimes hardly to be distinguisheyl. The term is, however, only applieable to such lights when overhead, i.e. lueated deciledly above, rather than at the sides of, the space immeliately corered by the roof, although, perhaps, extending considerably down the lateral slopes of the roof. The frame is either of wood, or, preferably, of metal, braced or tied with iron rols, if of large size, the metal sash bars being shaped with gutters to carry off the water of comdensation, aml glazed with sheets of flutell or rough plate glass, varying from 12×48 inches and $\frac{3}{16}$ of an inch thick to 20×100 inches and $\frac{6}{16}$ of an inch thick; if ordinary donble thiek glass is used, the sheets are from 9 to 15 inches wide, and from 16 to 30 inches long. In metal sash hars or muntins these sheets are set without patty. Skylights are often providell with ventilators arrangel to be opened or elosed ly eords from below, and a flat decorated inner skylight is frequently placed beneatl the outer skylight in a ceiling panel, when it is desired to make this feature an element in an architectural composition as seen from beneath. Sometimes, as in the corering of interior courts, winter gardens, exposition buillings, conservatories, marquises or canopies, and horticultural buildings, the entire roof is a skylight, and is emphasized as an espeeial architectmal feature, the frame in sueh cases being of iron or woul. (Sie Greenhouse.) Occasionally smaller skylights are in the furm of glazed senttles arranged to be opened for access to the rouf. - H. Van Bedext.

Double Skylight. One in whiel a lower and usually horizontal glazed frame completes the eeiling of a room or gallers, while the space between this and the skylight proper serves for ventiation.

Raised Skylight. One in which a curb or coming of some height raises the skylight proper abore the level of the roof.

SKY LINE. The upper outline or silhonette of a luilding as seen against the sky.
SKY SCRAPER. A name derisively applied, but generally aeeepten, referring to one of the tall mang-storied office huildings which have become charaeteristic in the large eities of the L'nitel States.

SLAB. Any piece of material of considerable brealth and little thickness as compared to its length: more specifically, in outsile plank as sawn from a \log, having one rounded side and consequently of very unerual thiekness.

Exeept in the last sense the term is more frequently applied to stone than to other materials. (See the following titles.)

SLAB BOARDING. A rough eovering with slabs as in some rural shells.
sLab dashing. Rough easting a wall with enarse mortar and pebbles. (Also written Slap Dashing.)

SLAB HOUSE

SLAUGHTER HOUSE

SLAB HOUSE. A lomse huilt of woolen slahs or rough-hewn planks. Especially applied to houses so mate ly the Indians of northern California and the Northwest coast. Planks were split out of cerlar or other woorl with elk-horn and wooden wedges driven by stone mallets. They were reluced to any requirol thickness by aldzing. In size the planks were something extroorlinary at times, reaching such dimensions ats $4!$ by 24 feet. Some tribes built houses with a roof of one slope while others put up a ridge or donble ridge and mate two or more slopes. Several families lired under one roof, and often a whole community had but a single house. The dimensions were sometimes as great as 75 feet long by 40 wite and 15 high. The rafters were supported by heary posts set in the ground, and the planks were tied horizontally on the sides between upright posts, while those on the roof ran with the slope and were grooved and overlapping. The family apartments were separated by partitions about 2 or 3 feet high and often higher. North of the Strait of S. Juan de Fuca the slab houses hecome even more massire, with earving on the posts in front and sometimes within. The totem posts set up in front are elaborately carverl. (See Assembly House; Communal Dwelling; Totem Pust.)

- F. S. Dellenbaugh.

SLAB PLASTERING. Coarse plastering such is was used in filling between the beans on the exterior of half-timbered houses in Englaml. Also Slap Plastering.

SLAG ROOFING. A plastic material made by mixing coal tar, asphalt, or a similar material with finely divirled slag and sometimes other hard material. This, when properly applicd, serves well tir roofs of very low pitch.

SLAG WOOL. Same as Mineral Wool.
SLAP DASHING. Same as Slab Danding.

SLAP PLASTERING. Same as Slab Plastering.

SLAT. A flat and thin board or strip, especially if relatively narrow, usnally of wool.

Rolling Slat. A slat in a Shutter, or a Blind in sense A, which with the others in the same panel is fitted into the frame by pivots, and secured loosely to a rod, so that all the slats are aljustable together.

SLATE. In building, Roofing Slate; that is to say, a fissile variety of argillite usel mainly for roufing and, in more solid masses, for sinks, Hoor tiles, mantels, and the like.
-G. P. II.

Roofing Slate is obtainer by splitting the larger masses into thin slabs, which are then trimmed to certain standard dimensions. It was formerly divided in Great Britain into regular sizes known by arbitrary names. The sizes most often used are Countess, $10^{\prime \prime} \times 20^{\prime \prime}$,
and Duchess, $I \Xi^{\prime \prime} \times 24^{\prime \prime}$. Other sizes are given as fullows:-
Donille, $7^{\prime \prime} \times 13^{\prime \prime}$. Vimpress, $16^{\prime \prime} \times 26^{\prime \prime}$.
Lady; $\mathrm{s}^{\prime \prime} \times 10^{\prime \prime}$. limperial, $3 t^{\prime \prime} \times 30^{\prime \prime}$.
V"iscountess, $n^{\prime \prime} \times 1 s^{\prime \prime}$. Kag, $2 \mathrm{I}^{\prime \prime} \times 30^{\prime \prime}$.
Marchioness, $11^{\prime \prime} \times 22^{\prime \prime}$. Queen, $24^{\prime \prime} \times 36^{\prime \prime}$. Princess, $1 \cdot \mathrm{I}^{\prime \prime} \times 21^{\prime \prime}$.
It lues not appear that these terms have ewer been common in the United States. It is more usual to sperify the sizes, which do not vary greatly. Thus, $8^{\prime \prime} \times 16^{\prime \prime}$ is a goorl size for smaller surfaces, and $10^{\prime \prime} \times \geqslant 0^{\prime \prime}$ for large slopes of a roof. The varietics of slate are sery great, and the preference for this or that quarry has varied from time to time, partly according to the colour in rogue or called for by the luilding in question, and partly by the farour shown to a particular surtace with or without gloss and the like. Purple, green, and red are the common colours, and each of these colours is often very agreeable: moreover, it has been found easy to make somewhat etlective patterns of their combination. On the other hand, the very darkest slate, that which approarhes black, is preferred by many arelitects, and some of the best qualities of slate are of this colour.

$$
-\mathrm{P} . \mathrm{S} .
$$

Riley, Building Construction for Beginners, 1894.

SLATE BOARDING. The covering of walls with slate, as if with boards or shingles.

SLATING. The applying of roofing slite to the sheathing boards or battens or strips which are mailed to the rafters. As the slating must overlap for a definite proportion of its length, the distance apart of the places for nailing can be determined leforehand. Thas, if slates 24 inches long are used, and if it be required that each slate overlap the one below it for 14 inches (leaving 10 inches "to the weather" in each course) then the rows of nails will be 10 inches apart. Nails may he driven near the centre of each slate or near the head; it is rare that both methods are used, as two mails to a slate of ordinary size is considered sufticient. Nails should be of copper or be in some way protected by a nom-corrosive metal composition, and the holes through which they are driven must be made in advance, which is done ustally by the sharp point of the slater's hammer.

SLAUGHTER HOUSE. A place, luilding, or group of buildings intemled for the slanghter of domestic animals used for foorl.

The object of the jublic abattuir, or highly organized slaughter house, is to do away with the muisance and evils of scattered private slanghtering plares. In ancient Rome, under the emperors, a guild of butchers existed who were privileged to do slanghtering in special buildings. In motern times, the organized public abattoir originated in the begiming of the

SLAUGHTER HOUSE

nineteenth cuntury. Japoleun I., recognizing the sanitary, commercial, and economical alvantages of centralizal public abattuirs, anthurized in lso their construction in the suburbs of Paris, and derrem that private staughter honses be forbiden. In 1:15 five public slaughter bonses were opencl, cosering thirty-eight acres of gromul. Since then large cities and many of the smaller ones have followed the example of Paris. In the United States large abattoirs exist, particularly in the large Western cities, which are centres of the cattle market. Some of these are immense establishments, fitted up with elaburate machinery for rapid and humane killing of a large mumber of animals, and with well arranged anxiliary buildings intended for the sanitary and commercial disposal of the offal incident to slanghtering.

In Europe nunicipal abattoirs are the mule; in the Cnited States many abattoirs are built by lutchers' associations. Public abattoirs, erected by a city, offer the best solution of the problem of the sanitary control of the meat supply; cleanliness and sanitation can be enforcel, and the slaughter stands or compartments rented to butchers form a source of revenue to the city. Abattoirs must be located in the outskirts of a city ; good facilities for the transiortation of the cattle, by rail or by water, and hy the country roads, where the alljoining rural districts are devoted to cattle raising, are required. For the conglomeration of buildings a large area of suitable ground is required, and future extension must be considered in the original lay-out. Markets for cattle to be slaughtered are lest placed adjacent to abattoirs, for by combining the cattle market with the slauglter house, the sanitary inspection of the meat supply of a city is rendered more concentrated and efticient.

A public abattoir consists of many luildings, namely stables, large sheds and pens for the animals to be slaughtered, subdivided again into stables for oxen, calres, sheep, and pigs : sejarate slaughtering houses for each of the animals named; corered yards for dressing of carcasses ; buildings for diseased or suspected animals, for storage of fodder for the animals, for cold storage of meat, for the cleaning of entrails, and for the commercial utilization of the offal (fat-rendering and bone-boiling establishments); an administration luuilding, with offices, rooms for the butchers, for the sanitary inspectors and reterinary surgeons, laboratories for the microscopical examination of the pork: toilet rooms, bath houses, restaurants, etc. : finally, a boiler and engine house, with pumps, dynamos, and refrigerating plant. To this is sometimes added a wholesale meat market (see Market). The generally low-ronfed one-story stable structures present no features differing from rural cattle stables (see Stable). The roadways between the sheds and all open yards must be well

SLAUGHTER HOUSE

pared with durable pavement (like the Belgian block parement) and must have good surface water drainage.

There are two types of arrangement of the halls for slanglatering: in one there is only a large common slaughtering hall; in the other two rows of smaller compartments are arranged, one un earh side of a central aisle, each compartment being rented to one or several butchers. The first-named trpe facilitates otticial inspection. The outer walls of the slaughter houses may be if lorick, or of iron with glass roofs and sides. It is essential that the inside walls, to a height of at least five feet, should be made imperviuns, so that driet blood and scraps of flesh adhering to them can be remored by means of warm water. Walls may be faced with glazed brick, or be of brick coated with asphatted raraish: the woolwork, if there is any, is treatel in a similar manner. Floors should also be impervions, hard, durable, and not too smooth or slippery. Asplalted and coucrete floors have proved to be but partly successful, for asphalt is apt to become soft in summer time, and cement tloors crack, or become chipped or broken by the axe of the butcher. A good pavement is formed of two layers of hard-burnt brick kaid on edge in cement or concrete. Many butchers jirefer a wooden floor, of heary planks, of Georgia pine, thoroughly calked at the joints in the manuer of a ship's deck; but as this becomes splintered by the blows of the axe in slangltering or dividing up the killed animals, it is necessary to put down two layers of plank. The upper parts of the walls and the ceilings should be frequent! whitewashed. The sanitary features of a slanghtermg house include a very ample and liberal supply of cold water, for the watering and washing of the cattle, for floor washing, fire protection, etc.; a supply of hot water; proper semerage and floor drainage; sometimes a chemical purification of the sewage, slaughtering waste, and blood : plenty of rentilation; good lighting and special arrangements for remoral of offal, animal manure, blood, fat, entrails: well-pared yards and streets, etc.; modern German abattoirs are frequently provided with a rain bath (which see under Bath) for the butchers' employees. The interior equipment of slaughter houses comprises boisting machinery, cranes, truch, and iron tanks on wheels for the manure and hides: barrels for the blood: weighing seales: hedrants for watering and flushing; also a refrigerating plant. The noxious rapours and gases arising from the pans and kettles should he passed through condensing tanks and then under the fires of the boiler, and discharged through the main chimney stack of the boiler honse. The disposal of the manure from stable rards, cattle pens, hog pens, etc., should be carried out with regularity; the streets and bonlerards of the abattoir must be swept and

SLEEPER

washed, and buildings in which diseased animals are kept require disimfection.
Osear Schwarz, M1.1., IBu, Einrichtur!! und Betrieh ̈̈ffentheher schlachthenser unt l'ishhäfo,
 tehtur, lart IV… Vol, H1.. 2; Gormünt fiar Lebens-mittel-I rersorynug, Serond Edition; 1): Theo. Weyl, Mhemblech dry IIfyipne, Vol. Vl., I'art B; G. Osthoff, 1herkthelline und isharhthäuser; Stevenson and Murphy, Treatise on Myyiene and Public Health; article on slaughter llouses, by E. W. Hope, Vol. I., 1sil2, Fiftl and sixth Mmmal Reports of Massachusetts state Board of llealth. Also the following papers contained in the Transactions American I'ublic Health Asseciation, viz.: Vol. 11., I8it, Dr. Janes, on Ahattoirs, II. (i, Crowell, on Abattoirs ; Vol. V I.. 1881. 1n'. James, "Abattoirs." 1)r. G. Devron, " Sbattoirs"; Vol. XV., 1889, Dr. Salmon, "Neat In ipection"; Vol. XXII, 1s:m, Dr. Bryce, "Mmicipal Meat Inspection" ; Vol. XXIII., 1897, 1r. P'earsnn, "Meat luspection." Also Zeitschrift des asterr. Inyenieur und Architekten-Vereins, Vol. LII., No, zs, article by G. Witz on " Municipal Abattoirs." W. P. Gerhard.

SLEEPER. A piece of timber lait] direetly on the ground as a base or support for a superstructure, especially to carry the flowing of a cellar or groumd story. Sleepers are taken from timber which resists decay: in the United States, locust or chestmut.

SLEEPING ROOM. A bedroom. sLiding pole. (See Engine House.)
SLIP (I.). I. A narrow passage, as between two buildings.
B. A bench or open pew in a church.
©LIP (II.). A small and slender strip, as of woorl. The nore usual term in the United States is strip; thus Parting Slip (A. P. S.; Riley) is always called in the United States Parting Strip. (Compare Lath.)

SLIP PIECE. A strip of wood attached to a sliding member to serve as a wearing surface; specifically, a strij, playing in a dovetailed groove to hold the object in place.

SLIP SILL. A sill no longer than the distance between the jambs of an oprening, so that it can be set in the aperture after the walls are built, instead of extending into the wall on each side beneath the jamb.

SLODTZ, ANTOINE SÉBASTIEN. (See Slodtz, Michel.)

SLODTZ, MICHEL (MICHEL-ANGE) ; sculptor; b. 1705 ; d. 1764.

He was a son of Sébastien Slodtz, sculptor, and was of Flemish origin. He studied long in liome. There is a statue of S. Bromo by him at S. Peter's, and a monument to the Marcuis ('appmi in the church of S. Giovanni dei Fiorentini (Rome). Returning to France, he made the two monuments of the carlinals of Auvergne, at Vienne (Isère). In 1747 he returned to Paris, and in 1750 made the monnment to the Abhé Lanquet de Gerzy at the church of S. Sulpice, Paris, his chief work, and decorated the Chapelle de la

SLOW-BURNING CONSTRUCTION
Vierge. He was assisted in much of his work by his brother, Antoine Selmastien Slodtz.

Gonse, Senthture frunçise; Sernbert, hölustlerІрхитй.

SLODTZ, SEBASTIEN. (See Sludtz,

 Michel.)SLOPE OF A ROOF. (Sce Pitel.)
SLOW - BURNING CONSTRUCTION.
Any construction designed to diminish as far as pussible the facility of ignition, and to hinder the spread of fire, while ronsisting entirely ot in large part of combustible material.

This system, sometimes called Mill Construetion, has been developed by the Factory Mutual Fire Insurance Compranies of New England, with a view to bringing the comstruction of cottom and woollen factories, paper mills, aml metalworking establishments to the salfest conditions which can be made consistent with the use of wool; also to give stability and strength coupled with aderuate light, air, and ventilation; and fimally, at the last cost by the unit of the square foot of occupied floor, giving clue regard to the respective uses to which the building is to be put. It has been a gradual development of many years, proceeding wholly from the interior motive or use of the property, without regard to architectmal display. The customary methou of construttion at the present lay is as follows : -

The basement floor is laid on well-drained ground covered with a tar or asphalt concrete in which heavy timbers may be paced, overlaid with plank and board Hoors without langer of decay. Cement concrete, being liygroseopic, does not serve the purpose, but permits or promotes the rapid decay of the wood haid in or upon it. Asphalt concrete is alsn a nom-conductor of heat and is warm to the feet; cement or stone floors keep the feet cokd, hence the common use of woulen clogs or soles in the stone-floored weaving sheals of foreign countries.

The superstructure may be of one or more stories in height. The modern textile mill seldom exceeds three stories for the preparation anl the spinning of the stock, one story for weaving. The motern machine shop is more often one story in height than in excess. There is a moderate relative difference in the cost by the unit of the square foot of floor between the one-story or many-storiel building, a building of two or three stories in height being on the whole cheapest.

The structure monsists preferably of brick walls with the maximum of winlow space, the top of the window being carricd between the timbers Hush with the unlerside of the floor or roof so as to give the maximum of top light. Within these walls heavy timbers are earried 8 feet or 10 feet 4 inches or rarely [1 feet on centres, preferably 23 feet span from wall to post and from post to post ; the sizes of timber

SLOW-BURNING CONSTRUCTION

vary accorling to the proposed weight of machinery and stock to be phaced upon them, the weights in a textile fictury rarely exceeding seventy promels to the square foot at any point. Upon these timbers are laid plamks groovel and splined, of not less than 3 inches in thickness, on ©-toot spans, - 4 inches or more on the wider spans, - covered first with rosin-sized japer or a fire retardent or waterproof matcrial, then a top Hoor, now in the North enstumarily of birch or maple.

The spaces between the timbers may be sheathen soliu or chose upon the planks, or may be in some instances protecterl by sheet metal, Air Cell Ashiestus Buaril, or Sackett Wall Board, which retard ignition ; or it may be covered with a porous wash or water paint. Beams should never be oil painted under less than three years, lest they should be exposed to dry rot.

The roof, of one-half inch pitch, is constructed in the same manner, covered usually with comprsition roofing of the best kind. In certain eases, like the roofs over the Fourdrimier machines in paper mills, where there is a very great condensation of moisture, a coating of 1 -inch mortar is sometimes placed between the plank and the outer boarding of the roof, and the ceiling is sheathed solid within, making a roof of at least 6 inches in thickness, which is sutticiently prouf against cold when properly ventilated to be free from condensation. Varmish of the common kinds is never used on any part of these woolen surfaces, on account of the extreme hazard of a fire passing rapilly over it.

It is not held that this construction of timber and plank is free from the danger of fire, unless suitably guarded according to the degree of hazard of the contents within. This solid methol of construction is, however, free of the customary danger which aflects hollow walls, hollow floors, and hollow roofs, since in the woorlen flues of what is sometimes ealled "comhustible architecture" fire nay pass from cellar to attic fully protected from water.

In the mill of slow-burning construction automatic sprinklers phaced between the timbers sweep the ceiling with water on both sides of the timbers whenever ealled upon by the occurrence of a firc. Hose streams thrown from either sile may also sweep the fire completely from the ceilings between the timbers.

The next most important point in slow-burning construction in a louilding of many stories is that each floor shall be atisolutely cut ofl from every other floor by avoiding all open ways. Staireases are placed in towers, preferably outside the main building; if within, cut off ly fire walls, the doorways being protected by stitable fire doors made of wood encased in tin, with lock joints, the nail heads being covered. Belts or ropes for driving the machinery are also carried in separate towers without openings into the

SLOW-BURNING CONSTRUCTION
main mill. The sanitary and other appliances are also constructed in separate towers without any open way lirom floor to Hoor; alequate fire escalpes being attached at suitalble points outside the mill.

This factory floor has never been burned through by any fire occurring in the working department of the factory. All fires that have passelt from one story to another have either passed through helt holes or ly open passageways. In two instances of storage in large quantity, where stock has taken fire at the bottom of the pile, the heavy floor has been burned through.

The tendency in moden days has been, especially in cotton mills, to adjnst the size of the floor to certain elements of the mechanism. The modern cotton factory is usially $1: 6$ to 128 feet in width by any stitable length, that width giving free play to the mule spiming machine of the size that will give full employment without overwork to one spimer. In other words, the plans for placing the machinery are made before the floor spaces are lain out.

Another method of construction is to put up a self-sustaining timher frame, the outer post being reesessed in a pilastered wall wholly free of any fixed comection with the wall itself, a band or tie being placed across the recess in the pilaster and actross the post lut not attached to the post itself. Every post is given its own support on its own separate pier, the fombation of the wall, which may be very light, being separatet. In this way, if there is any shrinkage or settling of the wall, which is apit to necur, especially in high buildings, it dues not throw the aligmment of the timbers out of level. The aljustment of shatting therefore takes much less time and is much more certain. In this method of construction the substance of the wall may he almost veneer, the greater part consisting of windows.

It is now customary to glaze these windows with fine ribbed glass in true curves, inverse and obverse, twenty-one rilss to the inch, ribs set vertically. This type of glass difflises the light thronghout a very wide building, giving daylight free of shadows - a most important factor, especially in weaving. When the inside work is dusty, the ribs are placed outside. Where the outer side of the window is exposed to smoke or soot, the ribs are placed inwardly. In special places prismatic glass is usel in phace of the tactory ribbet glass.

After this building is constructed, the greatest care is taken not to fill it up with combustible shelves, wooden partitions, or other dangerous elements in construction. Incombustible material is chosen as far as possible for these purposes. Closets, cuphoards, and conceaded spaces are avoided to the utmost, the purpose being that there be no place either

SLUSH

SMIRKE

in roof, Hoor, or wall, or within the building, in which fire may be protected from water, or in which vermin ot any kind an hork.

What is catled slow-buming construction should never be allopted without due regard being given to all the primeiples of mill construction: the separation of each floor from every other, the aboldance of open ways, the a voilance of varuish upon insite finish, of combustible shelving, and yet more without giving full regad to iderpate apparatus for the extinction of fires. Wood will firnish material for fire, however disposed. All that is clamed for slow-burning construction of wool is that its adoption gives realler opportunity to extinguish a fire than any other at a low cost.

Whether or not this method of construction is better or worse than the morlem steel construction, depends upon many conlitions which cannot be dealt with in this treatise. Unless the steel is protected adequately from the heat generated in the ignition of the contents of the building, the complete destruction of the steel frame builling may not follow, but so long as it stands, it serves to hold the contents under conditions which will assure their complete, or nearly complete, destruction by tire. Slowburning mill construction in its place and for the purposes for which it has leen developerl, has proved to be cheaper, safer, and better than any form of so-called fireproof mill yet invented. The losses by fire on many humbed million dollars' worth of factories constructed on these rules, and fully proteeted with apparatus for extinguishing firs, have, for five years, October, 189.5, to November, 1900, inclusive, been less than four cents per anmm on each humdred dollars of risks camied by the Senior Fantory Mutual Fire Insurance Companies, or less than twenty cents per one hundred dollars - for five years' insurance on over $\$ 600,000,000$ worth of so-called "special hazarts."

- Edward Atkinson.

SLUSH (F.). In masonry, to throw mortar on toj of a course to form a bed for the next course. Slushen work permits bricks to be laid dry on such a bed in the interior of a wall, and makes inferior work. Shoved work retpires each brick in the interior of a wall to be surrounded with mortar so as to avoid any dry or open joints. (See Shove Joint, unter Joint.)

SLUTER, CLAUX (NICOLAS) ; sculptor (metier) ; 1. 1404 or 1405.

Philippe te Hardi, Duke of Burgumdy, foumden the Chartreuse of Champmol at the gates of Dijon (Còte-l'Or, France), in 13×3. To builu! and decorate this monastery, with its church aml his own momment, he called together many of the best architects and senlptors of his time, chief of whom were André de Hammartin (see Dammartin, A. de), Jem de Marville (see Marville, J. de), iml Clanx Sluter. Jean de

Marville directed the sculptors mitil his death in 1389, when Clamx sluter ol the Conté d'Hollime took control. The carliest of the sculptures of the Chartreuse are the figures on the portal of the church. Of these the Malonna is probably by de Marville, but the spleutid statues of Philippe le Harali, his Duchess Marguerite de Flamhe, S. Jean and S. Margnerite are by Sluter. Shater's must chanacteristic work is the so-called P'uits de Moüse (Well of Moses). This was intemdel to be the base of a cillary (crucifixion gronp) which stuod in the ehnister of the Chart reuse. The design of this work is by Sluter. He was assisted by his nephew, Claux de Werwe (see Clans de Werwe), who in 139s began to take control of the work. The great monument of Philippe le Hardi in the museum at Dijon was umioubtedly ilesigned and begun by Sluter, but the sculpture itself, especially the famons pleurants (mouners) abont the lase, is the work of Clanx de Werwe. In I $40+$ Shater retired to the Abbey of S. Étienne at Dijon, where he diet.

Gonse, 心rulpture firançise; Gonse, L'Art gothique; Chabeuf, Iijon Jomuments et Souwentrs: Brownell, Freveh Art; Marquis L. De Laburle, Les Ducs de Buurgogne.

SLYPE. Same as Slip (I., A) ; written in this form, which it retains from the fifteenth century, it is used in erclesiological writing.

SMIDS, MICHAEL MATTHIAS ; architect ; b. July Il, J6:6 (in Lotterdam) ; d. July -4, 1692 (in Berlin).

He was court architect of the great Elector Frientrich Wilhelm, and rebuilt the Marstallgebaute (Berlin) about 1666 .

Borrmann, Dewkmïler cun Berlin.

SMILIS ; seulptor and arehitert.
Smilis was probably from Agina, Creece. He flourished in the sixth century B.c., and was associated with Theodorus (see Theortorns) and Rhuecnss in the construction of the labyrinth at Lemnos anl the Temple of Hera at Samos. He male the statue of Hera in that temple, and a group of the H ours, which was preserved in the Heraion at Olympia.

Collignon, IIistoire the lu simtpture grecque.

SMIRKE. SIR ROBERT: architcet; b. 1Tsi ; d. April 18, 1867.

In 1796 he entered the oftice of Sir John Soane (see Soane, Sir J.), then occupied with the building of the Bank of Englanl, and in the same year berame a stulent of the Royal Academy. In 1799 he won the gold medal for tesign. He visited Athens in 1s03, while Lord Elgin was removing the sculpture from the Parthenon. He alsu visited sicily ant made trawings of the architertural remains there. Smirke was employed on the Dint, London, in 1809 ; and in 1845 was placed by Sir Robert Peel on the commission for London improvements. He built

Lowther Castle and Eastnor ('istle, amd in $180 \mathrm{~s}^{\text {mobuilt Covent Garden Theatre (burned }}$ in 185 S). One of his mosit important works is the main farame of the British Maseun (Lombun).

Bdward smirke, Memoirs of sio hobert siminke; Awh. I'ab. Suc. Dictiontery.

SMIRKE, SYDNEY; architect; b. 1799 ; d. Dec. \&, 187

A brother of Sir Robert Smirke (see Smirke, Sir Ri.). In líge he was clerk of the works at S. dames's l'alace (Lomhon). At the British Mnsemm, about 1855-18.7, he designed and built the great circular realing room.

Aroh. Inb. Suc. Dietionary.
SMOKE EXTRACTOR. Any device, as a houd or ventilator at the top of a chimney, by which an upward drought is maintained or acceleraterl.

SMOKE TOWER. Any high construction, more important than a chimney stack, used to convey smoke from a buiding to the outer air, as in some churches.

SMOKE VENT. An opening in a roof, generally of some primitive dwelling or hut, by which smoke may escape.

SMOKING ROOM. An apartment set aside for the use of smokers.

SNACKET. In Scotlaud, a latch, hasp, or catch for a loor.

SNECK. A latch ; local British ; the term applied especially to one of several ancient forms of thumb latch.

SNECK (v., I.). To fasten with a sneck.
SNECK (v., II.). To dress stone rotighly. (See Snerked Rubble, under Iiubble.)

SNOW BOARD. A continuous board secured at the foot of a roof slope to serve as a snow gitard.

SNOW GUARD. Any device intended to prevent snow from sliding off a sloping roof; especially, in the United States, one of several patented contrivances intended to be arranged in successive regular rows across the slope, commonly fonned of a loop of wire.

SNOW HOUSE. A habitation built of snow. (See Ighngeak.) - F. S. D.

SOAKER. In Great Britain, a piece of metal used in flashing, each piece being of the size of one of the slates or tiles of the roofing, and the soaker heing laid with the slates or tiles in their courses. In the United States, called step flashing.

SOANE, SIR JOHN ; architect ; b. Sept. 10, 1753 ; d. Jan. 20, 1837.

His name was originally Swan. He changed it to Soan, and afterward to Soane. He was the son of a bricklayer, and in 1768 entered the service of the younger George Dance (see Dance, G., II.). He afterward studied with Henry Holland (see Holland), and at the schools

SOCIETIES OF ARCHITECTS

of the Royal Aculemy. In 1756 he won the gold medal of the Academy, and a travelling stipend which enabled him to spend threc years in Italy. From 1788 to 1833 be hehi the office of architect and surveyor to the Bank of Engtand. The laçade of this building is one of the best of his works. Between 1791 and 17!t he was clerk of the works at S. James's palare, the Houses of Parliament, and other public buidings in Westminster, and in 1807, clerk of the works at the Royal Hospital, Chelsea. In 1802, Soane was made Royal Academician, and in 1806 , professor of architecture at the Royal Acadeny. In $1 \leqslant 36$ he built the State Taper Office, destroyed in 1862 . His house in Lincoln's Im Fields and his large collection of art treasures were left to the nation, and constituted by act of parlianent the Soane Museum.

Fergusson, History of the Modern Styles of Strhiterfure; Stephen-Ľee, Dictionary of Nitlional Biogretphy.

SOAPSTONE. A soft stone having a soapy feeling, composed largely of foliated talc, or steatite, and used in making sinks, stationary washtubs, etc. (See, also, Putstone.)

SOCIETIES OF ARCHITECTS. (That is, composenl wholly or in part of architects.)

The Academies of Europe, which have existed in great numbers for threc hundred years, were known under varions names signifying devotion to different departments of fine arts, many of them including architecture. These Acarlemies of Fine Art were sometimes organized only to afford instruction, while others were associations of professional artists of different classes. It will be endeavoured in this list to include only those in which professional architects were associaterl. Many societies are composed of architects and engineers, like most of those in Germany and Austria-Hungary, and others are societies of architects and archreologists. There are also many societies of archeology, composed mostly of architects : but in most archreological societies, such as exist in nearly every European city of any consequence, and a few in America, the influence of architects does not predominate. As compared with them, the mumber of purely architectural socicties is very limited. The fine art societies, first referred to herein in each country, are those in which professional architects are believed to have had administrative functions. Then will follow, more specifically, architectural societies in cach, most of which are of comparatively modern origin.

Iustrict-Hungary. An Academy of Painting, Sculpture, and Architecture was founded in Vienna in 1705. There are also Societies of Architects and Engineers in Vienna and Prague, and in Budapest, where there has recently been a great revival of architecture.

SOCIETIES OF ARCHITECTS

Belyium. The Central Society of Arehitecture of Belgium was founded at Brussels in 187.. Its monthly pablication is called L.Emulution. It has a defensive league like that of the Central Society of Architects of France.

Canculn, Dominion of: There is a Quebec Institute of Architeets, which has recently been instrumental in having a law frassed by the larliment of the Province of Quebec requiring the ofticial registration of architects, somewhat simila to that now in force for examining and licensing architerts in the state of lllinvis. The hearlituarters of the Institute is at Montreal. There is also an Institute of Arehitects in the Province of Ontario, with headquarters at Torunto.

Firence. The Academy of Architecture was fomded in 1671, and existed down to the breaking out of the revolution of 1789 . ln 1819 the now existing Academy of Fine Arts was definitely fommed. This is one of the five great divisions of the Institute of France; it consists of the five sections: painting, sculpture, architecture, engraving, and mmsic, and is composet of forty members. Its chief duty toward the art or profession of architecture is in directing certain competitions, giving the prizes, including the great l'rize of Rome (which see), and nominating camlidates for professorships ami the like. The Acalemy of France at liome, whieh also was founded in the seventeentla century, still continues to occupy the Villa Medieis, which it has held ever since the begiming of the present century; but this is rather a school than a society.

Of distinctively architectural societies in France, the Central Society of Architects, foumled in 1840, takes the lead. It nut only holds regular meetings, but perionlical congresses, to which all the Architects of France and risitors from other comntries are inviterl. Its first tulletin was issued in 1851, and its Aruules in 1875 , since which time it has conducted the congresses just mentioned. It now has 500 members. The congresses have been held anmally since 1873 . Its publications are: Mumual of the Lomes of Buildiness (Paris, 1878-1881), and Price Lists Ipplicable to Buildings (1883-1893). Unler its auspices wals established in 1884 the Architects' Mutual Defense Association, of which there are 340 members, a sort of mutual assurance against the rigorons provisions of the French laws concerning the personal responsibilities of architects. The National Society of Architects of Frince was founled in 1872 , and in 1891 it was changed to the Professional Union of the Architects of the Department of the Seine, with 150 members. It publishes a fortuightly journal ealled The Arehitect. A society was organized in 187% called the Friendly Associ-

SOCIETIES OF ARCHITECTS

ation of Arehitects Homomed by the Government, comprising those who had obtained the diploma of "Architect" from the Niational School and those who had olitained the (irand Prize. There are 30 members. It is an sut of Corps d Ėlite of French architeets, and publishes an ammal tulletin. The Cmion 心゙ymlicole of French architects was fommed in 1890 , compusid of arrhitects, insjecturs, designers, decoratoms, and the better class of opratives, comprising the indepembents or free lances of the profession. There are thirty-two local societies in France, among which is the Avalemic Socinty of Architerture of Lyons, the ollest ot all existing Fremoh Sorieties, and which stands first in importane, foumen] Dec. 18. $18: 39$. (commecten] with it is a society of assistants and students callod the Architertural Union of Lyons. Of other departmental societins are the Provincial Society of Architects of the North of France, The Provincial Society of Architects of the Sontheast of France, and a provincial society with heatpuarters at Lyons, which couprises the members of twenty local societies. (See Arehitect, The, in France, for the law's regulating the practice of the profession, and col. 140 for French societies.)

Germun!!. The Royal Acarlemy of Arts was foumdel in Bertin by Frederick 1. of Prussia in 1699 . After the fallure of the aralemies that had been established in Munich in 1759 and 1770, the present Royal Munich Academy was established by Joseph I. of Bavaria in 1808. The following German cities have mixerl sorieties: Berlin, Architects and Engineers, fommed 18.57 ; Constance, Architects and Builders, fommed 18 s 1 ; Dresden, Architects and Engineers; Hinover, Architects and Engineers ; Mmich, Arobitects and Engineers. German architects have held congresses since 1853.

Great Brituin. In Englant the Royal Acalemy is supposel to deal with all the arts, and has always incluled architects in its memhership. The committee which petitionel the King (George I11.) had for its chairman Sir Willian Chambers, architert, Dance, architect of the Mansion House, also being it nember. Sir Joshua Reynolids was the first president, and Sir William Chambers, treasurer. Architectural drawings are shown at its annuab exhibitions.

There is in Edinburgh a Royal Scottish Acaleny of Painting, Seupture, and Architecture, founded in 18.25 and incorporated under roval charter in 1838.

Of distinctively architectural sacieties the Royal Institute of British Architects (called R. I. B. A.) stands first. It was organized in 1834 as the Insitute of British Amehitects, and chartered by William 15. in 1837, and subsequently, through the influence of the late

SOCIETIES OF ARCHITECTS

Prince Allwert, the Quen permittel it to prefix the worl "hoyal" to its name, aml instituted the "Royal (iold Metal fir the Promotion of Architenture." A new charter was gramed in the fiftieth year of the reign of Victuria (March 28,1889), muler which it is now conducted. Under the existing by-laws "Any non-metropolitan arehitectural society in the United Kingtom, or in any colony or tlepemlency of the L'nited Kingion, consisting in whole or in part of professional members, may, subject to such regulations, limitations, and restrictions as may from time to time be preseribed by resolution of the Royal Institute, be allien with the lioyal Institute." The Institute in 1899 had 618 Fellow members, 993 Associate members, 46 Honorary Associates, comprising a total sulseribing menhership of 1657 .

The Aeckitecturel Assomithion (London) is inforporated under the authority of the Literary and Scientifie lustitutions Act, 1854. The objects of the Association are, "to provile aml athord facelitios for the stmly of architecture, and to serve as a medimm of friemdly communcation between the members and others interested in the stury and progress of architerture." The presilint is ipso fucto a memher of the Council of the R. I. B. A. Many of its members are Fellows or Associates of the F. I. B. A. Its memherslip, like that of the Institute, is not confined to London, but comprises also architects from other parts of the United Kingdom. (See Architect, The, iu Euglaul.)

Of loral soeieties not attiliated with the R. I. B. A. are those at Oxforl, 1837, and Edinburgh, 1850. The Cambriuge-Camden Society was once a great power in connection with the Gothic revival luring the middle of the century. It was composed of High Church elergymen and arelitects, and jssued many valuable publications. It was mainly instrumental in reviving the ancient forms of worship, in the churches of the establishment, vestments, churel furniture, and fittings, aul decorative work allied to Gothic architecture.

The Society of Architeets, London, is independent of the R. 1. B.. A. It was fommell in 188t, and incorporatel untler the same authority as the Architectural Assuciation in 1893. Its objects are similar to those of the Architectural Association, but have a more practical turn and concern more the practice of architecture. It also has a very thorongh elucational department, and requires an ellueational test for membership. In 1899 it hat 509 members, 17 homorary members, 10 associates, and 15 students. It publishes a monthly journal.

There is alsu in Lomblen a Society of Antiquaries, famons for its perionlical Archeotoria, which was incorporatell as early as lijh. This society is still in existence, and commenced a

SOCIETIES OF ARCHITECTS

novem.nt in November, 1888, to bring about the union of all the archeological sucieties of the Unitel Kingdom. A consultative eentral bolly was formed by it in 1890, composed of representatives of all the comty societies. The Society of the Dilettarti was founded in 1734. In 1769 it pmblished a folio volume on Ionian anticuitics, and later, in 1797, supplemented the investigations of Stuart and levett (to which it had contributed material supprort) by another volume entitlel Amtiquities of Ionia. In 1817 it pmblished a still later volume entitled Lnedited Antiquities of Alttica. There is also a society for the preservation of ancient buildiugs. (See Restoration.)

There is also the Royal Arehrological lustitute of Great Britain and Ireland, and the soriety whirh publishes the Archreological Joumol, and the British Archacological Associatim, which publishes its own journal.

There is an Architectural Institnte of Scotlaml locaterl in Edinburgh, which publishes transilctions, and a Society of Autiquaries of Scotlami.

In Ireland are sinilar associations; The Roy:al Institute of the Architects of Treland, and the Historical and Archaeologieal Assuciation of lrelanl.

Ital!. An Acallemy of Architecture was estallislien as early as i 380 , in Milan, by Galeazzo Visconti. The Society of S. Luke, of Florence, is also one of the oldest art societies in the worll and is still in cxistence. It was founted ly one of the Nerlici family in 1350. There was an earlier Acalemy of the Fine Arts established in Venice in 1345 also mamed S . Luke. The Acadeny of S. Luke at Rome was foumlen in 1595 , and is still in existence. The Freneh acallemy is sonewhat related to it by tutelage and descent. Of moderu sorieties the Institut de Corrispondenze Archaolofica, of Rome, was established in 1830 for the investigation of the ancient momments of Italy, and has been mainly supported by the Prussian goverument. It has issued many valuable publications. (See Architect, The, in Italy.)

Jopran. There is an Institute of Japanese Architects, with headquarters at Tokio, which has a large membership.

Vethertunds. The Society for the Encouragement of Arelitecture was foumded at Amsterdam in 1819, and reorganized in I830, after the separation of Belgium from the monarchy of the Netherlands. It lias about a thonsand members.
liussio. In $167+$ Peter the Great founded and endowed an Acalemy of Sciences, in which the Eupress Elizalieth (r. 1741-1762), at the suggestion of Conut Shuraloff, cotablishecl an Imperial Acallemy of Fine Arts at saint Fetersburg. C'atherine II. increased its revenues and built the present aralemy, which educates architects as well as other artists. It is an immense

SOCIETIES OF ARCHITECTS

establishment, and supports its students from childhoor until they graduate. The Moseow Archieologival Society recently opened a musemm. An Arehieulugical Congress has also been instituted in the stme city.

Stucior. In Madrid an Academy of Painting, Sculpture, and Architerture was founded in 1752 by Philip V^{\prime}., and is still in existence. Maurid also hats a Central Society of Architects.

Suctlen. There is a Royal Academy in Stackholm founder by Limnens in 1739, under royal charter.

Sucitzerlund. In Switzerlanl there are societies of architects and engineers at Basel, Lansamne, and Zurich.

Crited states. The National Acullemy of Desitm, located in New York, was fomuled $J_{i m n a r y} 15,1826$. Three architects were among its fomblers, and it set out to encourage architecture as well as the other fine arts. It long since ceased to give recognition to it, and there are now no architects in its membership.

The first specifically architectural society in the United States wals known as the American Institution of Irchitects. It wals organized in Philadelphia, Dec. 7, 1836, and comprisel] twenty-three professional, two associate, and twenty-five honorary members. It had a desultory existence for twenty years.

The Americen Institute of Architects was organized in New York, Feb. 23, 1857, and hell regular meetings at New York up to the breaking out of the Civil War in 1861. The meetings were resumed in 1864, and continued up to the time of the reorganization of the Institute into a federal body, composed of loeal chapters in the several cities. The first chapter, that at New York, was organizel March 19, 1867, with thirty-two Fellows and four Assuciates. Since then the Institute has only met in anmal convention, the first conrention having been held Oct. 22 and 23 , 1867. UP to October, 1897, there had been thirty-mue conventions. There is, since November, 1898, a honse in Wrashington, D. C., callecl "The Oetagon," which is oecupied by the Institute, and in which is the office of its secretary and treasurer. In 18.9 an important event in the history of the A. I. A. was the consolidation with it of the Hestern Ansociution of Irchitects, which was accomplished at the annual conrention in Cimcinati. The Institute now has (1899) 22 local chapters, 418 fellow mensbers, and 60 associate members, besides honomary and corresponding members. Each chapter may have members, associate or junior, who are not fellows or associates of the Institute.

The Hestern Association of Architects was organized at Chicago in 1884, and has a large membership. In 18, 9 it was consolidated with the American Institute of Architects, as above stated.

SOCIETIES OF ARCHITECTS

The Imhitectural Lentue of America was org:mized at Clevelimi, Ohio, June : \quad, 1899, by a convention of representatives delegated ly nearly all the architectural clubs in the United States and one in Canala. It hold anmal conventions in different cities, to which delegates are regularly accredited by the clubs composing the league. lts main work is the regulating of exhibitions of arrhitecture and the allied arts, which take place successively at the seats of the several chuls. The architectural clubs of Pittsburg, Washington (b). C.), Toronto (Canada), Clevelmed, Detroit, Chicago, and Saint Lonis, the Architectural Leagne of New York, the T-Stuare Club of I'hilatelphia, the Chapters of the listitute at Pittsburg and 'incimati, and the Architects' Cluh of the University of Illinois are in the League.

The Archaological Institute of America was organized in Boston in 1879, and has made much progress in architectural research in classic lants as well as in America. Archaeological sucieties in the different cities are attiliated with this boly. The American schools at Rome and Athens are supported by associations organized for that purpose, which are closely combected with the An $\begin{gathered}\text { Inemogical Institute of }\end{gathered}$ America. It publishes guarterly The American. Journal of areheolury.

The Int Institnte of Chicayo supports a school of architecture in conjunction with the Irmoner Institute.

The Baston Society of Aichitects, founded a few years earlier, was attiliated with the Smervein Iustitute of Irehtects as a chapter in 1868, hut still retains its separate name.

The Architectural Lentrme of Nere Tork is a strong body of architects, mural painters, senlptors, and decorative workers who have to do with building. It was organized in 1881 and reorganized in 1886. It is both professional and social, and has anmal exhibitions. looston, Phidadelphia, Cleveland, Detroit, (Chicago, Cincinnati, Denver, San Francisco, Washington (D. C.), Pittsburg, Toronto (Ontario), and Saint Lomis also have architectural clubs composel mostly of the younger members of the profession, and to which iraughtsmen are admitted. Many of them hold ammal exhilitions.

The Chicago Architerts' Business Association. now three years old, is the first of the kind ever organized ; (but sce above the C"nion Šyndicale in France, and the Sosety of Architects in Great lritain). It was instituted for the purpose of regulating the business affairs of architects and their relation to various parties with whom they are bronght into contact, to watch legislation affecting architects, and to enforce professimal morality. It has (1900) 151 members and is rapilly increasing.

SOCKET

Encyclupedia Britannira, s.r. Aradmy (Sucietios); also Aneriean Supplement of s:ume, s.v.
 le Constructoon, I'. Ilanat ; Paris, Dujardin et Cie., 1sos-149日: Cummings. Mistoric Innuls. N. A. D. address of N. F. 13. Horse, p. 37, (ienrge W. Childs, Philadetphia, 1sio.) : Transactions of the American Institute of Architects, 1stim. The Architecteral anet other Art suctirties of Eturoues. by A. J. Bloor ; Procectings of the A. I. A.. 1s:in), J'aper by A. J. Bloor ; The IS. I. IB. A. Fidender, published annually al ! Conduit st.. llanover square, London, W. ; Year Thow of the Socit! of Arehtects, published anmually at N.. James's Hall, Piccadilly, London, 1 .

Peter B. Wight.
SOCKET. A depression or carity, shaped to recorve and hold in place the foot of a column or beam, or the end of a bolt ; or, in the ease of heary doors or the like, a revolving pisot.

SOD. The thin layer of soil matted together by the roots of grass and other small herbs which forms the surface of a lawn or grassy field: also, with the article, a small piece of this layer.

Turning the First Sod. A ceremony akin to laying the corner stone. (See Break Gromd, under Break, and ('orner Stone.)

SOD HOUSE. A habitation of sod or of earth, - stones and soll together. The roof is generally of poles or lugs, covered with earth and sol. For that used by the Eskimo, see Turner, Eleventh Aunual Report United States Bureau Ethology. (See also Dugout.)
-F.S.D.

SOFFIT. The under side of a structure, especially of comparatirely limited extent. Thus the under side of an arch or lintel and the sloping surface beneath a stair would be called sottits. - IV. R. H.

SOIL PIPE. A rertical pipe which receires the discharge from water-clusets with or without wastes from otlier phmbing fixtures. (See House Dranage.) - (i. P. M.

SOISSONS, BERNARD DE. (See Bernarl (le siulssons.)

SOISSONS, JEAN DE. (See Jean de Soissons.)

SOLAR. An u!per story ; hence a separate or private roum, as in an early English dwelling house. (See Solarium.)

SOLARI, CRISTOFORO (il Gobbo) ; sculptor and architect.

An architect of the school of Bramante (see Bramante) in Milau. His most important building is the chureh of S. Maria della Passione (Milan). He is supposed to have worked on the façade of the Certosa at Pavia and the tombs of the Visconti and Sforza in that monastery. In I 495 he entered the service of Lodovico Sforza (il Moro), Duke of Midan, and made the monument to his duehess. Beatrice d'Este, which was originally placed in the church of S. Maria tlelle Grazie (Milan). He was emplored upon the seulpture of the cathedral of Milan until I519, when he was appointed super-

SOTTO PORTICO

rising architeet of the cathedral. Solari was probably related to Pietro Lumbardo (see Lombardo, Pietru).

Müntz, Renaissance: Perkins, Italian Sculptors; Buito, Il Duomo di Milano; Paoletti, Rinuscimanto in lenrzier.

SOLARI, GUINIFORTE ; architect and sculptor ; d. about 1481.

One of the Milanese family (see Solari, C.). He succeerled Filarete (see Filarete) as architeet of the Ospedale Maggiore in Milan, Italy, and was at one time architect of the Certosa uf Pavia.

Müntz, Renaissance; Boito, ll Dnomo di Milano.

SOLARIUM. In Roman archæology, a part of a house exposed to the sun, generally taken to be the roof of a portico or other place serving the purpose of a modern balcony, and easy of access from the upper stories. Hence, in merlireval Latin, the second-story room or rooms. From this is derived the English sular.

SOLARO. (See Lombardo.)
SOLDER. All alloy of varying composition, but always easily fusible, employed in joining pipes or surfaces. suller for making wiped joints in lead pipe consists of three parts lead and two parts tin. - W. J. G.

SOLDERING. The ןrocess of uniting metallic substances, as in tinware, by solder, dropped when molten on the parts to be joined, and then run together with a hot iron which keeps it fusel.

SOLLAR; SOLLER. Same as Solar.
SOMER. (See Summer.)
SOMERSET HOUSE. In London. A building for public ottices on the site of the old palace of the Protector Somerset. The present structure is of $17.6-1786$, the work of Sir Willian Chambers.

SOMER STONE. Same as Summer (II.).
SORBONNE (LA). In Paris, a great educational and religious institution, named from Pobert de Sorbon, who founded an institution for poor students of theology in the thirteenth century: The buildings have been frequently rebuilt, and quite recontly have been greatly enlarged, enelosing several courts, and including many rooms, large and small, in addition to a very well-designed lecture hall, where is a great painting by Puris de Charannes. The church of the Sorbonne was built before 1659 , and is, though small, one of the most interesting neoclassic buillings in Europe.

SOSTRATOS : architect.
He built the Pharos (lighthonse) at Alexandria about $3: 0$ B.C.

Brunn, Geschichte der griechischen Fïnstler.
SOTTO PORTICO. In Italy, a pullic way beneath the overbanging upper story and behind the columms of a buikling or a series of buildings. There are many such corered streetways in Venice, especially along the water fronts.

SOUFFLOT

SOUFFLOT, JACQUES GERMAIN ; architect; b. 1709; 1. Aug. 29, 1780.

After a jonrney tu Asia Minor he returned to Lyons (France) about 1737, where he built the church of the Chartreux, and enlarged the Hotel Dieu. In 1752 he took part in the competition for the creation of the Place Louis XV., now Place de la Concorde, in Paris (sec Gabriel, J. A.). In 175 the wiss eharged with the recunstruction of the cathedral of liennes, and in the

SOUND

ant Euves ou Recueils de plusieurs parties d'urchitecture (Paris, 1767).

Lance, Distionnaire; Jal, Dictionnaire critique; Charvet, Arehitretes Lyomatis.

SOULAS (SOLAS) JEAN ; sculptor.
There is a contract between Jean Soulas, sculptor in Paris, and one Jean 'ronsson for an Entombment anl a Resurrection in the chapel of Notre Dame at the church of S . Germain-l'Auxerrois (Paris). He appears also

Sumerset Huuse, London: Vestibule; after 1766 A.d.
same year the theatre of Lyms was begun from his plans. In 1755 he designed the Hotel de Ville at Bordeaux, and in that year replaced Cailletean as contrûleur of the works at the châtean of Marly. In 1756 he designed the Eeole de Droit (Paris). Soufflot made the plans for the church of S. Geneviève, afterward called the Panthéon, in Paris, in 1764 , and carried the building to the spring of the cupola. In 1772 he was appointed controten !emerral of the embellishments of the city of Lyous. Soufflot published Suite de plans, coupes, etc., de trois temples artiques . . . ie I'estum (Paris, 1764),
in a contract of Jan. 2, 1519, for the execution of certain figures of the sercen which surrounds the choir of the cathedral of Chartres (sce Texier, Jean le).

Lami. Dictionnaire des Somptezrs Françuis.
SOUND. Aulible vibration communicated to the air or other smrounding media by the sommling botly. It consists of a train of waves, alternately of condensation and rarefaction, propagated with a relocity dependent on the elasticity and density of the merlium. Any portion of the air moves to and fro over a very minute path in the direction in which the sound is being
propalgated, its motion heing, therefore, what is known as longitudinal ribration. (See Aconstics.) - W. ('. S.

SOUND BOARD; BOARDING. Pieres of board put in hetween joists of a floor to form a horizontal surface to receive deafening.

SOUNDING BOARD. A. A large surface of wood ur other resonant material, by means of which a vibrating string or other small source of sound communicates its motion to the air. Very little sound is produced by the string of a riolin or piano directly; for the air, instead of being compressed by the forward motion of the string, Hows around it. The string cuts the air without compressing it, and

SOUTH AMERICA

board. It does not itself ribrate, or rather in so far as it does ribrate it is inetticient. (See Retlector.) - W. C. S.

SOUND, PROPAGATION OF ; REFLECtion of; Resonance of ; VIbration OF. (See Acoustics.)

SOUTH AMERICA, ARCHITECTURE of. Ancient Architecture. The most interesting architectural development of the continent of South America was achieved in the period previons to the conquest of Peru by the Spaniards under Francisco Pizarro in 1532. The extent of this period and the time of its begiming are not known. At the time of the Spanish invasion, the entire western territory
 the Dimensions are glven in Feet and Inches.
therefore without producing sound. If, however, the string is properly attached, as in a harp, or, as in a violin, made to press by means of a bridge or somuling post against a board or other elastic surface of suticiently large extent, a portion of its motion is communicated to this, and by this in turn to the air. While the ultimate source of sound is the ribrating string, the immediate source is the sounding board, and this is, therefore, of very great importance in determining the musieal quality of the instrument.
B. A reflector placed behind and above the speaker or orchestra, for the purpose of strengthening the sound to the audience. It is unfortunate that the term" sounding board" has also been applied to this, for the action of a retlector is rery different from that of a true sounding
of Sonth Ameriea was in possession of the Inca dynasty. Many writers suppose that there was an extensive civilization in the Pernvian highlands before the rise of the Ineas, and ascribe several momments of great importance to that eivilization which Markham (op. cit.) calls the Megalithic. Many of the monuments mentioned by him cannot, however, be very elearly differentiated from true Inca work. Those of Tiahuanaco, however, sonth of Lake Titicaea, in the great platean between the Andes and the Cordilleras, in northern Bolivia, are quite different in style from the recognized Inca work. The monuments of Tiahuanaco are fully described and drawn in detail by Strubel and Uhle (op. cit.). The ruins are gronped about the village of Tiahuanaco, which lies in au arid and desolate plain south of Lake Titicaca, and

SOUTH AMERICA

SOUTH AMERICA

13,000 feet above the sea. They do not appear to have constituted a city, or even a groul of residential palaces, but rather a series of structures erected for public or ritualistic purposes. The ruins cover a large area, amd have been used as a quarry for three centuries. Beantilully cut stones are foumd built into the rude houses of the village. The picturesque Jesuit church of Tiahuanaco contains many. The materials for the cathedral of La Paz, in Bolivia, were derived from this source. There are, however, still scattered over the area of nearly a squatre mile vast masses of splendidly worked samistone, trachyte, and basalt. The names given to the different ruins by the Spanish historians are still used in describing them. The "Fortress" is an immense rectangular mound of earth, 620 feet long hy 450 feet wide and 50 feet high, which was originally composed of terraces, each terrace supported by massive walls of cut stone. More interesting than the "Fortress" is the "Temple," an area 388 by 445 feet, defined by lines of erect stones, somewhat irregular in shape and size, from 8 to 10 feet high, 2 to 4 feet broarl, and 20 to 30 inches thick, placed about 15 feet apart from centre to centre. They were connected by slabs of stone laid on their edges. The terre pleine supported by these walls had on its western side an apron or lower terrace 18 feet broand. Along the central prart of the outer border of this lower terrace are ten great stone posts, the largest of which is 14 feet high by 4 feet 2 inches wide by 2 feet 8 inches thick. West of the "Temple" is the "Palace," a rectangle, 280 feet long by 190 feet wide, enelosed, like the other momuments, by blocks of finely eut triachyte. Another ruin described by D'Orbiquy (op. cit.) as the Fitl of Justice has nearly disappeared. One of the monolithic doorways now forms the entrance of the cemetery of Tiahnanaro. The most important of all the remains of Tiahuanaco is the great monolithic doorway which stands within the enclosure called the "Temple." The block stands seven feet above ground, and is 13 feet long and $1 \frac{1}{2}$ foot thick. The surfaces of one side of the stone athove the lintel are covered with sculpture, the centre being formed by a figure bollly eut in high relief. On either side three tiers of kneeling figures in very low relief, forty-eight in all, face toward the centre of the composition. A great part of this work at Tiahuanaco is characterized by extreme precision and complexity of stonecutting.

With the ruins of Tiahmanaco, Markham classes other colossal monuments, notahly the fortresses of Sacsaluaman and Ollantay tombs. These are, however, strictly within the territory covered by the early Inca civilization, and will be described with the Inca remains.

The dynasty of the lnca, that being the
name hy which soverrigns of the Quichrea tribes of Peruvian Indians were known, had its origin, accorling to trulition, in the basin of Lake Titicaca, but established its capital very early at Cuzco, in the platetur adjacent to that of Titicaca, on the north. Inca architecture is characterized by distinctively stone construction. There is no suggestion of wooden types as in Greece and Egypt. Everywhere are foumd low walls of prophyry, granite, basalt, and brick, the bricks bing works usually of large size. The jambs of the tloors incline as in Egypt. Long walls are frequently decorated with miehes constructed like the doors. Buidlings are sometimes of two or three stories, but there appear to have been no stairways or other internal commmisation between them. The apartments of a large building usually open directly into a central court. The most important monuments are characterized by a high degree of fimish and precision in the treatment of the stone. The roofs were high and pointel, and made of thatch. One of these thatched roofs, near the village of Azangaro, north of Lake Titicaca, is still intat. The honses of the common people were built of rough stones laid in clay. They were probably stuccoed and painted yellow and red. There was little sculpture in Peru, only an occasional carved lintel. The mountaiuous country of the Incas was terraced to the limits of cultivation. Every foot of ground reclained in this way was carefully irrigated and cultivated. The splendid retaining walls of the terraces are still intact, the water courses male by the Incas are still in use, and the terraces are still under cultivation. To connect the extremes of their enormons territury, they built a splendid system of military roals, usually construeted of large stones, carefully fitted, and lined on either side with larger stoues placed on edge.

The most interesting remains of the civilization of the Incas are in the city of Cuzco. When Francisco Pizarro entered that city, Nov. 15, 1533, he found it composed of long, straight streets, forming right angles with each other, and finely paved. A great central, open seuare, called Hnaeapata, was surrounded by enormous temples and palaces. The three small streams which pass through the city were confined between walls of fine masonry, and eovered by bridges built of large slabs of stone laid horizontally, which are still in use. Enormous masses of the old masonry, cut aurl fitted with extreme precision, but with extremely little sculptured decoration, still line the narrow streets of Cuzco. The lnca ruins of Cuzco are all of large palaces or public buildings, the houses of the people having disappeared entirely. The palaces and temples are built around courts. The entrances are high, covered by stone lintels, which, in a few instanees, are elaborately

SOUTH AMERICA

carved. The stones are laid for the most part in regular courses, fitted with the utmost preeision. Occasionatly they are cut away at the joints so as to form a rustication similar to that of the Italian patares. In the cirentar wall of the temple of the Sun, the lines of contact of the stones are true ralui of the eircle of the plan. The walls are sometimes 35 or 40 feet high. The great temple of the Sum, at Cuzeo, was the finest building in the territory of the Ineas. It stomb on the hank of the little intramural strean called Huatenay. The garden which lay between the temple and the river was composed of a series of terraces with carefully luilt retaining walls. The temple proper, which was 296 feet long by 52 feet wile, occupied one side of an immense court. It had a that wooden reiling, lut its roof of thatch was high and pointed. According to the Spanish chroniclers, large fortions of this buidding were decorated with plates of gold. Specimens of ${ }^{2}$ these plates as thin as note paper are still to be seen in museums. The site and ruins of the temple of the Sun are now occupied by the chureh and convent of S . Domingo. Next in importance to the temple of the Sun is the palace of the Virgins of the Sun, the ruins of which are occupied hy the convent of S. Catalina. The outside wall of the enclosure, still standing, is 750 teet long and 20 or 25 feet high, the emel wall is 180 feet. The pulace of Huayua Capac lay between the palace of the Virgins of the Sun and the great square called Huacapata. It was an immense enclosure, 800 feet long. It is now oceupied by the convent of the Jesuits, the barracks, and the prison. The remains of fourteen of these immense palaces are to be found in Cuzeo. On the site of the eathedral of Cuzeo stood an immense covered hall or basilica.

The great fortress of Sacsahuman stands on a rocky bluff near Cuzco on the north, the fare of which is precipitons and impassable. The farther side descends gradually to a platean which is accessible from the valleys on either side. Across the ent of this platean, near the blutf, are built three enormons walls I 800 feet long and parallel. These walls are built in zigzag, with projecting and entering angles, always exposing their faces to a parallel fire. The outer wall is 27 feet high and supports a terrace 35 fert wicle. Above this terrace rises the second wall, 18 feet high. This, in turn, supports a terrace 18 feet wile, above which rises the third wall, it feet high. The total elevation of the entire fortification is 59 feet. The stones used in the outer wall are of great size, one of the largest being 27 feet high, I: feet wide and 10 feet thick. The stones are levellenl at the joints. All this material is taken from a quarry of blue limestone at the farther eme of the plateau. There

SOUTH AMERICA

are entrances at either end of this line of defence, and a narrow passage in the middle. There was a high wall along the face of the rock toward the city which has been nearly destroyed. Traces of building within the enclosure are also to be seen. Water was carried into the fortress by subterranean channels.

The island of Titicaca in the lake of that name was the reputed cradle of the Inea dynasty and was always held sacred. There were important buildings unon the island, ruins of which are still to be seen. The so-ealled palace of the Inea is sumrounded by terraces which originally supported beautiful garlens. The building forms a rectangle 51 by 44 feet. The front, faciug the lake, has two loors and two niches. Above these, on the second floor, is an esplanate or terrace from which is a superb view of the lake. The palace has twelre small rooms 13 feet high. The walls were covered with a kind of stuceo which was painted yellow on the outside of the building and red on the inside. The second story does not correspond in phan with the first, and has no connection with it. The "Temple of the Sun" stands on the crest of a ridge on the eastern side of the island. It is a rectangle IO5 feet long and 30 feet wide, and has five doors with two windows between each pair of doors. It is built of rongh stones laid in clay, stneeoed and painted inside and out. The sacred rock at Manco Capace and the fonutain of the Incas at Titicaca are also interesting. The island of Coati in Lake Titicaca which was sacred to the Moon contains an important ruin callerl the palace of the Virgins of the Sun. It stands on the uppermost of a series of seven ter races supported by retaining walls of cut and uncut stones. The huibling vecupies three sides of an oblong court. It is 180 feet long and 80 feet wide, built of rough stones laid in clay and carefully stuceod. The courtyard is surroumled by a series of interesting miches and doorways leading into various apartments. The outside was painted yellow except the niches and cornice, which were ren. There was a secoml story aml a sharply pitched roof. The temple of Viracocha, situated in the southern part of the same platean as the eity of Cnzeo, is remarkable for a wall of adobe 40 feet high, which appears to have heen the central wall of a builling 300 feet long and 87 feet high. Near this temple is a series of small Inca houses in good preservation. Along the valley of the river Vileanota, which is the heginning of the Amazon, and in the passes leating into it, are mumerous interesting ruins. The mountains also on cither side of the valley are terraced in the usual slilful Jnea fashion to the height of about 2000 feet. The most important monuments of this region are the three great fortresses of Ollantay Tambo, which lie outside

SOUTH AMERICA

the pass which separates the territory of the Incas from the sarage tribes of the Amazon Valley. The walls of the chief fortress are about 25 fect high, built of rough stones stuccoed inside and out. Within the walls is a contusion of huillings, among which are a series of immense hocks of porphyry perfectly rut and finely polished. One of these blocks is 18 fect high, 5 feet wide, and 2 feet thick. These stones are brought from a quarry more than two leagnes distant and 3000 feet above the valley. The work at Ollantay Tambo shows some resemblance to that at Tiahnanaco and is ascribed by Markham (op, cit.) to his Megatithic period. A typical Inea house well preserved and in use is to be seen at Ollantay Timho.

Numerous remains in the Titicaca basin have no resemblance to hea work, and apmear to have belonged to a contemporary civilization of the Aymara tribes who were later conotuered by the Quichrea followers of the Incas.

The Inca dynasty which originated in the Titicaca lasin at first goverued only the Quichrea Indians of the plateau about Cuzco. As they grew more powerful they increased their dominion until, just before the adrent of the Spaniards, they had acquired control of the entire continent of South America west of the Andes.

The last to yield to the Inca domination were the tribes gorerned by the great Chimu, a name which prohably stands for an Inclian dynasty which had its seat on the northern enast of Pern, near the Spanish city of Truxillo in the valley of the river Moche. The rums at this place cover an area abont fifteen miles long and five miles wide. There appears to have been a surroumling wall, several miles of which still stanl. From this wall others extend into the city, apparently dividing it into districts. Much of the area thas enclosed has never been built upon. It was, however, carefully elcared of stones and irrigaterl, and was undontitedly used for parks and gardens. Within and without the walls is an interesting series of enormons momeds called lenucus. Of these the most important is the huaca of Obispo, which is built of rough stones and adobe. It covers an area 550 feet square or abont eight acres, and is 150 feet high. Another immense mound is callel the huaca of Toleds, from Don Garcia de Tuledo, who extracted an immense treasure from it. It is now very much in ruins. The great pyramid of Moche at chimu is a rectangular structure about 800 feet long and 470 feet wide, forming a plateau about 100 feet high, above which rises a square pyramid to the extreme height of 200 feet. Other smaller huacas rescmble those descriherl. The most important of these ruius is the so-called palace of the great Chimu. It covers a large area divided into courts and

SOUTH AMERICA

chambers. The most improtant feature of the palace is the Hall of the Arabesques, about 62 feet wide and probably twice as long. The walls are covered with effective and intricate patterus in stucco relict.

The Indian tribes along the coast of I'eru, which were all finally conguered by the Incas, had considerable civilization and left many important monuments which resemble rery much those of Doche. The most important of these ruins are at Pachacama, twenty miles south of Lima. The Incas also erected at temple of the Sun at Pachacamac.

Morlern Architecture. The most interesting momments of modern architecture in South America are situated in I'ru, and were built soon after the conquest of that country by the Spaniards. The city of Lima was founded by the confueror, Francisco Pizarro, Jan. 6, 1535. The feast of Epiphany falling on this day, the new eity was named Cind de los Feyes, or City of the Kings. Lima, which is a cormption of Rimac, the name of the river on which the city is situated, has taken the place of the original name. The first stune of the cathedral in the Plaza Nlayor at Lima was lail hy Pizarro Jan. 18, 1535. It was consecrated ninety years later. The cathedral was nearly destroyed by the great earthruake of $17+6$, but was afterward rehuilt. The building is of stone, except the towers, which are of stucco. The interior has five aisles and is much decorated, but is poorly lighted. The ohl patace of Pizarro, on the south side of the Plaza Miyor, has also been much rebuitt. The episcopal palace was built by the order of Francisco Pizarro near the cathedral. The University of S. Marcos was founded by royal decree in 1551, and finished in 1576. The Chamber of Deputies now occupies the great hall, formerly chapel, of the University. The old hall of the Inquisition, in the Plaza de la Constitution, is now the Scnate House. It has a famous ceiling imported from Spain in 1560. The convent and church of S. Francisco, founded in the same year as the city, 1535 , are very extensive. Immense areas of the interior are covered with tiles beautifully designed. The buikling of the International Exhibition at Lima was designed in 1870 by Dr. Don Mannel a Fuentes. There is a fine old brilge across the Rimac at Lima.

One of the most interesting Spanish buildings in Pern was the cathedral of Arequipa, which was designed by an architect named Andrea Espinosal, and finished in 1656 . This church was burned, but rebuilt. It was ilestroyed again by the great earthquake of 1868 , which nearly obliterated the city of Arequipa. The fine church of the Jesuits at Arequipa was destroyed at the same time. At Callaw, the port of Lima, the old fortress of Real Telipe, which was built in 1770 , is very interesting.

SOUTH AMERICA

At Cuzeo, the old capital of the Incas, the convent of S . Domingo was built on the ruins of the temple of the Sun. The palace of the Virgins of the Sum became the comvent of S. Catalina. The chureh of the Jesuits, one of the linest buillings in South America, occupies the ruined palare of ITayna C'apace, and the cathedral was huilt on the site of an immense hall constructer by the Inca Viracocha for the festivals of the people. The churd of Lat Merean at Cuzeo has a fine tower and a cloister of white stone. The city of 'Truxillo, in nothern l'ern, was fommled in the same year as Lima, 1535 ; the cathedral and churches are picturesine, but it has no public builings of importance. In the early days of their prosperity, the Jesuits built many small churches of good arehitectural design in the valley of Lake Titicaca; one of the best of these is the church and shrine of Unestra Senora at Copacabana, on the shore of Lake Titicaca. A dominical shrine in the fore court of this chureh is especially interesting.

Spain, Architerture of: Plan of the Alcazar, SEville. Mourish in Oriain, illústrating THE USE OF THE PATIU FROM WHICH LARAE ROONS ARE ENTERFD AND TAKE llAYLIGHT.
The architecture of Brazil is quite receut, and includes few monuments of importance. The larger buillings in the cities of Rio ne Janeiro, Bahia, Pernambuco, have frequently been designed by European architects of note (see Silva, and Granljean de Hontigny). The buildings are mainly of brick, the splendicl woods of the comntry being used in the interior. An exhaustive disenssion of the domestic architecture of Brazil is to be found in Tol. NI. of Rerue de l'Architecture (I853). The most imposing structure in Rio is the great aquednct leading from the Morro de Santa Theresa to the Murro de Sant' Antomio. Like the cities of Brazil, those of Venezuela, Culomhia, Chili, the Argentine Republie, and other South American com-

SPAIN

tries are quite modern and built in the current European fashion. - R. S.

Squier, Peru; Prescott, Conquest af Peru; Markham, History of Peru; Nadailtac, I'relistoric America; Ilutchinson, Timo Years in lem; Stulul and thte, Die Ruinfnstette ron Tiahuencen im Iochlande des ulten Perú; Brelm, Das: Intiareich: Angrand, Article in Rev de l'Architecture,
 Mirpilimale: Revue générule de l^{\prime} strchitechure, V^{\prime} ot. XI., Vol. XXIV.; . . Manuel A. Fuentes, (ixia de Lima; Curtis, Capitals of spanish America.

SOYNERE (SUNERE), HEINRICH ; arcliitect.

The first architect of the cathedral of Cologne, Germany. The first stone of the choir was laid Ang. 15, 1248.

Faline, Boumeistor des Lialner Domes.
SPACE. The area at the corner of a turning stair, limited approximately ly lines drawn througl the newel or angle perpendicular to each of the two strings, or by such a line and one drawn in prolongation of the string. Commonly used as synonymous with Pace (which see for the probahle distinction).

Foot Space.
 Half-Quarter Space. Half Space.

(See Pace and subtitles.)

Quarter Space.

spain, architecture of. The Iherians, or pre-lioman inhabitants of Spain, left no surviving monuments beyond a few slightly known structures in the northern Basine provinces. Of the constructions of the Roman perion, there is an aqueduct at Segovia carried across a valley in a double tier of stone arches; at Merida, in the province of Badiajoz, there are some remains of a temple of Mars, together with fragments of an aqueduct, a so-called Arch of Trimmph and a temple of Diana : at Tarragona, on the Meliterranean, there is a fragment of homan wall superimposed upon a construction of cychopean masoury, the latter being ascribed to the Iberian perioul ; and at Italica, near Seville, there are the remains of an amphitheatre. All of this work, however, is in very fragmentary condition, and the invasion of the Visigoths or Yautals in the fifth century appears to have swept away nearly all the architecture then existing, while the conuluest by the Mors, in the early part of the eighth century, in its turn obliterated most of the remains of the Y'isigothic work. There are some excep ${ }^{-}$ tions, howerer; and the few seattered remains of the medieval buildings, dating from anywhere between the second and the eighth century, present a curious analogy, in style, plan, and arrangement, to some of the Roman or early Christian work of Syria. The slight remumat of national life which was left in the northern provinces after the Moorish invasion developed by growth, conquests of the invaders, and amalgamation of the rival interests, into

SIAN, ARCIITECTLIEE OF JLATE I
Torn (Leon); the Collegiate Church (Colegiata); interesting Romanesque work, and one of the
three or four serions attempts made in Spain to produce a cupula-like roof to the crossing of a church.

SPAIN

the mediaval kinglom of Spain, culminating in the capture of Granada in 1492 . The seat of government being fixed ahout Madrid, the Renaissance style, which was importen from Italy and fostered by constant intercourse with foreign artists, wass naturally at its best on the central platean. The north was not a fashionable part of the kingdom, consequently the Gothic remains which had grown up there dming the early centuries of the monarchy were little disturberl, while in the central portion most of the medieval work disappeared to make room for the Renaissance palaces. In the south the

There does not appear to be in Spain a very well-lefined developnent or conscentive growth from the medieval to the modern styles. Rather, each style appears to be broadly and frankly borrowed outright, the only essentially Spanish factors being displayed in a few peculiarities of plan and in the spirit of the detail, the noticeable lack being in inventive progression rather than in ability to adapt. Of the mediaval work there are a lew examples in the province of Catalonia, such as the very interesting convent of San Pahlo at Barcelona, in the style of the Romanesque of the south of

Spain, Architecture of: Choir and Aisleg of Toledo Cathedral; beginnivg of the 1tth Cfentuky. The Alterxatus uf squares and Triangles in the Vaulting of Deambulatory is very rare; it uccurs also in the Cathenral uF Le Mans in Fhance.

Moors fouml little to preserve when they first entered the kinglom, and the architectural work that they dill was of such manifest value as to strongly impress the Ciristian conquerors, so that as the Moslems were driven out and the Christian intiuence gained the ascendence, the Moorish work in the sonth was, on the whole, rery little disturbed, resulting in our finding it in its present condition to-day, with but a slight admixture of the Renaissance. The existing architectural remains of Spain, therefore, present, in their geographical distribution, a curions analogy to the conditions of the soil aud elimate, the Gothic and Romanesque being chiefly found in the north, the Moorish in the sonth, and the neoclassic along the central phateau.

France. There is also a striking interior arrangement in the cathedral and in the church of S. M. del Mar at Barcelona. The best of the Romanesique work, howeser, is formd at Salamanca, Zamora, and the neighboring "ities in the west of Spain, and in the old province of Leon. There are three buildings in this locality which exhihit a certain progression, and were undoubtedly successive improvements upon an original motive. The dome of the Zamora cathedral comes first, a low cupola resting upon a continuous areade, with gabled pavilions at the four fares, and eircular conical roofed turrets at the angles. The old cathedral at Salamanca is a second step. In this instance the cupola is raised considerably, there
is more elaboration in the detail, and the style of the work approximates closely to that of the Romanesque of Aipuitania, without, however, losing its lecidedly Spanish decorative treatment. The third strueture is the Collegiata at 'loro, a few miles east of Zamora, mesenting little architectural interest exiept for the large tower over the intersection, which is sixteen-sided in plan, with a donhle row of arched windows, with round turrets at the corners, the whole erowned in its present condition by a flat tiled roof, thongh there is every evidence that the intention was to superimpose a stone enpola or roof in the style of the Salamanca eathedral.

Spain, Architecture of ; Arcades on Patio; Palace at Guadalajara; about $146 \overline{3}$ A.d.

These churehes show a development of Romanesque arehitecture which is manifestly Freneh in its origin. Indeed, there is evidence, more or less vague, that the cathedral at Zamora was built by a French architect, the character of the detail and the arrangement of the cupola all suggesting French work, while the north transept has a bokd, well-proportioned fortal which is thoronghly in the style of the sonthern French Romanesque. This buihling is believed to be one of the earliest purely Romanesque structures existing in Spain. The motives of the Spanish Romanesque were very few and exceedingly simple, but the decorative sense of getting the very intmost out of the play of light and shadow over a phain wall surface, emphasized by a few sharp bits of detail, is a pecu-
liarity which mus throngh nearly all the Spanish work. The chureh of the Dagdatena at Zamora is another early Rumanesup work, which, however, is less distinctively Spanish.

At Avila, a short $⿴$ listance from Salamanea, in the province of Ohl Castile, are several noteworthy Pomanesque structures, especially the churd of S . Vincente, the principal portal of which is undoubtedly the riehest and most fully developed specimen of the style in Spain. It is, however, so completely in the spirit of the work at Arles, in Provence, that it has less purely Spanish significance. In the little ehurch of S. Petro at Avila there is a more perfect levelopment of the Spanish tendencies, as manifested by the treatment of the west front and by the briliant decorative character of the details.

A somewhat isolated example of the Romanesque is found near the extreme northwest point of Spain, in the eathedral at Santiago de Compostella, dating from 1082, which forms one of the earliest examples of a complete Spanish cathedral. It is modelled quite closely after S. Sernin, of Toulouse. The western portal, known as La Gloria, has been considered one of the greatest achievements of Christian art, fairly ranking with the north porch of Chartres.

Of the strictly Gothie work the best is found farther north, at Burgos, in Old Castile, and at Leon, in the provinee of that name, the two cities lying near the northern seacoast. The Burgos eathedral is three-aisled, with transepts and chevet, and the interseetion is crowned by a high dome. The exterior of the churel has a rather simple west front, with two towers with openwork spires, strongly suggestive of the spire of Freiburg, in Breisgau (Wiurtemburg). The interior presents one of the noblest efforts of Gothic arehitecture, with combinations of decorative effects in the earving, and truly scenic dispositions of light from the tall central eupola such as have seldom been surpassed, and whieh, together with the elaborate enclosure of the choir, the theatrical effect of the altars, and the richness of the side chapels, combine to make this one of the great eathelrals of the world. The effeet of the interior, however, does not bear analysis. In an architectural sense it is illogical, and where it follows precedent it goes astray, but as a work of art, as a combination of motives and details which were used with only indifferent appreciation, it is remarkably successful, thongh entirely an unacademic creation. The cathedral

SPAIN

at Leon is much more rigid in its adherence to the canons of northern Guthic architecture. The details are correct, the proportions are on the whole pleasing, and isolated portions of the architecture seem like a page from the Ile de France. The interior, however, shows more Spanish feeling in arrangement of the plan and in the disposition of the choir. All of the Spanish Gothic work is imitative, having less distinctive character than the Romanesque;

SPAIN

elaborate stonework, sometimes merely a high metal railing or grille. In the design and in the elaboration of this choir cnclosure the Spanish architects developet a remarkable ability, and in nearly all of the large churches these are worthy of careful study.

The cathedral of Oviedo, near the north const, has a rery interesting tower in the late Gothic style. The cathelral of Pamploua, in Navarre, amoug the spurs of the Pyrenees, has

Spain, Architecture of: Palace of Charles V.. Granada; begun about 1530 A.d.; Never FINISHED.
and, indeed, the only peculiarly Spanish feature about the Gothic churches is in the plan. In Spain the chureh is built primarily for the clergy, consequently the space occupied by the priests includes, not only the portion to the east of the intersection, which is specifically desig. nated as the choir, but also a large space reaching out into the nave of the church, and often including a good deal more than half of the total area (see Trascoro). This space is furthermore usually separated from the rest of the building by a high screen, sometimes of
a successful interior arrangement, and there are quite a mumber of smaller Gothic churches which present many points of interest. At Saragossa, in Aragon, the cathedral of Lo Seo has some of the best vaulting in Spain, somewhat on the style of the German hall churches. Architecturally the interior is chiefly noteworthy, however, for its magnificent carved choir euclosure in the style of the Renaissance.

In the central region the most interesting example of Gothic work is afforded by the cathedral of Toledo, in New Castile, a short 562

SPAIN

distance south of Madrid, which, in some respects, is quite as remarkable as the cathedral of Burgos. The westeru tuwers recall quite strongly some of the perpendicular English Gothic work in its treatment of the wall surfaces, thongh the design of the spire with its triple crown of thoms in the form of huge rays is unigue and peouliarly Spanish in its effect. The interiur of Tolelo cathentral is one mass of richness. The grille work enclosing the choir is a marvel of claborate wrought work, and the contents of the chapels, the sacristy, and the choir are of the fervid theatrical type which lends such a character to so many of the Spanish churches, rich in gilding and elaborate carving, full of colour, and, though often incohereut in design, certainly rery splendid in

SPAIN

and was built as the chosen residence of the Moorish kings. The Moorish architecture was peculiarly a matter of lecoration. The exteriors of all the structures of the Alhambra are mere huge unformed masses of masonry, while the interiors were most elaborately decorated with stncco and tiling, the rooms being arranged around open courts and connected by colonnades, which let the light and air in everywhere. Unls a small portion of the original strnctures is at present in repair, but enough remains to give one a very fair realization of the decorative motives and the general arrangement.

The mosque at Cordova is a structure which was erected, in 7.0 , on the general plan which claracterizes the mosques of Northern Africa, a

Spais, Arvhiterture of: Cathenral of Jaen. begry 1532 . 'Thf. West Froxit and Towers, Thirti l'ears later; uNe of the fivest N゙eoclansic Desigss.
effect. The Spanish idea of these churches seems to bave been to get the rich effect, no matter how it was obtained, and. as the additions made to these cathedrals during the Renaissance periond were always carried out with a larish hand and no lack of resources, the result:, while radicalls different from the grand, dignified treatment of the northern Gothic churches, is fascinating by its bewildering richness.

At Serille, in Andalnsia, in the far soutb, the cathedral is of architectural interest chiefly for the elaborate grille work about the choir and in front of some of the chapels. The architecture, per se, has little distinctive charm.

Of the Doorish remains, the Alhambra is a collection of semi-letached structures disposed irregularly along the summit of a hill jutting out into the ralley above the citr of Granada,
huge rectangle divided by interior columns into small bays, each crowned by a brick rault, and the whole preceded by a large garden. The columns which support the vaulting, together with their capitals, are mostly spoils from Roman or early Christian buildings, and were put in place apparently withont much attention to special fitness, varying in material and somewhat in size. The raulting is in red and white brick, or red brick and stuceo, and is one of the fow examples remaining in Spain of Moorish masonry vaulting. All the ceiling effects in the other Moorish buiddings are obtained with plaster or wood. In the rery centre of the mosque has been built a late Gothic or early Renaissance cathedral, which is sutficiently uninteresting by comparison with the Moorish work. The old Moorish sanctuary bas been preserved and restored, and the deco-

SPAIN, ARCIIITECTULE OF. PLATE II

Burgos; the cathedral seen from the sonthwest. The western towers are copies of northern work of the same character and epoch, hut the great lantern (cimborio) which covers the crossing, thongh very late in epoch (1567), is extremely in-
teresting in its mass and general treatment in connoction with the cathedral rouf, and even its detail is fine. The that roofs of nave and transept are characteristic of spanisll work of the time: they are covered with heayy stone flags.

SPAIN

rations put, as nearly as possible, in their original shape, so that this part of the mosque presents an extremely brilliant effect of the Moorish decoration applied to the architectumal furms.

There are several examples of Dloorish construction atturded by sume of the Toledo churehes. S . Cristo la Laz is a part of an earlier Moorish structure, and contains a considerable portion of the original brickwork, while the interior ut the ehurch of S. M. la Blameat is a part of an ohl masine in which the Moorish roustruction and the decoration hare been on the whole pretty carefully preserved.

The third most important of the Moorish remains is the Alcazar at Seville, a structure which was erected under the direction of the

SPAIN

all carried ont in plain brick, the upper part blooming into an elaboration of arehed forms, and crowned at present by a later Renaissance cupola and balustrades, while a weather vane in the form of a gigantie figure of victory caps the whole. However much this tower may have suffered by recent changes, it still presents the eftect of Murish work. The Renaissance work at the top has uot sutticed to destroy its character, and it is quite probable that all of the lower part is in essentially the condition it was before the Christian conquest.

There are a number of other examples of the Domish construetion in brick and stone which have survived to our days. The Puerta del Sol at Tuledo is a part of the old Moorish fortifications, and an interesting rombination of hrick

Spain, Architecture of: Santhago de Compostella: Cathedral, West Façade, 1680.

Christian eonquerors after the Moorish kingdom had been destroyed; but the work, the design, the deroration, were all intusted to Moorish captives, and thongh it is not as pure in style as the Alhambra, it is on the whole in better preservation, and is of very considerable interest. The only strictly Moorish portions are the entrance parilion adjoining the garden, and the interior work. The gardens also are believel to be of Moorish origin, though they have been modified in the Renaissance period so as to lose their original eharacter.

The Giralda tower of the cathertral of Seville is another of the peculiarly Moslem remains, and thongh forming a part of the eathedral it was, originally at least, hegun as a feature of the mosque which stood upon this site. It is a magnificent structure, almost entirely of brick, combining a perfectly plain wall surface in the lower part with a species of encrustel tracery
and stone. Then in the Leaning Tower of Saragossa there is an example of the sort of brickwork which the 3 oors used, though this structure was built in 1504. The tower is a little over 40 feet square at the base, constructed entirely of brick, but with a variety of forms, moments, and details reealling both the Gothic and the Moorish styles. There are also several other smaller towers in Saragoss which show the character of the Moorish brickwork, such as that of the elurches of S. Pablo, of S. Gil, and S. Miguel.

There is a little structure in Seville, known as the Casa de Pilatos, whieh was erected during the Fienaissance period, in the interior of which the Moorish workmen were evidently given a pretty free hand, with the result of pronlucing an interior decorated almost entirely in glazed tiles and elaborate stuceo work.

The influence of the Moorish art made itself

SPAIN

felt through all the suceceding Spanish work. The so-ealled Mudejar style, which was a combimation of Gothic and Moorish motives and comstruction, continned down well into the period of the sixteenth century, and in later examples there is often an alded mixture of henaissance tharor which prooluced most charming combinatimis. Examples of Mundejar work are scattereal all through the sonthern provinces and in Toledo. The comvent of S. laula at seville illustrates the latter phase of this style, wherein glazed tile, enamelled terra sotta, and monlded brick are used as Moorish details in combination with
tations than the Gothic, Romanesque, or the Renaissance.

During the sixteenth century Spain was at the height of her power. Her king ruled, as Emperor of Gemany, over the greater portiou of civilizel Europe. Within her borders there was peace from une end of the land to the other, while the discoveries made by her voyagers in the west opened the way for a flood tile of wealth which was as lavishly expended mpon internal improvements, palaces, magnificent churches, and convents, as it was plentifully received. By her possessions in southern Italy, Spain was in touch with the dominant artistic race of Emope, aud her constant intercourse with Italian art made the introuluction of the Italian Renaissance a natural sequence, while the lavish profusion with which the Spanish nobles dispensed their easily acquired gains brought to Spain some of the most skilful artificers and the most ahle dexigners. That the Renaissance in Spain falls short of the artistic excellence of the work of the corresponding perioul in Italy was tue to the spirit of the spanish ©themselves, who were not content with merely importing their art of architecture, but endeavourel to extend and perfect it to their own taste, and under the hothonse influences of the Spanisli temperament the lienaissance bloomed in Spain into a style which, while owing all its antecedents and traditions to foreign influences, and while far from Italian perfection, was at its best thorouglly Spanish in feeling, and showed many of the better qualities which hat characterizen the earlier Romanesque and the later Mudejar styles. As a style it deserves special study, because of the intensely decorative qualities of the work, the manner in which the detail is treated in mass rather than as mere detail, and the extremely effective disposition of masses of light and shade. All of these
faience work, which is almost Della Rubbia in style, the whole adled to a construction, especially about the doorway, which is essentially Gothic. This type of work it is, by the way, which was carricel from Spain by the conquerors into Mexico and Central America, thongh in the cisatlantic work the Renaissance element is more predominant in the details. To the Mudejar style also belongs the church of S. Marco at Seville. This style may be said to have begun in the eleventh century, and to have reached its highest development in the fifteenth, and it, together with the Plateresque style, of which a description will be given later, are two most peculiarly Spanish developments, which seem less influenced by external direct impor-
qualities are made conspicuously manifest in the hospital of S . Cruz at Toledo, a structure dating from about 1500 , and in some respects one of the most unique and characteristic productions of Spanish art. The lingering influence of Gothic or Mudejar art is shown in the mouldings each side of the entrance, the disposition of the arch, and the concentration of ornament. The details themselves will bear pretty close inspection ; they are well exceuted, strongly accentuated throughout, and answer their decorative purpose admirably; while the scheme of the laçade, with its elaborate entrance, its less elaborate upler windows, simple cornice, and ahwolutely plain wall surface, form a kind of combination which can be typified as

Spanish. The interior of the hospital has some excellent work of its kind, thongh less striking than the exterior. There is a stairway with details strongly reealling some portions of the pulpit in the Siena catherlral.

The Spanish Renaissance did not, however, arrive at one bound at work such as the S. Cruz hospital. The line between the late Mudejar and the Renaissance was an irregular one, and is oceupied by buiddings such as the Casa de las Conehas in Salamanca, which derives its name from the pilgrim cookle slrells disposed at regular intervals as projecting bosses over the otherwise plain surface of the wall, a elever tlecorative treatment which has seldom been so sucressfully earried ont as in this instance. The doorway of this house is essentially Gothic in spirit and mass, though the detaits are strongly Renaissance. The courtyard of S. Georgio at Valladolid is another of the early Renaissance structures wherein the Gothie influmee is even more prononncerl, the colmms being thated spirally, and the eapitats of the superimposed work a hizare mixture of the old and the new. There are a number of private honses of the transition style which are of great interest, such as the C'asa te los Momos at Zamora, the so-cratled Honse of Maria la Brava at Salamanea, and the street front of the Casa de Pilatos at Seville, the latter heing interesting in showing how effectively a plain wall and little ornament will set off each other. Of the more pretentions public buildings the Lonja, or Exchange, at Valeneia shows a persistence of the Horesco-Gothie motives with an adormment of the Renaissance forms. The exchange at Saragossa is a design of a very different type, in which the only influence of the early work is manifest in the details of the main cornice. As regards proportion, clisposition of openings, and general mass, this buikling has eaught very thoroughly the style of the Roman Renaissance, and is one of the most dignified, restrained public buildings in Spain. The interior, however, which contains a large hall, reverts to the Gothic type, the raulting being supporter on isolated eulumns, which, though rudely Renaissance in character, are essentially Cothic in construetion.

The palaces of the Renaissance period natirally attord an opportunity for all the lavish hisplay which was so perulianty Spanish. At Guadalajara, ahont fifty miles northeast of Madrid, is the palace of the Infantalos, one of many which can be found in out-of-the-way towns, set in the midst of the most squalid surromblings now, and generally in a nore or less dilapulated combition. The motive of the exterior of this palace reealls the Dialazzo Bevilatequa in Bologna, in its rustioations aud arrangement of the openings. Another interesting palace, purer in type and of more merit in mass, is the palace of the Counts of Monterey at Sal-
amanca; and in Saragossal there is the palace of the Infinta, or more popularly Casa Japorta, with a simple exterion crowned by a comice, recalling that of the bigallo at Florenee, and with a richly elaborated interior courtyard and stairway.

There are a few lonidings in which the ltalian influence is predominant, white the Spanish taste is only manifest in a certain prortion of the detail, of which the Aymmamiento of Seville is a type. This is a perfectly straightforward Italian design, both in mass and in disposition of openings, recalling some of the best of the northern Italian work ; lont the Spanish exnherance crops out in the treatment of the arahesques which fill the pilaster panels, and in the detail of the ormament thrmghont.

The name Plateresque, or the style of the silversmiths, has heen used specially to designate the superalmondant over lecorated work of the middle Ronasisame in Spain. The name is a perfectly fitting one. The work shows a sense of light and shate, a feeling of chiselled elaboration, which is eminently daracteristic of the work which we assume to he peculiarly adapted to silversmiths' designs. That a great deal of it is overdone and thoroughly bad goes withont saying, bat the best of the Plateresque work is certainly very etfective; and if we can forget for a moment the manifest incongruities of the detail in a historical sense, and think of it only as a Spanish produetion, it must be given a very creditable place in julging of its worth. There is a hit of grille work in the sacristy of the Salananca cathetral which is wrought in iron in the most perfect mamer, and certanly merits the appellation of heing preeminently Hateresque. It is a mere enclosure aromid a sanetuary, but it is one of the richest pieces of metal work in the peninsula. Also, in a private honse in the centre of the commercial distriet of Batcelona, there is a perfeetly charming stairway leading up two sides of an open ecmurt, which is visited ly every artist who knows where to find it, and is a most typical and perfect example of the Plateresque, with the athled merit of the details of the carving being very purely designed and admirably excouted, and quite free from the grotesque distortion whieh is manifest in so mueh of the Spanish work. There is also a most marvellous grille about the royal chapel in Granada eathedral, and some of the most interesting work in Seville and Toledo eatherlrats is in the elaborate lenaissance wronght grilles about the ehapels and the ehoir.

It will be remembered that during the Renaissance perion Spain was noterl for its universities. At Alcala de Henares, Carilinal Ximenes caused to be built, ahont 1497, a group of buildings for the miversity, which are of considerable architectural interest, both by their arrangement and design. Of about the
same time is the work in the University of Salamanea, the primeipal entrance to which shows, considered in detail, some of the choicest carsings of the period. Though this work was executed orer four humdred years ago, the soft, yellowish simdstone has preserved all its sharpness and character, and the details seem as clear and erisp-cut as though executed yesterday. The merit of this work is in the decorative glatity of its carving. As a design, the whole lacks coherence and purpose. The Irish College in Salamanca is a much more sober and a later example, the chief interest centring in a splendid arcaded courtyard, around which are grouped the buildings. At leon, the city which also possesses the magnificent Gothic cathedral, there is a very remarkable group of buildings, forming a part of the convent of S. Marcos. The main front of the boidlings forms a most interesting composition, with a succession of very elaborate archel openings along the central portion, Hanked on the right by the unfinished facarle of the convent church, while on the extreme left the lines of the strueture are carried out by a low bridge. The elaboration of detail about the central portion of this structure is most remarkable. Carrings, statuettes, basreliefs, abound at erery conceivable point, and the mechanical exccution is so excellent one can almost forget the absence of any real architectural feeling in mass.

Of the Renaissance churches of the middle period the two which are most worthy of interest are the new portions of the eathedral at Salamanca, which, though retaining very strong traces of the Iudejar, are most elaborately carsed in Renaissance motives and details, and the Church of S. Doningo or S. Estaban at Salamanca, the entrance to which is simply a trementons display of fine carrings and figure work crowled about a single central doorway, the carvings being, as is so often the case in Spanish work, excellently wrought, beantiful of themselves, but lacking in appropriateness and not forming a part of a comprelsensive scheme. The cloisters of S. Estaban are of more positive arehitectural merit, without being so rich or so essentially Spanish. The arcades of the cloister are in the style of the early Renaissance of Toulouse, while the raulting is a speejes of fanwork which is seldom found in Spain.

The military arebitecture of Spain is not without considerable interest. It is not easy to make any exact classification of it as to architectural style. Of the early Gothic period there are some interesting brick constructions, such as the old castles at Coca, near Segovia, and at Medina del C'ampo, in Leon, a few miles south of Valladolid, both of which are constructed entirely of brick and recill the effect of some of the work about Albi in southern France. Of the early period, also, are the fortifications about

SPAIN

Avila, which are picturesque in the extreme and are still in use as an enclusure, though the eity has grown somewhat beyond them. Of a later period is the picturesque Alcazar at Segovia, and still later is the Alcazar at Toledo, which has a courtyard with interesting letails and a simple but quite effective treatment of a plain exterior wall, while the arch of Gonzales at Burgos, lating frum 1539, is one of the latest semimilitary city fortifications still existiug. There are also scattered through rarions parts of Spain very interesting bridge constructions, most of which show the lingering influence of the Roman domination, or perhaps more truly the Moorish interpretation of Roman constructions, notably the Alcala bridge at Toledo, and the long structure which crosses the river just beyond the Mosque, at Cordova.

The palace of the Escorial, which was built by Philip Il. in the mountains to the north of Madrid, is in a class by itself. Its architectural value is often ignored, hut some of the interior work, though unquestionably copied outright fron Italian models and with a notable lack of any particularly Spanish feeling, is quite effectire. The library, in the style of the library of the Vatican, is interesting and effective, and the interior of the church, which forms a part of the palace, is impressive with a sombre grandeur which falls but little short of being good architecture.

It is but natural that, giren the love of osteutatious display, the desire to keep up the appeurance of one's ancestors, and the artificial life of the Spanish courts, the late Renaissance should degenerate into the most meaningless abnormal growths. As the work of the middle Renaissance is designatel as the Plateresque, so the dereloped exuberance of the later neoclassic, the riot of form, is characterized by the name of an architect who is perhaps unjustly credited with most of the late abominations, Josef Churrignera, who died in IT-25. Notwithstanding the utter abaudonment of good taste which marks the very late work, and the lack of any attempt at coherent design, as is shown in the front of S. Pablo at Valladolid, in the Cartuja of Miraflores at Burgos, or the similar interior at Granada, there still lingered in the late work some traces of the grandiose, pompous, theatrical effects which are so interesting in the best of the Plateresque. The cathedral at Jaen, in Andalusia, north of Granada, is not without some of the gool qualities which, transplanted across the ocean, bore fruit in Mexico in the eathedral of Chihuahua and the chusch at Lagos, though it must be confessed the American examples on the whole are rather more satisfactory. And the homely, uninteresting exterior of Cadiz cathedral encloses an interior which, for theatrical effect and pomp, is bardly equalled throughout Spain. The Spanish archi-

SPAIN, ARCIITECTULE OF, PLATE IIT

Convent of Miraflores, near Burgos; interior of the charel, with tombs. The choir with its carved worlen stalls is in the mildle of the pisture. The rlouble tomb is that of king Juan 11. and his gueen, 1sabelle of Portugal. The wall tomb
on the extreme right is that of their son, Alomzo, who died in youth. These momuments are ascribed to fiil de siloé, and their epoch is about 1490 . 'Tlie iron dailings are entirely moxlem; they destroy the internled effeet of the senlptured surfaces.

SPALL

tects never quite lost the original traditions. To the present day they will urcasionally show the appreciation of the decorative qualities of ormament, and are able to catch the light and shate on their work in a manner which recalls their ancient triumphs.
(I) the eighteenth rentury work, the only structure of any value is the Royal Palace at Madrid, which is a dignified, well-balaneed composition, free, on the exterior at least, from any of the exuberation of the merlieval work, and quite equal in design to much of the best of the seventeenth century work of Northern Europe. - U. H. Blacikall.

Carderera y Solano, Icomutrofia Espmãult,
 de I'rangey, Essai sur l'Architacture des Arahes, 1842; Grangaret the Lagrange, Les Jrahes en Espmyme, dvo., Paris, 1824; Murphy, Areh, Antig., fulio, 1813; 1'arcerisa, lireuerdas y Lellpzus de Españ, 18:9; Spanish Government, Uomumentos Arquitectonicos de España, 185!-1880; stirling Maxwell, Ammels of the Artists of Sprim, 184*; Street, Gothic forlitecture in Natin, London, 1865; 'Taylor, J'oyaye C'turesque en E'spugne, 18:0 10-18:2; Villa-amil et Escosmra. L'Espergne Artistique et Monumentale. I'aris, 1842; Villa-amil y Castro, Ant. prehistoricas de Galicia, Madrid, 1868; Waring and Macquoid. Arrhitecturel Art, 1850; Wyatt, Architect's Note-book in Spain, 1872.

SPALL (n.). A splinter of stone either accilentally removed ly irregular pressure as of superiucumbent masonry, or by a blow of the hammer. Spalls are used to fill interstices in wall building ; or may be used to make, with abundance of mortar, a kind of rubble masomry, which is called also spanled and Spawled Rubble.

SPAN. The interval between two terminals of any construction ; the distance apart of two conseeutive supports, especially as applied to the oprening of an arch or the width of a space covered hy an msupported length of a joist or rafter or truss. As ordinarily unlerstood, the tem applies to the clear opening; but it is frequently used of the distance between the centres of the supports.

SPANDREL. A. The , fuasi-triangular space inchuded between the extraloses of two arjoining arches and a tine approxinately connecting their crowns, - or the space equal to about hatf of this, in the ease of a single areh, with whatever piece of masony or other material fills that space. In therorave styles of architecture this is a favourite jhace for sculpture or inlaid ornament.
B. In steel skeletom eonstruption, the space between the top of the window in one story and the sill of the window in the story above. (Cimplare Allige.) - IV. R. H.

SPANDREL WALL. A wall or partition erected on the extrados of an arch filling in the spandrels.

SPECIFICATION

SPANNER. A horizontal cross brace or collar หッ:!n.

SPAR. I. A bar used for fastening a door or rate.
B. Sime as Common Rafter. From the nse of mhewn timber in primitive or rougl building.

SPARE ROOM. In the United States, a Guest Chamber.

SPARK ARRESTER. (See Electrical Appliances.)

SPAUL. Same as Spall.
SPAVENTO, GIORGIO DI PIETRO; arehitect; d. 1509.

Spavento succeeded Antonio Celega as inzepherines prothus dominorum procuratorum Suncti Marci. He built the new sacristy of S. Marco in Venice (begun August, 1486), and at the same time the church of S . Teodoro and that of SS. Filippo e Giacomo in Venice. Abont 1498 he restored the Sala del Gran Consiglio at the Doges' Palace. He assisted in the construction of the Palazzo della Ragione at Vicenza in 5500, and at the Ponte delle Nave at Verona in 1502 . At the same time he built the Capella di S. Niceolo at the Doges' Palace. In 1506 he made the morkel for, and began the construction of, the church of S . Salvatore in Venice, but was superseded the next year by Pietro and Tullio Lombardo (see Lombardo, P. and T.). In 1507 he was again employed at the Juges' Palace.

Paoleti, limoscimento; lorenzi, Momumenti; Ongania, sun Jurco.

SPAWL. Same as Spall.

SPEAKING TUBE. A tube, generally of metal, extembing fiom one part of a huilding to another, to facilitate intercommmmication by the voice.

SPECCHI, ALESSANDRO ; architect.
In coipperation with Francesco the Sancti he built in Rone between 17:1 and 17.55 the immense stainway leading from the Piaza di Sprogna to the chureh of S. Trinitì de' Monti, the tacale of which was built by Domenico Fomtana. He built the stalls of the Palazzo Quirinale, Pome.

Gurlitt, Gesrhichte les Burockstiles in Itulien.
SPECIFICATION. A. A formulation in Worls of all those items of information regarding a proposed buikling which cannot be graphically set fortl in the drawings. It is consequently supplementary to the drawings and is necessary to define the espreial conditions, limitations, and refuinements to he ohserved by the contracting parties in earrying them into execution, and, sperifieally, the character and quality of the matelial aml workmanship to be employed.

Specifications generally open with the state-
ment of certain general propositions common to most buikling-contracts, inchuting the requirement that the party of the second part, generally called "the contractor," is to furnish all apparatus and utensils necessary to the carrying on of the work; that all materials are to be the best of their several kinds unless expressly set forth to the contrary; that the work is to be carried on promptly, in order, and without unnecessary delays : that it is to be completed and realy for use at a certain date; that the drawings atre to be followed exactly according to their trne intent, not only the general drawings which have been signeit as a part of the rontract, but those tetail and full-size drawings which are to be subsequently furnished in further explanation of the original drawings. After a page or two of preliminaries of this general kind, the more specific items of work and material are briefly recited as far as possible in the order of execution, and each in a separate paragraph with a distinctive title. These inchule, for example, the special recuirements as to excavation, drainage, and grading; the eharacter of footings, fommations, and underpinnings ; of all cut stonework, brickwork or terra cotta; of chimney stacks and all other special constructions in masonry ; of all framing, whether of timber, iron, or steel ; of all partitions and furrings, whether fireproof or otherwise ; of all boarding, flooring, and roofing ; of plastering and stueco work ; of interior finish in all deparments; of doors and windows, stairs, wainscottings, and tiling, marble and metal work; electric wiring and electric connections of all kinds ; gas piping, plumbing, and plumbing fixtures; heating anl sanitary provisions ; elevator service; painting, polishing, and decorating of all degrees and kinds; builders' hardware and all the devices of construction and equipment necessary to the perfecting of the seheme.

As, with the progress of eivilization, the requirements of convenience, comfort, use, and economy or tuxury of every degree have become more exacting, and as the appliances to meet these exactions have become more complicated and scientific, the function of the specification in building contracts has greatly increased in importance. The modest instrument of a dozen or twenty pages, which amply sufficed our fathers to secure good work and material aceording to their standard, has expanded into a formidable document often of more than a hundred. The progress of invention is so active, and methods and material of building are so constantly changing and enlarging, that the architect cammot properly develop his specification upon establisherl formulas or comfortable routine, hut is constrained to a constant vigilance lest in his latest work he should fail to arail himself of the best which science and
invention is constantly larishing upon the art of buitding.

In order to avoid the danger of omissions and to facilitate the work of the architect in the important department which we are now considering, model blank speeifications have been prepared by skilful hands with the intention of inchuding every item necessary to the morlern builiting in construction, material, and appliance: but these, thongh in some eases and to some pratitioners useful, are generally fomd cumbersome in practice, and rather to complicate than to simplify the task of the architect.

The architect of active practice finds it on the whole safer and more convenient to perfect his speeification out of the fulness of his own experience and observation, using perhaps, as a guide and monitor, his specification for some previous structure which has produced the best results with the least contict of interpretation.

Under these conditions, the greatest virtues of the modern specification are comprehensiveness, order, clearness and compacturss of definition, and the utmost brevity consistent with these ipualities; avoiting muccessary enlargements, repetitions, and all that sort of generalization which may mean much or little according to the point of view, which rather confuses than instructs the buider, and is therefore fruitful in disputes. Moreover, the overburdened specification may be and often is greatly relieved, without in any way impairing the force and intelligibility of the contract, by omitting such items as can be inscribed upon the drawings themselves and in immediate connection with the delineation of the details which they are intended to explain.

- Henry Van Brunt.
B. In law, the whole body of description and direction mbler which a buthing is erected; in this sense including the drawings as well as the specification in sense A, inchuding also such orders or decisions of the architect or other superintendent as may have controlled in part the character of the work. (See Law Concerning Buldting, C, 8.) - R. S.

Bower, Specifications; a Practical System for zroiting Sjpecifications for Buildings, New York, IV. T. Comstock.
specus. In Roman architecture, the channel of an aqueduct elevated above the gromul, and corered by an areh, or slabs. Sometimes the same arcade carried several of these chamels, one above another.

SPEER. Same as Spier.
SPEISET. FRIEDRICH. (See Egl., Andreas.)

SPEOS. In Greek, a care, especially a targe or deep one; hence in archreology, a cavetemple or a large tomb; a large and architectural chamber, excavated in the rock. (Cut, cols. 577 and 578.)

SPH FRRISTERIUM

SPHARRISTERIUM. In Roman architecture, an enclosed place adapted to ball playing. The spheristerin were often aljuncts of baths, gymmasia, and impurtant villas. (Compare Fives Court ; 'lemnis Comrt.)

SPHINX. A creature mate up of parts of a lion (but see below) and oí another natural animal, though the artistic conception may be thought rather to include the whole nature of each. In Egyptian antiquity, the humanheaded sphins is always male; and of this nature is the Great sphinx, which is one of the very carliest of existing monuments. It is near the great promids of Gizeh, partly cut from the rock, partly built up of masonry, with a temple or shrine built against the breast, the path to which leads between the fore jaws. The height to the top of the head is 66 fect.

Speos of Rinises II. At Abi Simbel, Upper Ebypt.

The name given to this image is transliterated Hu, or more fully, Hormkhu, a word having connection with the god Horus, ant other androsphinxes seem to have received the same name. Such images cut out of single hlocks of granite and of all sizes up to 8 fect in length, were sometimes arranged along a roadway or approach to a temple, forming a double arenue. (Sce Audrosphinx; Criosphinx ; Hieracosjphinx.)

In Greek and Greco-Roman antiquity the sphinx is always fensale, with human head and breast. In some coins, etc., the forms are of the dog ratleer than of the lion.

SPIER. A permanent screen : especially in a hall, as of a manor honse, or English college, or London Company, the architecturally treated partition cutting off a part, as described in Tol. I., col. 346. Apparently, also, a partition

SPINTHAROS

forming a Quirk. In each sense obsolescent. Also Speer, Sper; called also Enterclose.

SPIGOT. A plug to close the aperture of a fancet and control the flow of liguid. The spigot itself may be perforated for the passage of the liquid. A mere perforated cork or stupper fitted with a peg is a faucet and spigot. By extension, these temos are applied, in the phombing and kindred trades, to various contrivances and parts intended respectively for the reception of, or the insertion into, another part. Thus, each lengtlo of ordinary iron drain pijue is marle with one eml abruptly enlarged to form a socket for the reception of the small end of the commecting length, the small end being known as the spigot cud, the larger as the faucet end.

SPIGOT AND FAUCET JOINT. A joint between two lengths of pipe, made by the insertion of the spigot cud of one into the fancet enul of the other, as explained under Spigot; called alsu Spigot Joint.

SPIKE. A pointed bar or strip, commonly of inm, as in a grille or the cresting of a wall. In the United States, more commonly a very large nail.

SPILE. A. A peg or plug used to fill a nailhole, as a spigot.
B. Sime as Pile.

SPILLWAY. A channel for superfluons water, as from an overtlow of a dammed and walled lake, reservoir, or tank. In some in-
stances this takes the shape of an aqueduct of architectural character.

SPINA. The wall or other barrier extending along the middle of a Foman circus, and about the ends of which the contestants turned.

SPINDLE. A member round in one direction, as if revolved upon one axis. The term fusiform, which means spindle-shaped, implies a form larger in the miklle and approaching a point at each end; but the word spindle is applied more loosely, as to the small pieces of turned wood which make up the grating of the Meshrebeeseh, and equally to the turned part of a post, bahister, or other piece fashioned in the lathe.

SPINTHAROS ; architect.
He built the latest temple of Apollo at Delphi, in Greece. This buikling was not begun before 536 в.c.

Pausanias, ed. Frazer; Brunn, Geschichte.

Spire of sotth Tower, Chartres Cathedral: c. 1175; Height abolt 350 Feet.

SPIRA

SPIRA. The mouldings at the base of a columin.

SPIRE. In general, any slender, pointeal erection, summounting a bilding. Its distinetive form was generated from the steep tower roofs characteristie, especially, of the secular butdings of the Middle Ages in France and Cemmany; but when the roots were transferreal to churches, they gradually submitted to arehitectural modifications, so important, that a new type of form was finally develnped, even as early as the twelfth century, to which the name of spire has been specifically attached. In fact, the feature beame the nataral termination of every church tawer from the thirtcenth to the sixteenth century, and, whether built or not, it was provided for in the design ant construction of every such tower. These modifications of the original steep roof inchuled an increase in the height so considerable that it was often erfual to the whole beight of the suphorting structure, and was rarely less than two-thirds of it.

Spires in their most common anl simplest form, as in parish churches, arose from the tower cornice, where they could obtain elirect support, ams, as they were octiggonal in plan, the diagonal sides were built up from eorbels or squinches, which were developed from the interior corners of the towers ; on the outside these comers were ocenpiel by steep pramidat constructions of triangular phan, rising from the tower cornice and sloping back to the diagomal or cantel faces of the spire. The variations of, ant departures from, these simple and beantiful types are very mmerons, and were entirely infinenced by the desire to obtain variety and enrichment of sky line, and by the desire to reconcile the tower with the spire, so that together they might form one harmomions composition with no risible line of demareation, as in the sonth tower of Clartres, and in those of Somlis, Reims, Lam, ete. To this end the spire rils were hroken into rieh crockets, tall gilled spire liglats grew up on the faces, in emulation of the pinnacles crowded aromed the base of the spire ; often an ottagmal open lantern was interposed between tower and spire, and pimacles were built on the unocenpied comers of the tower, thanking the lantern as at Freihurg in the Breisgan. The sides of the spire wre often phereesl hy foliatel openings, and sometimes, as in Freihurg in the Breisgau, Burgos in Spain, etc., the whole strueture became a mere cupenwork of tracery. In these emrichments of the primitive type, every deviee of design was used to ohliterate the line of demareation between tuwer and spire, and the general pyramidal effect of the combined structure was secured hy the successive ofisets of the tower buttresses, so that the tapering effect, as esperially it S. Stephen's at Viemna, hegan at the gromul, and one feature melted into the other by insensible transition.

Spire of North Tower, Charthes Cathrinill: Finished 1513: Helliht AbuUt 380 feet.

682

SPIRELET

SQUARE

In other and later varieties, esperially in Euglaud, the spire arose from the roof of the tower behind a mask of ornamental battlements and pinuacles, confessing itself as a separate structure. In these cases the spire was often of mood. In some of the later mediseval spires in the sixteenth century, the ambitions builders lost sight of the primitive type, and a general pyramidal effect was obtained by the smperimposition, its at Strashurg, of a diminishing succession of highly curiched rertical steps, When, in the Kenaissance period, the church towers climbed in this way to their final consummation with classic letail ingeniously disposed, as in the famous churches of Sir Christopher Wren in England, the constructions ceased properly to be spires and became steeples, though the latter term is sometimes looscly applied, even to examples so pure as that of Salisbury.

- Henry Van Bruxt.

SPIRELET. A small spire, as of a pinnacle or timret.

SPVR: English Romanesque;
SPIRE LIGHT. A window in a spire, generally in the form of an attennated dormer, with a steep roof or gable, used less to give light to the interior than in conjunction with pinnacles to enrich its outlines. (See Spire.)

SPLAY. Any surface, larger than a Chamfer or a Berel, making an oblique angle with another surface : specifically sail of the oblique jamb of an opening, as in a window or doorway.

SPLINE. A. A thin, narrow board, correspouling generally to boards used for ceiling, and the like.
B. Same as Loose Tongue (which see under Tongue).
C. Iu drawing, a thin strip of some elastic, thexible material, used as a guide in drawing curres, bs being bent to the desired form and held in place by weiglats or pins.

Feather Tongue Spline. A spline in sense A, but cut to a bevel. (See Clapboard.)

SPLIT PIN. A pin, as a spike, split at the point, so as to spread when it is driven in, giving somerthat the form of a dovetail, and making it difficult to extract.

SPRING. A. The line or plane at which the curre of an arch or vault leaves the upright or impost.
B. Resilience, as of a floor; its elasticity when compressed.

SPRING (r.). To leare its impost by rounding upward and outward, said of an arch or rault. In making eleration drawings and section drawings, the horizontal plane at which this takes place is represented by a horizontal line ; hence, the common term, Springing Line, which is used even when the building itself is under consideration, as when it is said by a person looking at a vault: The springing line is about nine feet abore the pavement.

SPRINGER. A stone or other solin which is laid at the impost of an arch. (See Skew and following titles ; also spring, v.)

SPRING HOUSE. A building erected over a natural spring to protect it from imjury or impurities ; sometimes decorative, or large enongh to contain fixed seats; or used as a place for cooling milk, or the like, in the cold water, as frequently on American farms, where the house is roughly built of wood.

Rochester Cathenral: c. 112).
SPRINGING COURSE. (See Spring, r.; Springer.)

SPRINGING LINE. The line marking the level from which an arch springs. (See Spring, v.)

SPRINKLER. A s5stem of perforated pipes extending throngh a building, and at freyuent points comected with a water supply, controlled by fusible plugs, which, when melted by au accidental fire in their neighborhood, automatically turn on the water aud start the sprinklers to extinguish the flames.

SPUDD AND RING. A metal ring or ferrule combined with a projecting pin, and applied to the foot of a woolen post, or the like, to secure it to a stone base or sill, the pin being inserted into the stone. - (A. P. S.)

SPUR. A. In timber framing, a diagonal brace between a post and a tie beam or rafter.
B. A huttress or similar projecting piece of walling.
C. In mediseval architecture, specifically, the carred claw or griffe projecting from the lower torns of a column, so as to cover one of the projecting corners of the square plinth beneath.

SPUR BRACE. Same as Spir, A.
SQUARE. A. An open space, generally

SQUARE

more or less rectangular, in a town, formed at the junction of two or more streets, or by the enlargement of one for al short distance: especially, sueh a place provided with a park or parks.

Spur: English Guthic, Earlifest Type; S. Cross, Winchester.
B. Same as Block, E.
C. An instrument intended primarily for laying out right angles, consisting nsually of two arms fixed, or capable of being acenrately adjusted, perpenticularly to each other.

Carpenters' Square. A steel implement forming a right angle with a shorter and a

SQUARE-HEADED

sense C, having a long blade attached at about the centre of a shorter crosspicce. In nse, the latter is moved along the colge of a drawing brard, lowling the long blate in suctessive parallel posizions. Sume Th squares have adjustable hanles, which can be set at different angles with the heal.

SQUARE (v.). To provile by an instrument, or otherwise, that the angles of a piece

Spur: English fothic; 13th Century; StockBURY, KENT.
of work or material are right angles; or to ascertain the anoment of their deviation from right angles.

SQUARE END. The eml of a piece of timber when cut oft square, in contradistinction to an end prepared for framing with a tenon or otherwise.

Squisth: Oxfurd Cathiedral; $\because \quad 1240$.
longer arm, each dividel into feet and inches or other measurements.

Set Square. In drawing, same as Triangle.

T Square. A draughtsman's square, in

SQUARE-FRAMED. In joinery, framed with square and not mouldel pieces.

SQUARE-HEADED. Having a straiglit horizontal lintel or a flat arch, said of a doorway, or window upening.

SQUARE STAFF

SQUARE STAFF. A womlen rol, square in section, set thush in an extermal angle of plastered surfaces to secure the eorner from injury. When monded it is called a staff bead. (See Shaft; Staff, BG: also subtitles Angle Bar ; beall.)

SS.
of the high altar from a point where it wonld otherwise be invisible. (Sce Hagioscope.)

SS. A. The abbreviation for santissimo, -ma, -mi (Italian), or sanctissimus, -ma, -mi (Latin). The most holy; a title generally reserved for the Trinity or the persons of the

SQUINCH. An arch, a lintel, corbelling, or system of such members, built across the interior corner of two walls. as at the top of a tower, to serve as fommation for the diagonal or canted side of a superimposed octagonal spire or lantem. The squinch performs the functions of a Pendentive (which see).

Squint: Crawley Church, Hanpshire; 13 th Centery; the Shll Serves as a Piscina.

SQUINT. An aperture pierced askew through the interior walls of a church, often on the side of a chancel arch, so as to give a view

Trinity and their attribntes, including the Host, the Assumption, the Cross. Usel ceven in English writing in the same sense.
B. The abbreviation of senti. i.e., saints, in cases where at durch is dedicated to two saints;

SQuint: S. Mary Magnalen, Taunton; 14th Century.
as (in Italian) SS. Giovanni e Paolo. In the same sense (in English), used to replace the word "Saints," though rarely.

STAB

STAB (\%). To roughen the surface of a brick wall by light blows with a point, so as to make a hold for phatering. (see Key, C.)

resistances, or stresses, exerted at the joints of the priece.
3. That the forces exerted upon each of the parts into which the pirees of a strueture can be conceived to be divided shall balance each other. That is the stress exorted at the infeal suffure of division between the part in 'fuestion and the other parts of the piece.

Stability emsists in the fulfilment of the first ant serond conlitions of equilibrimm under all variations of loul withingiven limits. Strength

Stable at Mícon (Sĥone-et-Loire), France.

STABILITY. As applied to structures, the property of remaining in equilibriun withont change of position, although the externally applied force may deviate to a sertain extent its mean amount or position. The conditions of equilibrium of a structure are these : -

1. That the forces exerteld on the whole structure hy extemal homies shall balance each other. The external forces are the force of gravity, causing the weight of the structure, the pressures exerted against it by borlies not forming part of it, and the supporting forces, or resistances of the foundations.
2. That the forces exerted on cach piece of
consists in the fulfilment of the third.

> - W. R. H.

STABLE. A place where horses are housed,

Upier Story: D, Landing; E, F, H, Bed Pomms; G, Funner Luft.
fed, and cared for, and, incidentally, where rehicles, honses' equipments, and feed are kept for use, and sometinnes where roach-

Grousd Story: A, Carriage House ; B, Stable; C, Harvess Ruos.
a structure shall balance each other. These forces are the weight, the external load, and the men or gromms have their lodgings; also, in comprosition, a place provited for other tomestic animals, as cow stable. Stables for horses may be distinguishod as private, club, livery, brecders' or trainers', firm, sale, delivery, and racing stables.

The principal features in the plan of a private stable are (1) the stable proper, allowing an area about 10 by 10 feet each for box or loose stalls, and about 5 by 9 feet each for common stalls, with a sufficient common space for stable service in grooming and tackling, ventilation in

STABLE

the ceiling, comecting by a tronk through the loft above with a rentilator on the rouf, drainage for each stall, high windows, a watering truigh, and feed lucts of warions sorts from the loft above for grain and has; (2) the carriage (in wach rom, allowing about 100 sfuare feet for each rehicle, and an sufficient clear space for entrance and exit aud for harnessing and unharnessing, the carriage room being generally the restibule of the extablishment ; (3) the wash stand for washing carriages, which is either an annex to the carriage house, necupying 350 to 400 square feet, with thows shellding the water to a single drainage point, or a depression in the flour of the carriage house with similar draiuage facilitios and corered by a grating; (4) a harness rom, opening generally from the stable directly or indirectly, and containing rarions hanging devices for harness, together with some meaus for heating ; (5) an enclosed yard connected with the stable: (6) a dung pit, generally in the yard: and (i) an open shed for the temporary shelter of carriages. The secoml stury is connectel with the first by an enclosed stairway, and contains orer the stable a grain and hay loft with an exterior dour for taking in feed of all sorts, provision for ventilation by the rent trunk before mentioned, and often lodging rooms for coachmen or grooms. A cow stable and tool house often form a part of this group. The stable proper contains the stalls, of which the partitions are of plank abont four feet high, sumounted by a ramp, generally of "pren ironwork. The stable floor is of wootl, elay, asphaltum, ritrified brick, or artificial stone, sloping to drainage gutters and extending into the stalls; sometimes the stall floors are of compact clay or earth, and a stont wood grating is often placed over the stall paring. In the comutry, the rarions parts of the stable are often in separate butt connected buildings, or in distinct wings of one long, low building: but in the city, where space is valuable, there is a far greater eompaetness of plan than is necessary or desirable elsewhere.

Chub stables, as they are generally built in crowded localities, are sompart forms of large private establishments, but with more ample accommodations, the washing place being often in a covered conrtyard, placed between the eoach house and the stables.

Livery stables are generally an enlarged but inexpensive form of club stables, without their luxury or completeness of appointment and finish, and often without adequate ventilation. The stalls are generally narrower, and are utten placed either in a basement or in a second story, with access by inclined planes; and, in general, every deriee of economy is used in their construction and equipment consistent with the decent keeping of borses and rehicles, and prompt service.

STABLE

In breeders' and trainers' stables, conrenience and economy of service are obtained in large, well-built, barn-like structures, generally prorided with a broad central passage like a nare, the stalls being ranged on either side, generally facing inward with passiges belind, and the hay and other feed stored in lofts of half stories above. Special provisions are made for ventilation by lourres, clearstories, or lanterms, and for cleanliness: and sejarate accommolations are proviled in loose boxes for breeding mares and colts. In those parts of the United States, especially in Kentucky and the southwestern states, where the brecting and training of highbred horses form an active industry, this great harn, with its oftiees, is often the prineipal building in a group of subordinate structures for hospital service, farriery, ete., with ample stable yards for airing, well-watered pastures, and often a private track for the training of racers and roadsters.

In sales stalles, where provision must be male for several lumdred animals constantly changing, the stalls are disposed in a serics of long ranges, heall to heal, with broad passages between. A counting romn, and generally a salesrom with seats in successive grales on one side, a pulpit for the anetioneer on the other, and an arrea between for the display of the stock under sale, form an essential part of such an estallishment : and the whole is contained under a wide rouf sloping on two sides, supported on posts between the stalls, with a lourre or clearstory at the top provided with numerons windows for ventilation and light.

On the Continent of Europe the chateau or Schloss in the country, or the hôtel in the city, generally has its stable in the buildings surrounding the quadrangle, to which access is obtained by a gateway in the enclosing wall.

Cattle stables are rarely provided on a large scale in the great cattle-raising regions of the United States, except for the protection of high grade stock. In the neighborhood of great abattoirs and packing honses, immense feeding stables are sometimes established, in which the herds, which have been rearel on the open ranges, may be fattened for the market more readily and conveniently than in the pastures. These slieds occur not infreruuently as part of the plant of large breweries, the grain, after haring been deprived of its alcoholic properties, being transmitted hoot through trunks to long feeding troughs, which have ranges of envered stalls on either side. Stables for blooded stock do not differ materially from those provided for the breeding of horses. The rural farm stable for milk cattle is a long and often rough structure, without mueh distinctive charaeter. The farm stock is often honsed in a part of the hay barn, on the main floor or in a basement with access from the rear. - Hexry Vin Brent.

STACK

STACK. 1. Uf a ehimmey. (See Chimney Stack.)
B. For the storage of books in a library. (See Bookstack: Liluary; Starkroom.)

STACKELBERG, MAGNUS, FREIHERR VON ; alrchitect; b. 1787 ; 11. 183.

Educated in Dresten, and from Dresten went to Rome, and in 1810 to Greece, where he assisted in the exavation of the temple of Atliena at Egina and the temple of Apullo at Bassar (see Corkerell, C. R.). He pubbished Der a lpollo tempel zue Busswe in Areredien (home, 1 sed, folio), and Lat (rime cturs piltoresques et toproyruphirzes (Jaris, $\mathbf{1 8 3 4}$, folio).

Senbert, Filinstler-lexicon.
STACKROOM. A room in a library provirled for the bookstacks. Usually, in public librarles, such rooms are not open to the public, the books being served from the room by the attendants.

STACKSTAND. A structure intendet to receive a haystak, usually consisting of a eireular frame with uprights which lift it : feet or more above the ground, for the purpose of keeping off dampmess and vermin.

STADDEL; STADDLE. - A. A prop or post, such as maly he used for temporary purpose, as in scaflobling.
b. Same as Stackstand.

STADHUIS. In the Netlerlands, a town house or eity hall.

STADIUM. In Roman archwology, an open area for the foot race and for the exercises of athletes; often made architectural by its association with Therme or the like.

Staff (I.). A. A piece used to close the joint between a wooden frame, as a window or door frame, ant the masonry in which it is set.
B. A piece used to strengthen or proteet an external angle in plastering ; often called Angle Staff.

STAFF (Il.). A kind of stiff plastering held together with any fibrous material, and generally used for exterior surfacings and moułdings, as in temporary buildings.

Staff bead. Same as Angle Staft (see Stalf, B).

STAGE. A platform in a theatre, anditorimm, or similar place, on which the performance is carried on.

STAGE DOOR. A door giving aecess to the stage and to that portion of a theatre which is for the use of the actors and other employees.

STAGGER (v.). To arrange in alternate order, as bolts connecting two members of a frame which are often set zigzag; or as beams resting upin a wall, where there are two sets, one on each side, aml those on one side are set halfway between those on the other side. By extension, to dispose floors so that each one

STAIR

is not continuous thronghout the buidding, but so that they are arranged in two or more vertical series, each with its own independent system of lieights.

STAGING. Same as Scaffohling.
STAIN. A. A coloming lignid or dye for apllication to any material - most often wood. It differs from paint as being thinner and readily absorbed by the pores of the material, instear of forming a coating on the surface, so that the texture and grain of the material is not concealed. ln Ameriea stain has been used for exteriors of frame houses, the shingles anul clapboards taking on a rougleer and far more pirturespue look than if painted.
13. Any mgredient which is used to ehange the volour of a material by chemical action, as in the ease of glass, in which a deep, blue is got by means of protoxide of eobalt, and a

Stairs in a Hoise at Wolfenschieksen, Switzerlanit. Eirh Steip is a Solid Tiniser: its Exids fibaikd info the Strivg Pieces.
green ly copper amil by iron, as in the production of pot metal (see Glass). Silver Stain (see subtitle) is more properly an enamel applied to the surface without changing the colour of the mass.

Silver Stain. In lecorative glasswork, a yełlow enamel introduced into Europe in the fifteenth century and immediately accepted by the makers of decorative windows. (See Window, Part III.)

STAINED GLASS. (Sce Glass; Window.) STAINING. (See Stain.)
STAIR. A series of steps, or of flights of steps, conneeted by lantings, for passing from one floor or other principal level to another, or to severat other successive floors or levels. Thus, a series of steps from one floor to another in a house would be called a stair, as well as the entire series connecting the suceessive floors from the lowest to the uppermost. The term Flight is often used as synonymous
with stair in designating the structure contained between two Hoors; this use is only correct, howerer, when no landings intervene. No absolute distinction can be made between staits and landers : a smpler form of construction (ir a steeper piteh beng often the only feature of a Hight of steps which would cause it to be designated as a labler, as in ships.

As regards their construction, stairs may be classified is Sewel Stairs and Geometrical Stairs
angles with a pace or with winders in the quarter space; or again, it may be a single straight Hight terminating with two or three winders at top or at bottom.

The stair has undergone a marked change from early times to the present in location and disposition as well as in construction ; aud in no class of building so much as in the residence. It is quite a modern idea, that of providing but one stairease for the chief apartments, and of treating this one as an all-important and prominent feature. A back stair, or two, there may be fur domestic service; but, except for these, there is rarely more than the one Hight or series of flights fur communication between floors. And this disposition and treatnent marks strongly the difference in the modern stair and that of the Middle Ages and earlier part of the Renaissance. A mediæral eastle, of eren a small and unjretentions sort, would have a number of staireases at frequent intervals, and these comparatively small and placed in a rather retired situation, in small towers, corner turrets, or in the thickness of a wall or hutiress, so that the dwelling was divided rertically into suites of rooms. The motive for such a disposition was, of course, primarily security and the facility of defence, the building being diviled vertically into towerlike compartments ly more or less massise walls, two adjoining comprartments baving little or no lateral communication. Large and important stairs there were, but not for very general communication: rather in the way of outside perrons or their equivalent in a vestibule or somewhat isolated tower.

This general arrangement of many isolated stairs continued in sogue long after the abandonment of the original reason for such a
(see subtitles): as regards their general plan, they are dexignated is quarter-turn, half-turn, three-guarter-turn, and one-turn, implying that, in their progress from top to bottom, they pass through one, two, three, or four right angles. Such turns may le mate by a continuous series of winders. or hy straight Hights and winders, or by straight flights and paces or landings. Thus, a quarter-turn stair may accomplish the turn by a plan constructed on a quarter circle with risers radiating from its centre ; or it may be composed of two straight flights at right
provision in the way of vertical communication, and was even retained when the more modern practice began of lateral intercommunication by meuns of passages on each floor. (See House, Figs. 5 and 6.) This is to be seen in such buildings as the late châteaux of France and the great Elizabethan houses ; although bere, already, the modern idea of one "main stairway " began to find expression, but still not to the exclusion of several other subordinate ones. Such "grand staircases" were at first rather a part of the state apartments - to be used

STAIR

In the north transept of Burgos cathedral, Spain, leading to the extrmal doorway called the Puerta Alta ("high portal"), this height being made nec-
essary by the slope of the ground. This work dates from the sixteenth century, and is ascribed to Diego de Silué.

STAIR

on occasions of epremony - than a means of general communication, In recent times the restricted size of building lots in cities makes the provision of several starcases impossible. beyond the putting in of a service stair near the dining roons ur pantry ; but this feature does not appear to loe gronerally alupted even in the sparions and contly country residences of late years, or in the large city honses, where ecunomy of spater is not of tirst importance.

As regardis this last necessity, - ceonomy of

STAIR

not always have when opening only on the general passages and main stairway.

In its modern construction, the stair of "ommon usage in Great Britain am] the [nited States has become less an integtal part of the general construction, and more of a sparate piece of light framing set up after the completion of the nain structure - often in large part completel before being bronght to the site. This requires, in its, construction, great skill in joinery, built, as it usually is, of light and

Starcase at Périgeex (Durdogee): Neoclassio of 17th Cestiry, with Loral Peidlifities日F゙ Detatl.
space, -much is to be said in farour of the spiral stair, - or some molifieation of a turning stair, - when not too restrictel in its dimensions. This again was au early feature retained until quite recent times, its great advantage lying in the fact that comparatively little space was reyured horizontally: a landing in the run of the stair would] answer the purpose of the elongated passage as now usinally provided to comert two flights.

On the whole, then, it is perhaps a questiun whether the modern practice of providing one central stair has not caused the abandonment of a raluible feature. An adilitional retired stair might often give a certain privacy and retirement to a set of rooms which they woukd
slender parts, seeured together with systems of slight concealed lracing and bloeking and with much use of ghe. The necessity for such highly trained labour has indeed developed a special elass of joiners, and a wooden stair of some elaburation is now almost invariably supplicd ber a stair-lnilder, who makes such construction his only business. This is the more necessary in the case of 'mred and winding stairs. where great skill is required in lonilding up and shaping the wreaths and other curved portions, and in so securing the various members together to make the stair, as a whole, self-sinpporting, at least between its terminal bearings. In the greater part of the

Continent of Europe the old traditions obtain of ereeting solid stairs of stone at the same time with the surrounding masomrs, wood not being very generally used except in those lomalities where it abounds and where construction

STAIR

Perhaps the most impurtant point in considering the planning of a stalir is the pitch, or, in other words, the relation between the riser and tread. In buildings of an unpretentious sort the pitcl is often restricted, owing to other

Palais de Justice, Paris. The Cage is Cy lindrical, and pierces the Vaylted Floor belof and abuve. The leonwork is intexided tu separate the Stairway completely from the Corridurs; there is a gate at Eyehy landini:
in that material is traditional. Eren then it is commonly treated in a massive and substantial way, with larger and solid parts put together by methorls of more genuine framing: even the solid step is not altogether unknown, eut from one piece after the manner of a stone step so as to form both tread and riser:
exigencies in the floor plan; but, under ordinary circumstances, the requirements of the surrounding features should yield so far as to allow of ample horizontal space for the stair in order to avoid a steep ascent. Several rutes are prescribed for determining the relation of the riser and tread. In the United States
their sum is generally taken as hetween 17 amd 18 inches, imul the riser manle as little over $7 \frac{1}{2}$ inches as possible, in the orlinary stairs fur dwellings.

Another rule gives the upotient of tread amd riser as hetween 70 and 75 inches. In Great Britain this quotient is commonly prescribed as Gif imehes, hased on the assumption that a step 5? inches high hy 12 inches wide is a poper awerage step. Another British method of propurtion is lased on the same assumed stamdarl, alld provilles that, for crery inch of tread alled to ol subtracted from 12 inches, the $5 \frac{1}{2}$ inth riser shoulal he decreased or increaseal ly $\frac{1}{2}$ inch, or vice versa. 'lhus we shomld haver:

For al 13 inch treal a 5 inch riser

It is worthy of note that, from the alove rules, the total length of step assumed as correct for British usage is noticeally less than the standard assumed in the United States. Fur instance, by the first lbritish rule citenl above, a riser of $7 \frac{1}{2}$ inches would require a treal of $66 \div 7 \frac{1}{2}=8 \frac{4}{5}$ inches, whereas this would ravely be less than 10 inches in the Inited States, except for a bank stair or the like. A rule adopted from the French gives results more nearly equivalent to the American rustom - twice the riser, abliled to the wirlth of treal, should be between $2 t$ and 5 inches. The Gemnan rule for stairs of ordinary piteh is substantially the same, but is not considered altogether practical when applied to a riser of less than $1 . \mathrm{cm}$. or more than 19 cm . ($5 \frac{1}{2}$ and $7 \frac{1}{2}$ inches respectively). In the former case, the product of tread and riser is taken as 47 (m. ($18 \frac{1}{2}$ inches); in the latter case, the wilth of tread is obtained hy dividing the roefficient 500 by the given riser. This coetticient being prescribed for centimetres, its equivalent for inches would be $75 \frac{1}{2}$. These formulie are as given in the Darinstadt Handluch, and give results substantially equivalent to the dimensions of American practice.

The foregoing dimensions for treads do not, of course, include the nosing, which is not considered in determining the size of steps. For ordinary purposes a riser of 7 to $7 \frac{1}{2}$ inches with a tread of 10 inches makes a very comfortable ascent. If, however, the stair is long, it will be desirable to make the riser muh less in proportion to the treat, thus lessening the pitch of the stair. It is also well, in the case of a long stair, to introluce one or more landings. It should be noterl, however, that for stairs ont of doors a much longer step is practical. and even quite desirable, especially as where a short flight is introduced in the comse of a footpath or at the ineak of a terrace. In such cases the longer step, especially with a
low riser, accommorates itself more pleasantly to the impetus and longer stride maturally gianed by a person walking a distance out of aloors.

The pitch of the stair being assumed, it is desirable that it be altered as little as possible during the ascent. The riser, of course, once determined, remains unchanged: the tread also shoul! be as nearly constant as possible. That is, if winders become necessary, they should be introduced as balanced Steps (see under Step) ; and this change of plan should he as gradual as possible, as clescribed uncer Wimler. It is, of course, a molern axiom that winders are to be avoided in a stair of any pretension, except in a case of circular stairs of long ratins, or similar stairs laid out on a very extended sweep, as is typical of the stone staircases of the more recent French chateans. It is to be observed, however, that the prejudice, where such exists, against a winding stair of a smaller and less spacions sort, is of quite modem origin; as the circular staircase was the common form in medieval and later architecture, as has been pointed out above. A winding stair offers one adrantage which, althongh of no great impertance, is, perhaps, worth consideration: by the triangular form of the treat the step accommodates itself to different lengths of stride, accorling to the ristance of a perlestrian from the axis. The width of landings, where these ocrur in a straight stair, is almost equal in importance to the wilth of tread, and should be designel to conform to an arerage length of step; say, the wirlth of the tread plus 24 inches, or a multiple of 24 . (See Scala.)

In addition to the following terms, various specific names are applied to stairs derived from the construction of certain parts, their meaning leeing selfevident from the use of the attributive term, as in Open Riser Stair, Closed String Stair. (See Landing; Newel: Pace; Hiser ; Step ; String.) -D. N. B. S.

Back Stair. Ally stair sitnated at the rear, that is, at the back, of a buikling, as for domestic service or other subordinate purpose. Hence, any retired and unimportant stair for a similar use, wherever situated.

Box Stair. One made with two closed strings, so that it has a boxlike form of construction, and may be more or less completely finishe] liefore being set up on the site.

Close String Stair. (See Close String, muler String.)

Cocklestair. From Cochlea; a helical or corkserew stair.

Cut String Stair. (See Cut String, under String.)

Dog-leg; Dog-legged Stair. A half-tum stair consisting of two parallel flights, their strings and hand rails being in the stme verti-

STAIR

eal plane. The hand rail of the lower flight commonty butts against the under side of the string of the upper flight, there being no well hole.

Geometrical Stair. One which is romstructed without the use of newels at the angles or turning points. The intersecting strings and hand rails are, therefore, usually joined by means of slont arreed portions called wreaths.

Giants' Stair (Nedu dei Criganti). A perron or out-offlem stairwiy in the comrt of the Doges' l'alate at Veniee. The name is derived from the two statnes, Mars and Neptune, which stand on pedestals at the head of the stair, and are the work of Jacopo Sansovino. It consists of thirty steps, and a plat-

Stalactite Work in Wood and Plaster: the Alhambri, Gravada, Spain,
form divirles these into two flights. It was designed by Antonio Rizzo, and buitt during the last few years of the fifteenth century.

Halfpace Stair. (See Halfyace, under Pace.)

STAIR

Half-turn Stair. (See main article above.) Hollow Newel Stair. (See Ioilow Newel, under Newel.)

Newel Stair: Newelled Stair. One constructed with newels at the angles to receive the ends of the strings, ats distinguished from

Star Turret: Churih of S . Wulfran, Ablbevilef (Sumane).
a geometriral stair. Thr term is sometimes, with no apparent reason, limited to a doglegged stair.

One-turn Stair. (See main article above.)
Open Newelled Stair. A mewelled stair which is huitt aromul a well: apparently, a term adapted to distinguish surh a stair, which is "open" as regards the existence of a well, from a dog-legged stair, which has no well. Each are newelled.

Open Riser Stair. One in which there is no riser in the sense of a solid loard, metal casting, or the Jike, lout the whole rise between tread and tread is left open. When this arrangement is followed in costly staircases of elaborate buildings, it is usually to allow light to pass, as from a window.

Open String Stair. (See Open String, under String.)

Quarterpace Stair. (See Quarterpace, unter Pare.)

Quarter-turn Stair. (See main article abore.) G1If

STAIR

Screw Stair. A circular stair ; especially, one in which the steps radiate from a rertical post or newel.

Straight stair. One which rises in one direction only, withont turns.

Three-quarter-turn Stair. (See main article abore.)

STAIR TURRET

cles Escalier. Perron: W, and A. Mowat, Treatise un Stairbuilding, etc. - I. N. B. S.

STAIRCASE. A. Properly, the structure containing a stair; a stair together with its enclosing walls.
B. Improperly, but in common usage, a stair or series of stairs ; i.e., the complete me-

Stalls of S. Gereon, Cologne: 14th Centrery Typical Gothic Arringement and Desigi; the Heayy seat in Each Still in a Minerere.

Water Stair. Stairs or steps communicating betweeu any water level, as of a river, lake, or harbour, and the land, for convenience of embarkation or debarkation.

Winding Stair. Any stair constructel wholly or chiefly with winders. (See Screw Stair.)
O. Schmidt and E. Schmidt in Hamolburh. Part III., Vol. III.; Viollet-le-1)u, Dictionnaire, arti-
chanical structure of a stair or set of stairs with its supports, hand rails, ant other parts.

STAIR TURRET. A. A building used to contain a winding stair which usually fills it entirely. Such a turret is often aulded to a larger tower, as of a church, and this is frequently at one angle of a large tower, making a picturesque aclelition to its mass.

STAIRCASE

Venice; a tower with open arcades connecting with other arcades, which connect with the romss beyond; the whole a fifteenth-century Venetian bnilding, fronting on an out-of-the-way court which
visitors seldom reach. The arcaded front formed part of the ancient Palazzo Ninelli, in the Corte del Maltese, south of the new Piazza Manin.

Stall in the Cathedral of Amens: One of the Four CorNFER PIECES WHICH RISE HIGH abuye the Rest. Thereare 110 Stalls. The Whole Work is of Caleven ofak, with Hundreds of Humax Figures ; 1503-15\%0.

Stall: Detail of thone of Amens; see Previous Cut.

STAIR TURRET

B. A domieal or hoodlike protection for the top of a stail which is carried through the platfurm or that roof of a tuwer, or the like. Such

Stalls: S. Margaret's Chtrrch, Leicestershire: c. 14.0 .

STALL
STALACTITE. One of the pendent cones of lime earbomate found attached to the roufs of cares. - G. H. M.

STALACTITE WORK. A system of corbelling of peculiar form or the imitation of such corbelling in wood and phaster. So called from a fancied resemblance of its form to those of natural stalactites. (See Honeycomb Wirk.) (Cut, col. 605.)

STALAGMITE. One of the deposits of lime carbonate on the floor of cares, and which may or may not be in the form of upright pillars corresponding to pentent stalactites. - G. P. M.
stalk. In the Corinthian capital, the representation of the stem of a plant, sometimes flated, from which the volutes suring. (See C'anlicuhus.)

STALL. A. In an ecelesiological sense, a fixed seat, enclosed at the back and sides. Rows of such stalls for the use of the clergy, acolytes, and choristers are nsually arranged on the north and south side of the chuir; they are separated from each other
small structures rise above the large mass of a building and are freguently great additions to its heanty.

Stalle, Carved Oak: Montréal (Yonie), Burgundy; Early Rexaissance; c. 1520.

STAKE OUT (v.). To designate or mark with stakes the plan and position of a future building upon its site.
by high projeeting arms, and hare their seats hinged so as tu fokl against the back when the occupant wishes to stand in the stall. On the

STALL BOARD

under sitle of cach seat there is a bracket upon whicl the ocempant can rest when standing (sce Miserere). In the larger churches the stalls are often sumomed liy canopies : and in the monastic and some other whrebes the rhoir stalls retimen at the west end of earh row.
B. ln a stable, one of the divisions, averaging + to 5 feet wide and 9 leet deep, sepurated by partitions, open in the rear, aml provided witl applianses for feeding and drainige, for the accommorlation of horses and cattle. (For the larger stall, called loose stall, or loose box, see Box, C.)
C. In a theatre, originally, a seat separated from others ly ams or rails; now, usually, one of the seats in the front division of the parquet (sometmes ralled urchestra stalls): but the application of the term is variable. (Cuts, cols. $607,608,609,610,611,612,614$.

Loose Stall. Sime as Loose Bux. (See Box, C.)

STALL BOARD. One of a series of boards or shelves upon which soil is pitchen snccessively In exavating. (Sue Bench, C.)

STALL POST. The post at the foot of the partition between stalls in a stable, used to hodd and protect the ends of the partition boarding.

STAMBA. A pillar standing alone and serving as a memorial or a votive uttering. There are many of these in India, and it is foumed that they have been erecterl at all eprochs from the third or fourth century B.C. down to the commencement of the European ronpuest and settlement of the peninsula. Some of these are elahorately built up ol many course of stone and arranged with a sprearling capital to support some larger enlminating structure, as a table or rooled recess for holuing it lamps. 'The Lantern of the: Dead shomld be compared with these. (Soe Lat ; Minar.) Spelled also sthamba.

STANCHION. An upright prop or support ; a l'uncherur ; a Mullion.

STAND. A structure, usually temporary, or at least slight ind unarhitectural, as (1) a booth for a shopkeeper ; (\because) a phatform lor speakers ; (3) an arramgement of seats for :a out-of-rlonr exhibition of some kind, as are or a ball game. (See Grand Stam].)

STANDPIPE. A pipe, usually vertical, intemded to lacilitate the supply of water to clevated points. Thus, at certain points alonge an apherluet, a standpipe may be used into which water is forced by mechanical means, thus providing a pressure sufficient to raise the water supply bigher than the normal level. In arehitertural practice, chiefly, al pipe intended to lacilitate the extinetion of fires. It is sometimes on the exterior of a bulding, and sometimes within, with branches in the different stories : but always with a mouth near the street and ontside, and a coupling to which the hose of the fire engine can he attached. - $\mathrm{W} . \mathrm{l}^{\prime}$. G.

STATION

STANZA (plumil statazr). In Italiam, a room or chamber ; as the stenze of laphael in the Vatian patare.

STAR ANCHOR. (See moder Anclow.)
STARLING. A. A hreakwater forment of piles driven elosely side by side as a protection in hydranke constructions.
b. One of the piles so used. (Also written sterling.)

Stalls in the ('HURCH of Nutre IAME, PAR1: ; 17th Centurs.

STAROFF, IWAN IGOROWICH: architect.

A Russian architect who built about 1790 the Alexander Newski churn in Saint Peterslourg, also called the l'anthem. He built, according to the designs of Chadagni, the church of S . Sophia in Saint Petersburg.
seubert, Füustler-leciron.
STATE HOUSE. In the United States, a buiding appropriated to the government and legislation of one of the states. (See Capitol.)

STATICS. Force acting by batancing other forces. W. IV. H.

Station. (See Railway Building.)

STATION HOUSE

STATION HOUSE. A. The headquarters or othice of the police force of a district. (See Police Station.)
b. In the life-saving service, a house on the seacoast, furnished with boats and other appliances for the service.

STATUARY. That form of sculpture which deals with figures in the round as distinguished from tigures in relief, especially with tigures of the human lyoly complete, either singly or in groups. Such tigures are nsed in architecture in two general ways. (I) In immeliate comection with the louilding, as in catherhal purches of the thirteenth century, and commonly in niches and under canopies (see Vol. I., pl. V1I.). (2) Set upon a building, hut without apparcut connection with its architectural design. Thus, in the pediment of a Cireck temple the statues were designed for their place as so far alove the eye and likely to be seen from so great a horizontal distance; but the tympanum of the perliment 1s usel merely as a consenient background and the geison as a convenient shelf to support them. A similar arrangement seems to have existed in Roman theatres and amphitheatres, where the great open arches of the stmeture which supported the rising tiers of seats were often occupied by statues and groups well seen against the comparatively lark interior. In memorial arches, statues are set upon ressauts of the main order, and thus relieved against the attic. In the Renaissance and post-Remaissance styles statues appear against the sky rangeld upon the pedestals of the parapet, as in the library of S. Mark in Yenice, and the great colomnade by Bernini in the Piazza S. Pietro at Rome. This last-mamed arrangement involves the dittieulty that the light of the sky eats into the outline of the statue, which can hardly be seen aright unless illuminated by the sun from behind the spectator, or unless seen against a very sombre background of clouds. It is partly to avoid this that there has been a partial return, as in highly decorated buildings in the United States, to the front of the attic as a place for statues: aml other buildings have porticoes of slight projection chiefly to afford the same opportunity.

STATZ, VINCENZ; arehitect; b. 1819 (in Cologne).

About 1841 he was associated with Zwirner on the works of the cathelral at Cologne. He becane diocesan architect in 1863, and in twenty years built abont sisty churches in the Gothic style, most of them in the archbishopric of C'ulogne. He published Gothische Einzelheiten (eight parts, folio, 181), and with Ungewitter, Gothisches Musterluch (Leipzig, 1856).

Seubert, hiinstler-lexicon.
STAY. Anything that stiffens or helps to 615

STEENING

maintain a frame or other structure, as a piece of timber or iron acting as a strut or brace; or a tie of any material.
steam heating. (See Ventilation ; Warming.)

STEE. In local British usage, a ladder or steep stair of simple form.

STEEL. A compound of iron with from .01 to 1.5 per cent of carbon. It also contains mimute quantities of silicon, sulphur, phosphorus, etc. The processes of making stee may he elassed under two heads, - by adding carbon to wrought iron, and by abstracting carbon from cast iron. The former is used for making steel for cutting tools and other fine purposes. The latter class of processes is adapted to making large masses of steel rapidly and cheaply.

Blister steel is made by paeking bars of wrought iron in layers, each surrounded by charcoal, hermetically sealed, and subjecting them to intense heat for two or three days. The bars absorb carbon and are converted into highly erystalline steel.

Shear steel is mate by breaking the bars of blister steel into lengths, hammering or rolling them at a welding heat. If the process is repeated the metal becomes "double shear" stecl.

Crucible cast steel is produced by melting bars of blister steel in a crucible with a small quantity of oxide of manganese and of ferromanganese. The carbon is sometimes varicd by mixing wrought iron with the blister steel.

Bessemer stopl is made by pouring molten iron into a bottle-shaped vessel lined with refractory material, and blowing air through the iron until the carbon and silicon are burned out. The combustion of the carbon and silicon produces sutficient heat to keep the mass thoroughly melted. If the lining of the resset is silicions or acid, all the phosphorus and sulphur remain in the steel. By the Thomas Gilchrist method a basic lining is usel, and the steel is made free from phosphorus.

Open leurth or Siemens-Martin steel. After the invention of the Siemens gas furnace, it was utilized by Martin to melt steel in bulk upon a sand bottom. It was found that the sulphur and phosphoms remained in the steel. A basic bottom of dolomite or magnesite was sul)stituted for the acid (silicious) sand hottom, and phosphorus was eliminated better than by the basic Bessemer, and a better steel was made. - W. R. Huttos.

STEEL CAGE. The frame of the modern building of "steel skcleton" construction, as deseribed under Iron Construction, Vol. II., col. 515.

Steel construction. (See Iron Construction.)
Steening. The brick or stone lining, often laid dry, of a well, cistern, or cesspool.

STEEPLE

STEEPLE. A. A tall ormamental construction surmounting a tower and composed usually of a series of teatures superimposed and diminishing upward, as the steeples of Sir Christopher Wren's churehes, in contradistinction to a Spire, which is properly a tall pyramid minterrupted by stories or stages.
B. A tower terminated by a steeple in sense A, or by a spire, the term covering the whole structure, from the ground up.

STEINBACH, ERWIN VON. (See Erwin von Steinbach.)

Steeple of a Church near CaEn In NorMANDY: c. 1160.

STELE. In Greek aml Greco-Roman art, a pillar or upright monument composed of one or two stones and simple in its outline and general character, although it may be adorned with very elaborate carving. The more common forms were a slender cylinder, and a flat slab, higher and move narrow than a modern gravestone. These were set up as boundary stones; thus a law, or ellict, or a treaty between two mations, would be recorled in an inseription upon a stele set up in an appropriate place. In some cases a sunken panel is filled by a bas-relief of a few figures, such as some in the Acropolis at Athens. The largest stelai known were erected on the graves of individuals, and these were sometimes

STENCIL

sculptured with superb las-reliefs, like those found in the graveyarl at the Dipylon at Athens, and now in the Central Museum there. (Also writteu stela.) - li. S.

Steeple of S. Stephen's Cathedral, Viensa, Austrela.

STENCH TRAP. In plumbing, any form of trap which, by means of a water seal, is intended to prevent the passage of noxious gases from the sewers into a house.

STENCIL; STENCIL PLATE. A thin plate of metal, or sheet of paper, perforated
with any desired pattem or device so that, when held against the wall and sommblel with a brish of colour, the battern is transferred through the perforations to the surface to be decoratel.

STEP. A rertical break formed by a sulden change of level betwren two more or less horizontal surfaces. Einecially, in arclitecture, -uch a break when only a fow inches in height, and dixposed (singly or in series) for the conveuient ascending or destending of persons passing from one level to another. Hence, a smath structure or block of inaterial with a flat upler surface, -a platform of very limited extent. - placed at such a change of level. In the broall general sense, the elange in level proluced by the retaining wall of a terrace may be spoken of as a step, especially when it is one of a series of such breaks by which an inconvenient slope of ground may be molified. The term may be used in connection with any structure formed into a series of breaks (sce (row step, Stepped Cable), or a masoury foundation wall which is enlargel toward its base by successively projecting courses. In the more especial sense, a rough. approximately flat, stone forming the sill of a doorway which is somewhat above the level of the ground auljoining would properly be called a step; as also one of a number of horizontal boards surported in a rertieal or inclinet series.

A series of steps designel for the accommodation of persons passing from one level to another is called a Flight or a stair. (See the terms.) The flat upher surface of such a step is the tread: the vertical surface, the riser; these terms desiguating also the pieces of material which form those respective surfaces where the step does m,t consist of a solid block. A step included between two parallel risers, which are also perpendicular to the general direction of a tlight, is a Flier; where a flight makes a turn, risers must necessarily approach each other at one side and diverge at their opposite ends, and each step). therefore. receives a somewhat triangular shape and is then known as a Wimater. (See Balanced Step helow : alsu Fher: Stair: Winder.)—1. N. B. S.

Balanced Step. A winder included bet ween two risers which are not normal to the curve. Thus, in a stair of ordinary emstruction, a quarter-turn is brought about hy three or four winders with risers radiating from a common centre: but in a stair of superior plan the change of ninety degrees is accomplished more gradually br a series of halanced step formed liy slightly decreasing the regular width at the insile of the curre and a corresponding increase (m) the outside, and this disposition begins hefore reaching the actual turn, and is continuel beyond the curve.

Bullnose Step. A step - usually at the
foot of a flight - of which one or each end is shapell to a semi-circle projecting beyond the string, and, perhaps, sumronding the newel. Sometimes, a step baring one or each end shaped to a quarter round, the curre terminating against the newel or the riser above. (Compare Curtail Step.)

Commode Step. One of a combination of two or more steps at the fuot of a flight, which have curred ends projecting beyond the string and surrounding the newel, which apparently stands on the upper or uppermost step of the group.

Curtail Step. A step, usually at the foot of a flight, of which one or each end is given a scroll or spiral shape, this portion projeeting beyond the string. This projecting seroll commonly supports a newel composed of a curved row if balusters following the outline of the step and continuing the line of balusters above. (Compare Bullnose Step.)

Dancing Step. Same as Balanced Step.
Hanging Step. One of a flight of stone step, which is built into a wall at one end and has no other support except what it may derise by slightly orerlapping the stone step next below.

Scroll Step. Same as Curtail Step.
Spandrel Step. A solid step -as one warked from use piece of stone - having more or less the sectinn of a right-angled triangle, the hyputhenuse forming part of the sloping sutit of the tlight. (Compare Sinare Step.)

Square Step. A solid step - as one worked from a single p hece of stone - of which the section is more or less rectangular, so that the sothit of the flight is formed into steps similar to the upper surface. (Compare Spandrel Step.)

> D. N. B. S.

STEP LOG. A kind of ladder made ly cutting notches into the side of a log. The first ladder of the American Inclians.

> -F. S. D.
stereobate. The top of a foundation or substrueture, herming a solid platform upon which the columns of a classical building are set. That part of it which comes immediately beneath the columns is distinguished as the Stylobate.

STEREOCHROMY. Painting hy means of, or secured ly, water glase (which see under Glass).

STEREOTOMY. In architecture, the science and art of stoneentting. Scientifically, that branch of Iescriptive Gemetry which has to do with the graphical representation of the forms and dimensions of stones which are to be prepared fur luikting purposes.

STERLING. Same as Starling.
STEVENS, ALFRED : sculptor, architect. painter, and decorator: b. 1818; d. May I, 18 市.

STEW

He spent mine years in Italy stulying the entire fieh of art, painting, scolptime, architeceture, and derorative design. In lst1-184: he was associated with Thurwallsen in Rome. In 1850 he became chief designer to the firm of Hoole and Company, metal workers, at Shelfield, England. A very large part of his finest

Stilted Arch: C'hurch of S. Fusc'A, Torcello.

STILTED

Diminished Stile; Diminishing Stile. In a glazed door, a stike whose upper part above the middle rail is narower than the lower part, in order to almit of a sash witer than the panelling below.

Falling Stile. Same as Shutting Stile, below.
Gunstock Stile. A iliminished stile in which the reduction in width is made by a long slope, usually of the whole width of the loek riil.

Hanging Stile. I. In the framing of a door, a linged casement window, or the like, that stile to which the hinges are secured, and by which, therefore, the door, etc., is hung to the jamb or doorpost. D. Same as lulley Stile.

Hinge stile. (See Hanging Stile, above.)

Meeting Stile, (See Mlecting Rail.)
Pulley Stile. That surface of the box frame of a wiulow, agrainst which the sashes slife up and down ; it receives its name from the sash pulleys whirh are set into it near the tur, and through which the sash cords or chains are passel.
work was done in the decoration of silverware, bronzes, cutlery, stuves, anl other uljeets of utility. In 1856 he entered the emmetition for the proposed momment to the Duke of Wellington in S. Paul's cathedral. He received the commission for this work in 1858, and was oceupied with it luring the remainder of his life. This monment was placed in the cathertral in 1892. The original molel is in the South Kensington Dusenm, and is inportant because of changes mate in the finished work. Among the best of his decorative works are those of Dorchester House, Lomdon, inchiding the splendid chimney piece of the dining-room, with its famons crouching caryatides.

Stannus, Alfrel Storens aud his Work; Armstrong, Alired Stevens, a Biographirel Stuly.

STEW. A heated room, as in a Turkish bath; a hothouse ; a stove.

STIACCIATO. In Italian decora tive art, very flat; saill of relief sconlpture.

STICK (v.). To run, strike, or shape with a moulding plane ; by extension, to shape, as longitudinal moullings, splays, and the like, by the moulding mill. (Sce Plant, v.)

STILE. Any plane surface forming a border. Specifically, in carpenter work and in joinery, one of the plane members of a piece of framing, into which the secondary members or rails are fitterl by mortise and tenon, as in pranelling. In framed doors, and the like, it is nearly always a vertical member.

Shutting Stile. In a hingel door, the stile opposite the hanging stile, being that one which strikes the rebate of the jamb when the door is shut.

STILL ROOM. Originally, a room in which distilling can he carried on, as in al comtry house ; hence, in a large establishment, an apppentage to the kitchen, usnally for making tea, cotfec, and chocolate and preparing the more delicate dishes.

Stilted. Raised higher than is normal, or usual, or seeming to be so raised, a term almost wholly limited to the areh, which is

t

b
fitilted Arches in Venice: \quad 体, Calle del Pistor; b. SALIZZADA $九$ I. IU,
sail to be stiltel when the enrve does not spring at or close to the tup of the capital or of the moulded or otherwise strongly markel impost. The term is extremely vague, as many arehes have no architecturally marked impost, aml as it is considered an error to start the curve immediately upon such an impost in any

STINASH

case; but those arches are callel stilted which have a vertical jamb or intratos below the curve more than about one quarter of their total rise. Thus, Fig. 1 shows an arch whose rise is one half' its span; its springing line is raised above the mouldings of the impont by nearly $1 \frac{1}{2}$ times its span, and hence it is said to be much stilted.

STINASH. The Moluc term for house lodge. In Klamath it means a willow-framed lodge (see Latchash).

STIPPLING. In painting, the production of effects ol gralation by fine dotting with brush-puint or other implement ; a process imitated in engraving by the stipple graver.

STIRRUP; STIRRUP IRON. A piece of from forged or cast in the shape of a loop or shoe, which, when hung to a timber, as a header, affords resting for the end of a joist framed at right angles to the timber, or when secured to the tnp of a tie or plate, forms a resting for the luwer end of a brace or rafter. It is a substitute for a mortise and tenon joint of any sort, and preserves the full strength of the timbers.

STOA. A portico used by the ancient Greeks as a shady promenade or meeting place, where conversation might be held or speakers heard. The stoa took the form of a roofed structure, the length of which was great as compared with its depth. Ordinarily, there was at the back an enclosing wall, and in front, facing the street or public square, a colomade. The floor of the stoa was generally raised a few steps above the street.

In early examples the depth was so slight that the space between the wall and the colonnate was cosered by a single span, and the roof sloped in one threction only ; but later, with greater depths, one or more lines of supports had to be introluced between the wall and the outer colmmade, to assist in carrying the roof, which then frequently had a double slope. Pausamias describes a deviation from the more usual forms in the case of the Corcyrean colonuade at Elis, of which he says (Bk. YI., Ch. NXIY.): "The colomade . . . is double, for it has columns both on the side of the market place and on the side away from the market place. In the middle the roof of the colonnade is supported, not by columns, but by a wall; and there are statues beside the wall on either side." Sometimes such porticoes were divided by two rows of columns into three aisles, or in one case by four rows into five aisles.

The stoa of Attalos at Athens was, according to Vitruxius, two stories in height, the colmons of the lower story being of the Doric order, those in the upper Ionic (see Adler, Die Stoa des Königs Attalos II.) : nor was this the only example of the two-story stoa, as witness those at Pergamon and Epidaturos. Stoas were frequently adorned by statues of celebrated per-

STONE

sons, and in certain cases the rear wall was decorated with paintings.

For descriptions of the more important huildings of this character, and for references to the literature of the subject, see Durm's Die Baukunst der Griechen, p. 340.

- Fraxk Miles Day.

stockade. A. Same as Palisade.
B. An enclosed space surrountled by a palisade. In this sense, the term carries with it the idea of a complete defensible work, however small and simple, the term "palisade" being limited to the line of stakes itself.

STONE. A. The material of which rocks are composed.
B (used with the article). A fragment of a tock.
C. Any aggregate of mineral matter, natural or artificial, as in the terms "precious stone," "artificial stone."
The kinds of stone utilized for purposes of construction or for general interior, decorative, monumental, or art work, may be roughly grouped under five general heads: granites, sandstunes, marbles, limestones, and slates.

Granitic aud Allied Rocks. The term "granite," in its strict scientific sense, is made to include only a class of eruptive rocks, consisting essentially of quartz and feddspar, with mavally minerals of the hornblende or mica group, and which are consequently known as hornblende or mica granites. They are tough, hard rocks, massive and strong, of a pronounced granular structure, and vary in colour through all shades of gray ; pink and red colours are, however, not uncommon. Until a comparatively recent periud, rocks of this type had been nsed almost wholly in the u uore massive forms of construction. The introduction of steam power into stone working has, however, brought them into very general use.

Granites, of a type suitable for general purposes of construction, occur in nearly every state bordering along the Appalachian chain, but have been most fully developed in New England, owing to the fact that abundant quarry sites are found within easy reach of tide water, thus enabling the material to be shipped comparatively cheaply, even to the most remote points. Maryland, Virginia, the Carolinas, aml Georgia have, of late rears, furnishel no inconsiderable amount. The region of Minnesota and Wisconsin is suphlied from granitic rocks within the glaciated areas of those states. Chicago, St. Louis, and neighburring cities derive an abundant supply of a coarse red granite, suitable for general building, from isolatel areas of igneous rocks in Iron and St. François counties, Missouri. Small areas of syenitic rocks in the vicinity of Little Fock and Magnet Cove, Arkansas, are also becoming important sources of supply.

Light gray granite from Concord, New Hampshire, was used in the construction of the new National Library building at Wrashington, D.C. ; similar stone from Hallowell, Maine, in the State Capitol at Albany, New York; lark Quincy (Massachusetts) granite in King's Chapel, the United States Court and Custom Houses, Masonic Temple, and many other buildings in Boston; a pink epidutic granite from Dedham, Massachusetts, in the Trinity Church building, Boston ; gray granite from Vinalhaven in the Masonie Tentple, Philadelphia ; fine gray granite from near Richmond, Virginia, in the State, War, and Navy Department buildings in Washington, etc. Red abil pink granites are fuarriel at Red Beach and Jonesboro, Maine; Grindstone Islands, New York; Westerly, Rhode Island ; Leetes Islanll, Connecticut; and in Missouri and Texas, as already noted. The Grindstone Islands' granite is represented by two magnificent colmmens in the senate chamber of the State Capitol building at Albany, New York. A beantiful coarsely crystalline deep red granite from Lyme, Conmecticut, was used in the Chaney Memorial Church at Newport, Rhole Islaml, but the material is not regularly cpuarried.

Gray granites of the ordinary type occur in many parts of British North America, but reference need here be made only to the pink and red stone from the vicinity of St. George, Kings County, in New Brunswick. This is the stone usel in the large granite vase east of the Capitol in Washington and in the additions made in 1897 to the Natural History Museum in New York City.

Anong the more noted of foreign granites are the gray and red so-called Scotch granites from near Aberleen in Scotland, and the gray coarsely porphyritic Shap granite from Cumberland in northern England. The coarse red varieties from near l'eterhead have been used in London, for the interior columns of S . Creorge's Hall in Liverpool, and those of the provineial Bank of Treland, in Dublin. Their use in America is limited mainly to polished columns and monumental work. It was from the gray granite of Aberleen that were so largely constructed the builings of the city of Abericen proper, described by Hull as perhaps the cleanest and freshest looking city in the British Isles. Other granites of local importance occur in Kirkeulbrightshire, Argyleshire, and the Isle of Arran. The principal English granite quarries are situated in Cornwall and Devon, the majority of the material being coarse-grained and of a gray colour. The socalled Shap granite is stated to vary in colour from light to deep gray, pink, red, and purple. The so-called Luxullianite, from which was made the sarcophagus of the Duke of Wellington, is a coarse red and black stone composed of red
orthoclase, gray quartz, and blark tourmaline. It is found only in boulders. What is probably the most extensive granite district in the British Isles stretches from Dublin, Ireland, sonthward through Wicklow and Carlow counties into Kilkenny and Wexford. None of the Irish granites scem, however, to lave been fully developed, though many of the large buildings in Dublin are male from Wicklow materials. Stone from the Bessbrook futrries in Newry was used in the new Town Hall in Manchester.

The granite used by the Egyptians in the construction of so many columns, obelisks, sareophagi, ete., is a coarse, red, homblendemica variety, found in large quantities in Upper Egypt, near Ancient Syene; hence the name syenite, first given it. This is historically one of the most interesting of grauitic rocks, the huge size of the blocks obtained, their sculptured hieroglyphics, and the great distances they have been transported having excited the wonder of people in all subsequent ages. Pompey's Pillar in Alexandria, and Cleopatra's Needle, now in Central Park, New York, as well as the companion obelisk, now in London, are of this material. The same stone was used in the linings of the interior of the great pyramid of Gizeh, and in the obelisk of Luxor, in the Pluce de la Concorde, in Paris.

The principal granite usel in Saint Petersburg is the coarse, red, so-called Rapakivi stone from the Finnish coast, between Wiborg and Lovisa. This is the material used in the Alexander column in Saint Petersburg, and also in the magnificent monolithic columms in the eathedral of S . Isaac, in that eity. It is a beantiful coarse red stone; the large orthoclase crystals, sometimes three or four inches in diameter, being of an oval outline and surrounded by a darker translucent border of oligoclase. This stone leaves little to be desired, so far as colour and structure are concerned ; but its durability, when exposed to the atmosphere, is a matter of very grave doubt. In the basement extension of the cathedral of the Saviour, in Noscow, there was used a beautifully complex granite-gueissoil rock, of a prevailing reddish colour, with black streaks, and often a fine faulted and brecciated strueture. This is also from Finland.

The granite so largely employed in Italy, particularly in the cities of Milan, Turin, and Florence, is stated to be mainly from near Baveno, on the western bank of Lago Maggiore. It is fine-grained and of a warm, pinkish tinge, and is seen to good alvantage in the columns of the restored basilica of S . Paolo fuori le Mura in Rome; there are also columns of the stone on either side of the main porch of the cathedral, and supporting the dome of the church of S. Carlo Borromeo, Milan.

Granites fiom Elba and Suthina have also found a limited use in Italian cities. The eight columns supporting the dome of the baptistery of l'isa are stated by Hull to be of pink granite from EIbia.

Granitie rocks from the vieinity of Fingsjong, Sweden, in the form of monmments amd tumed colnmens, find their way to the American amb wher markets in considerable quantities. The most striking aud desirable of these is a red granite with peculiar amethystine opalescellt quatiz.
lgneuns rocks of the matmre of diorite, diabase gabbro, and basalt have been but little utilized for constructive purposes, owing in part to their sombre colours and in part to poor working fultities. In the United States very dark diabasic rocks are used to some extent for monumental work. The coarse gabbro of Keesville, New York, a dark gray rock with iridescent feldepars, has been utilized for monumental work, and to some extent for polished interior work, with good effect. A coarser variety, with larger, purplish iridescences, is exported from tuarries near Fingspong, Sweden. A stone simila to this, from near Kiev, has been used with fine effect in panelling the lower interior walls of the church of the Saviour in Moseow. Other igneous rocks, of lighter, somewhat inferior colours, are used for general building, though most of the material of this nature is utilizerl for Belgian blocks in street pavements. A mica diorite (kersantite) from the Brest road: has been ruarrided and utilized for Inilding for many years, and many of the Gothic clmelles in Brittany have been constructed from it.

There are yet other types of eruptive rocks which need mention in this eomnection, though they are but little used. Under the name of Porpherry is incluted a class of rocks varying widely in chemical composition, but having in common what is known technically as a porphyritic structure, that is, they show crystals of quartz or fekdspar, porphyritically developed in a fine-grain grumul mass. When, as is frequently the ease, the porphyritic erystals are of a different colour from the gromm mass, the effect is striking aml often rery pleasing. The so-called Marmor Lacedromonimm viride, or green antigue porphyry, is a porphyritic diahase from Laennia, in southern Grecee, while the red antique porphyry, or rosso antico of the modern Italians, is a porphyritic diorite oceurring in the Dokhan mountains. Rocks of similar grain, but varying colours, oceur in many parts of the worh?, but are little used, owing to their great hardness. Nevertheless, they acquire often a fine polish, and their colours are such as to make them eminently desirable for turnel columns and works of art. Naterials of a high grade of this nature oceur in varions
parts of America, and the red varieties found near Hingham, Massachusetts, and in the Franconia Momatains of New Hampshire, are well worthy of consideration. In spite of the refractory nature of the material, rocks of this type were used by the ancient Egyptians, Greeks, and Romans much more extensively than tu-day, and modern museums contain abumiant illustrations of the patience and skill of the people in fashioning from it statues and other works of art.

In the western portion of the United States, and in other volcanic regions, a considerable variety of the younger emptive rocks, ealled Laccus, are locally utilized, but mamly for purjuses of rough constriction.

Mention should also he made of eertain altered forms of igneous rocks, like the impure Serpentines of southern Pennsylvania and northern Maryland. These are of a dull greenish colour, soft, and somewhat porous, but fairly duralle. These have been used extensively in New York, Plilarlelphia, and Baltimore, mainly in coursed rubble work.

The Sandstones and (Martzites. Under this head are grouped a widely varying series of rocks, having only in common the one property of being eomposed of more or less consolidated sands. They are made up of the silicions fragments derived from the disintegration of okder erystalline rocks which have been rearranged through the mechanical action of water. The material by which the indivichal partieles of a sandstone are bouml together is, as a rule, of a caleareons, ferruginous, or silicious nature, thongh sometimes argillaceons. The substance, whichever it may be, has heen deposited hetween the granules by percolating water, or luring the process of original sedimentation, and forms a natural cement.

Upon the character of this cement is dependent quite largely the colour of the stone, and its working aurl lasting qualities, as will be noted later. Stones containing any considerable amome ot ferruginoms eement are nearly always of a yellow, frown, or red colomr. Several varieties of sandstones are popularly recognized, the distinctions leing fommerl upon colour or working qualities. Thus the name "brownstone" is applied to a sandstone containing so large a proportion of feruginons cement as to be of a brown or red colon, like thuse of Connecticut and New Jersey. The term "freestone" is applied to any sand or limestone of sufficient uniformity of texture to work freely in any direction. The terms "caleareous," "ferruginous," "silicious," and "argillaceous" are often applied to sandstones in which these constituents play the rôle of cementing materials. Many sandstones contain scarcely an apureciable amount of cement, but owe their consistency wholly to the pressure to which they
have been subjected. Silicious samistones which have undergone metamorphism, like thuse of Potslam, New York, and Sioux Falls, South Dakota, are known as quartzites. From a geological standpoint the sandstones are known as Triassic, C'arboniferous, or Silurian, ete, according to the periul during which they were formed. Actording to the size and shape of their constituent particles they are known as sambtones proper, or if the grains are large and rounded like a consolidated gravel, as conglomerate. When these large gramules are angular, insteal of roumled, the stone is known as breccia.

Sandstones and limestones are to be found inany and all of the states of the American Union, but naturally in not all are they of such quality and eolour as to make them desirable for constructive purposes. Throughont the triassic areas of the Eistem states are found important heds of brown red sandstone, or su-called "brownstone," which has been used from a very early period in American history for general constructive purpuses, as is well exemplified in the monotonous rows of brownstone lronts in New York City.

Connecticut, Massachmsetts, New Jersey, Pennsylvania, and Maryland have been thus far the chief producers of this class of materiad, though somewhat similar stones are now brought. from near Flagstaft, Arizona, Terte Island in Lake Superior, and from near L'Anse in Michigan. Fine blue-gray and buff sandstones of the carboniferons age occur throughont many regions in the Mississippi Valley, as near Berea and Amherst, Ohio, and have furnished and still may furnish an almost unlimiterl guantity of these materials for general purposes of comstruction. Thin-bedded hlue-gray Devonian simustones from New Yok and 1'emsylvania, known commercially as Hudson or North River Bluestonez, IV yoming Valley stome, or simply Bluestone (which see), are largely utilized for flagging, and the better varieties for steps, sills, and lintels.

Owing to their abumance, variety, and relative cheapmess in the United States, sandstones of any kind are brought from abroal to a very limited extent. The so-called Dorchester stone, from Sheprody Mountain, New Brunswick, finds a limited application in the Eastern cities. It is of an wivegray colour and fine texture. Scotch sandstone of gray and rel-brown colours from near Craigleith, Scotland, used in many of the public and private buildings of Edinburgh, and to a less extent in Lonlon, was formerly importel into New York.

In England carboniferous sandstones of in light brown colour, from near Yorkshire, have, in connection with jurassic stones of a similar colour, been utilized in the construction of Whitby Abbey, the new library building at Cambrilge, and many other buildings of less
importance. Triassie (Lower Keuper) santstones of gray to rel-brown colour have likewise, aceording to Itull, been largely employed in the construction of churches and private dwellings in the midlamd comnties.

In France the most important quaries of sandstone are jresumably those of Villerz, which have fumished the stome used almost exclusively in Carcassonne. The catstle of 11 eilellherg, Germany, is of a relldish sambstone comresponling to the triassic; the cathedral of Cologne, of bunter sandstone from the flack loorest.

In this comection mention should be made of a series of elastic rocks composed of the reconsolidated fragmental matter ejerted from volcanoes, and techuically known as tuffs. These as a rule are solt, light, and porous, ind, thongh emluring in Mexico or Italy, are totally unfit for expmsure in cold and wet climates.

Solt, light gray voleanic tufts, known as peperino, or piperno, were anciontly usal in Rome, and those from the near vicinity are used almost exclnsively for building materials in Naples now as in the past. Similar tuffs were largely used in Herculaneum, Pompeii, and ancient Rome. ${ }^{1}$

The volcanic tuffis of Douglas County, Colorado, have been utilized to some extent in Denver. The stone is light and failly strong, but its clurability, even in a dry climate, is yet to be demonstrated.

The Culcureous Rock's: Limestones and Marbles. Uuler this hearl is included a series of rocks composed essentially of carhonate of lime alone, or of carbonate of lime and magnesia, though frequently rembered guite impure through the presence of clayey matter, iron oxides, free silica, and silicate minerals. They have originated through the imluration, and, in some cases, metamorןpism of beds of valcareons mud, shell, and coral remains, formed on ancient sea bottoms.

Hany varietal names are given to these rocks, according as they vary in composition, colour, structure, or even uses to which they are put. The terms "argillaceous," "silicims," and "ferruginous" are applied to swh as carry an appreciable quantity of those sulstances. Hydraudic limestone is an impure silicious and argillaceons variety used for making hydranlie lime. Often a part of the lime is replaced by magnesia, giving rise to maguesian limestones, or if the magnesia occurs to the amount of 45 per cent the stone is called a flolomite. An oulitic limestone is one in which the imdividual particles are of roumled, nearly spherical shape, like the roe of a fish. The so-callerl Bedford (In liana) stone is of this type. A fossiliferous limestone is one carrying fossils; a coral or shell

1 This tuff must not be wonfounded with the caleareons tufaur travertine of Tivoli, used in the construction of the C'olisemm, the exterior walls of \mathcal{L}. Peter's, and other public and private buildings in Fome.

STONE

yellows of Verona. Perhaps the most prized of these for other than stathary purposes is that of sient. This is a very complet stome of almost waxlike ajpearanee, sometimes breeciated, and, its moted, of a heantiful yellow rolome varying to dral). The fellow is the kimd most sumght, hat ats the colung is not unifurmaly distributerl thromghat the matsis, it hecomes necesisily, in liselt grank work, to solect carefully Thuck: or sawed slabs of the desired hene from it considerable anmont of perorer material. Examples of this stone in American huiklings are to he fomm in the restibule of the new Poblic Libnary bulding in boston and the rotmma of the National Libury buibling in Washineton.

Jupen has crystalline gramular white and variegated marbles, some of which, from Hitarhi provinme are lue-veined like the Italimn bumetiolio. Others from Winu prosince are brecolas rompered of black fragments in a white grouml.

Porturghl. (See Spain helow.)
Runsia. No marbles of more than local interest have thus far been reported from hussia proper, thongh the white and clomed varieties used in the rathedral of the Saviour, in Moscon, are sail to have been bronght from some where in the [rals.

Synin and I'miturul. The hest-known of the Portughese mables is the so-called Lisbon yellow, from Estremoz, which compares fairly well with the Italian siena, though lacking its waxy, almost transhuent appearance. Muttled white and pink to red marbles, close-grained and connpact, are lomad in Beira province. A varierated conglomerate mable, resembling in a general way the "Calico" marble from Marylaml, securs in the Sierra de Arrabida. Fine compact marbles of a dull reddish hue, reined with drab, are found in Saragossat province: red and vellow mottled stones in Murcia province, and black in Alicante. Few il any of these now find their way into the American inarkets.

Vorl Antique Marbles. Under the name of "verd antirque marble" is incluted a class of rocks ronsisting essentially of serpentine, but often variegated with veins of ealcite and marnesian carbonates, iron oxides, etc. Such are metamorjhic rocks resulting, for the most part, from the alteration of magnesian eruptives. The prevaiting colours are green, but sometimes oil-yellow, red, and nearly black, variegated as notel abore. The lines of veination are almost invariably lines of weakness, and the stone as a rule, is fragile in the extreme. Marbles of this type, from Prato and Genoa, Italy, came into early use during frecian add Foman civilization, and material from the same source under the name of Verde di Pugli, Verle di Frenou. and Terole di Prato is still to be foumd in American markets. Other noted serpentines, or rerdan-
tiques, are the so-called "hrish Green" or "Commenara marble " from West Galway, Irelani, and from Cornwall, Englanel, the latter being often of a red colour, and very beautiful.
ln Ameriara, high grarle material is fomud in Roxbury aml Cavendish, Vermont; Westfiell, Massichmietts; Milfion, Connecticut; Harforl Comnty, Maryland, and the aljacent portions of Pennslvania ; near Marietta, Georgia ; San Beruardino C'ounty, California : and a beautiful, evenly himbed variety on the Widulle Gila River, Nurw Mexicu.

The Argillites, or Clay Slutes. The roeks here included may he best brictly deseribed as molurated elays. But, inasmuch as the clays vary greatly in composition, so, tow, io the states. The most pronomeed characteristics of the argillites, as a whole, are their fineness of grain, smonth, almost gritless feeling, and argillateons or clavike feeling when wet, or breathed upon. The prevailing eolours are some shate of gray, hue gray, or nearly black, though sometimes greenish, purplish, or even real. Through a process of dymamie metamorphism, a sifucezing anl shearing such as often accompanies the uplifting of mountain chains, many of the argillites hare become converted into finely fissile state, which split readily and evenly along certain lefinite, parallel fines, into thin sheets, suitable for roofing and other purposes. The less fissile varieties are utilizen for llagging, billiarl tables, sinks, etc. The production of roofing slates has, up to date, been limited in America almost wholly to the states in the Aplalachian area. In fact, no beds of more than local importance have thus far been exploited outsile of this area, although it is prossible that such may exist. Roofing slate of a bhe-black colom is quarried extensively in Piscataguis ('omuty, Maine : of a bluehack, greenish, and purplish colour in Rutland and Bennington counties, Vemont ; red and greenish slates in Washington Comity, New Sork: deep hhe-black in Northampton and Lehigh and Vork comoties, Pennsrlyania, and in Harford County, Maryland, the last-mamed furnishing the well-kuown Peach Buttom shate. Slate fuarries have akso been worked to some extent in Buckingham County, Virginia ; Pulk County, Froorgia: near Huron Bay in Michigan: and in Cirlton Coment, Minnesota. Excellent slates in large quantities have been promend in Fichuond Comsty, Province of Queber. Camada. The importation of Welsh slates, from Wales, has unw amost entirely ceaserl, while at the same time there has been built up a rery considerable exprort trade in American materials.

The Essential (umblities of Bulltiny Stone. The suitability of any stone fur structural purposes is lependent mainly upon the four essential qualities bere mentioned in the order of

STONE

STONE

their importance: first, elurability ; secomd, permanency of eolour ; third, mokhing strength and clasticity ; and fomth, cheapmess.

The durability of any stone depends to a very large extent upon its ability to withstand, unhamed, the monstant expansion and contra'tion due to temprature variations, and the expmsive fore of water in passing from the linuid to the solid state. A stone is a romplex boly malle up of a large mumber of particles, Which may or may not be of the same mineral nature, and which are essentially in actual contiet with one another. Constant expansion and contraction of these particles, throngh diurmal and ammal temmerature rariations, is sure to bring ahout, in time, a weakening and consequent risintegration. How great this disintegration may be is dependent uron the natural tenacity of the rork, its absorptive properties, anl the extremes of temperature variation. In arblition to this mechanieal disintegration, stomes in the walls of buidlings are subjeded to the corrozive action of more or less acid rains. Amongst the purely silicious rocks this corrosive action amomens to very little, hat with the calcareons rocks it is often a matter of very serions importance, particularly in large eities, where the natural acirlity of the rain is nugmented by the acil gases from the furnaces of manufacturing establishments and dwellings.

The permanency of colour of a stone is depentent upon physical as well as chemical proresses.

Provided there are no chemical changes taking place, nearly any stune is likely to become slightly bleached on the onter surfare by exposure, merdy owing to physical changes, such as the opening up of clearage planes and minnte rifts, though this change is often su slight as to be quite inconspicuous. Stones containing pyrite or iron bisulphide are likely to become discoloured through the oxidation of this mincral. Stones taken from below the water level nearly always undergo mellowing in tint, due to the change in the combition of the combined iron, which may be either a sulphide or carbonate, and which gradually passes intu the sesfuioxitle. Where the coloning constituent is finely disseminated, smeh a change is by no means injurious, in fact, if anything, is often henetirial; but where the material is segregatel in spots and reins, the matter is much more serions, and whole fronts may be sally disfigured through such canses.

The matter of the crushing strength of stone is one which has received a very great amonnt of attention on the part of architects and engineers, but the importance of which, as the present writer has often asserter, is queatly overestimated. There are few stones in the market which will not be foum by actual test
to bear tenfold more than is likely ever to be required; and, exeepting so far as indicatiog tenacity aml hance power to withatame the action of the frosts, a strength of ower fifteen thousand poumds to the symare inch is of very little importance. The matter of elasticity is of muth greater import, since this property hats a direct learing npon the power of at stone to resist the expansions and contractions of ondinary temperatures. The figures given below, which are the wrages of a large mamber of tests made by engineers of the Conited States army and others, will serve to show the strength and weight in pounds, of the ordinary type of stone used for comstractive $1^{\text {nur }}$ poses:-

Hescrubtus.	strength in Pramis, pers spare Inch of surfince.	Weight in Pounds, der Collic Font.
Granite	1.5,000 t0 2-5,010	16i.) to 170
Trap (diabase)	*31,000 " 30,0100	1-.' " 183
Marble (arystalline limsitone)	(5,010 ' ${ }^{12,1000}$	165 " 170
Marthe (erystalline dolomite)	8,000 " 13,000	168 * 175
Limestone	$\therefore, 000 \sim 14,000$	14.7 " 170
Sundstone	$5,000 \times 17,010$	Lid) " 140

The adaptability of a stone for structural burpuses depends in no small degree upon its weatheriug qualities, that is to say umon its power to withstand, for centuries evell, exposures in the walls of a building, withent serious diseoloration, disintegration, (1 solution, through the canses noted abose. It will he well then to consider briefly the weathering qualities as displayed by the varions types of rocks. A more complete clisenssion of the subject ly the present writer may be found elsewhere. ${ }^{1}$

Granites and gneisses, bossessing very low ratios of absorption, and being made up so largely of silica and silicate minerals, are very little affected by freezing and sohtion. The chiof causes of disintegration with rocks of this class are temperature changes, such as prohtuee gramulation. Aside from a weakening of the cohesive power between the indivitual constituents, the feldspars may sulit up along cleavage lines, and a disintegration follows which may be sufficiently evilent to eause small spawls to fall off along the joints between the blocks, or perhaps to ruin fine carvings. In some instances deleterions minerals like pyrite are present in sutficient quantity to cause unsightly discoloration.

[^6]All things considered, a fine-grained, homogencons rock will be found more durable than one that is of coarser grain. Also a rock in which the individual particles are closely interknit, dovetailed together, as it were, will resist disintegration longer than one that is of a granular structure at the start. The same remarks hold groul for the basic eruptive rocks, though such are, as a rule, less durable than those of the granite type possessing the same structure.

Serpentines are likewise only slightly absorptive, amd, where homogeneous, little affected hy solution. Nearly all serpentines, of such quality as to be used ass rerd antique marble, contain, however, reins and spots of calcite, dolomite, or maguesite, and many dry seams. Such rocks therefore weather unevenly, luse their polish, and shortly crack and split along these dry seams when exposel to the weather. These marbles should then be used only in protected situations. C'rystalline limestones and dolomites (marbles) are extremely rariable in their weathering qualities, are likely to carry pyrite, and great care needs always to be exercised in their selection. A limestone marble, i.e. one composed essentially of lime carbonate, is likely in time to suffer from solution, whereby corners become roumled, surfaces roughened, and perhaps inscriptions obliterated. The mechanical agencies are here also operative as in granites, so that as a rule a stone of this class is less durable than a goot? granite. The pure white stones are generally more gramulas and weaker than the gray and blue-gray varieties. Dolomites, being less soluDhe than limestones, might at first thought seem to pronise greater durability than the limestones. Unfortmately this is not altogether the case, since such stones as a rule possess a more granular strncture than do limestones, and hence suffer more from disintegration. This rule is not withont important exceptions. The light colours characteristic of most marbles render iron stains peculiarly objectionable, and as pyrite is a very common constituent of such rocks, much care is necessitated in their selection. The ordinary, unmetamorphosed limestones, like the deep blue-gray varieties from the Trenton formations, are scarcely at all absorptive and weather fairly well, but their sombre colours are a drawback.

Sanlstones, on account of the widely differing character of the materials of which they are made up, variation in texture, degrees of porosity, etc., are perhaps, as a whole, more unreliable in their weathering qualities than any other class of rocks. In order fully to appreciate this, one has but to remember that we bave to do here with what are but beds of indurated samd; that they are made up of sand particles held together by simply being closely compacted by finer materials, or by means of a
cement composed of lime carbonate, iron oxides, or silica. Where the sand is loosely compacted, or the sand granules are interspersed with much finer clayey matter, the stone will absorb comparatively large amounts of water and is likely to become injured on freezing. Where the cementing matter is carbonate of lime, rain water trickling over the surface will in time remove it in solution, learing the stone to fall away, superficially, to the condition of sand once more. Ferruginons cements are likewise slightly affected, though in a much less degree. The silicions cement is least affected of all, am, provided the amomut of induration be the same, a purely siticious sandstone, cemented by a silicious cement, is one of the most indestructible of natural building materials.

Methods of Testing Stone. It is evident from what has been said under the head of essential quatities of building stone, that some system of testing stone, for the purpose of ascertaining how far it may possess such qualities, is eminently desirable. The following is an onthine of the methods ordinarily employed :-
(1) Tests to ascertain permanency of colour.

Eut two tests are commonly employed : the one, the chemical test for sulphur (indicating the presence of pyrite), and the other, made with a view of arcelerating the ordinarily slow processes of oxidation by means of artificial atmospleres. In this last-named test, prepared samples are placed under bell glasses, where they are subjected to fimes of nitric acil and chlorine. Pyrite or fertuginous carbonates are quickly attacked, and their presence made known by ferruginous discolorations and efflorescences.
(2) Test to ascertain resistance to corrosion.

This is necessary only on calcareous rocks, or on sandstones containing a calcareons cement. Prepared samples, carefully weighed, are suspended in a glass ressel of water, through which carbonic acid is kept constantly bubbling, the water being changed occasionally. The extent of corrosion is indicated by the loss in weight during the time of testing.
(3) Test to ascertain resistance to abrasion.

This is necessary only in cases where, as in steps and walks, the stone is to be subjected to the friction of feet, and in dams and breakwaters. In certain exposed places the action of wind-blown sand may be an important consideration. The ordinary methorl pursued consists merely in subjecting a block of stone, under constant pressure, to wear on a grindstone or horizontally revolving iron bed such as is used by stone workers.
(4) Tests to ascertain absorptive powers.

Rectangular specimens, with smoothly ground faces, thoroughly dried and weighed, are immersed in water for a period of three or four days - preferably in a porcelain dish. They are then removed, dricd ly blotting paper, and

STONE

weighed immediately. The increase in weight intieates the amount of water absorned.
(5) Thests to ascertain resistance to freezing.

The preliminary proceedings are the same as in the last ease, the enbes being repeatedly frozen and thatrel while saturated with water. After the freezing and thawing, the specimens atre dried and reweighed. The loss in weight indicates the amome of material disintegrated throngh the expansive action of the freczing water. Attempts at sulstituting sulutions of salts, which ly crystallizing in the pores of a stone shall simuate the action of freezing water, have not proven satisfictory.
(6) Test to ascertain ratio of expansion and contraction.

Carefnlly measurel bars of stone are immersed in water at 32° Fahr., which is then raised to 212°, and then gralually lowered once more to 32°. The total expansion at the highest temperature is noted. The ohject of lowering the temperature once more to 32° is tos aseertain the amount of permanent expansion whidh has taken place, it having been foumd that the stone, on such lowering, did not at once regain its former dimensions, but showed a slight permanent swelling or set. Tests of this nature seem, at first sight, of the greatest importance; but in attempting to jurge of their value, one should not lose sight of the fact that a loosetextured stone, like a friable sandstone, would probably show less actual expansion than one of closer grain, owing to the interspaces of the particles; hence the poorer stone might give apparently the better results.
(7) Test to iscertain resistance to crushing.

This is made on carefully prepared cubes with smooth, parallel suffices, crushert hetween steel plates. The size of enbes operated upon is variable, but, all things considered, one 2 inches on a side seems most desirable. The results, as tabulated above, are given juer square inch of crushing surface.
(8) Test to ascertain elasticity.

This is best made upon prisms some 4 inches by 6 inches by 24 inches, the loads for eompressibility being applied parallel to the direction of the long sille. The transverse tests are mate on similar bars supported at the ends and the load applied in the middle. ${ }^{1}$
(9) Test to ascertain resistance to shearing.

This is made by supporting a prepared prism, at each end, by blocks, and applying pressure in the centre by means of a plunger of such dimensions as to leave a clearance space of half an inch between the sides of the plunger and the blocks at the ends.

[^7]
STONE

(10) Test to ascertain fireproof qualities.

This is mate by heating the stune in a furnace and noting its comlition on cooling, and also, in extreme eases, after the heated stone has been phanged into collt water.
(11) Test to ascertain specific gravity.

The preparesl specimen is first weighed in the air, and then in the water, the air from the pores of the stone heing removed by boiling or by means of an air pump. The weight in air, diviled by the loss of weight in water, gives the specifie gravity. The weight per cubic foot, if desired, can be obtained by multijlying the figures denoting the specific gravity by 62.5 , which represents, in pounds, the weight of a cubic foot of water.

> -George P. Merrill.

Artificial Stone. Any hart material made in imitation of stme, usinally by mixing strong cement mortar with sand as for a very fine concrete, but withont the chips or larger fragments of stone or granite. Blocks of concrete in its different forms are nsel treely for building and more especially for under-water foundations and the like, but the term "artificial stone" is commonly used for such material as is prepared as a substitute for Hagging. Thus, the silewalk or footway of a street or the broader walks in a park or garden are, since 1870, very commonly coverel with this material, which is often scored with deep, lines to initate the joints luetween Hags. The basins of fomtains, leavy rubstmes, and eupings, as of retaining walls, are also motelled in this material.

Semi-Precious Stone. That which is of value for decorative and art work, hat which, owing to rarity or lighl cost of working, is mot used for ordinary building. Of these only the more important are deseribed in thetitil.

The onyx marbles, owing to their rariegated colours, banding, aul traluslucency, as well as easy working qualities, have loug been fivourites and have been in use for interior work and honsehold utensils since a very early period. As early as the second Egyptian dynasty we find the Egyptians using the translucent, light strawyellow or amber material from rifts and caves in the cocene limestones of the Nile Valley for making canopic vases, urns, and amphore for holding offerings to the gots, ashes of the dead, ointments, cosmetics, etc. Tombs and shrines were built from it, the sareophagus of Seti I., the father of Rameses II., heing hollowed from a single block. The exteriur walls of the celebrated alabaster mostre at Cairo are of the same material.

Since these days down to the present the stone has continued a favourite fur the finer grades of decorative work, as well as for table tops, small columns, etc: The present sonrces are: (I) The region alnout I'neblo, in Mexico;

STONE

(2) San Luis Ohisjo, California: (3) Yavapai C'omuty, Arizona; and (4) Blanl Recam, in Algeria. ${ }^{1}$

The Mexican rarieties are of a white, amberyellow, green, and red colom, as are also those of Arizona. 'Those of ('atifornia are mainly white, and those of Algeria white and amber. The stalagmitic forms are never green or red, but usually amber and white. At the present time the latter are not regularly worked, nor have they any constant value, although properly treated they might be made very effective.

Quartz am\} the eryptucystalline varieties of siliea grouped umber the general name of chalcedony are, in America, in very little demand except for the cheaper forms of jewellery and for making small ormaments, as paper weights, ete. The clear ghassy form is utilized by the Japanese in making the guartz spheres and small ohjects of art for which Japranese collections are motel. Quartz traversed by threadlike needles of rutile or amphibole, and known as Thetis hair stone. is used for simitar purposes. The cryptocrystalline and amorphous forms are used for a great variety of purposes, from the making of jewellery, as with opal and agate, to the manufacture of pottery and gun flints, as is the case with flint commonly so called.

The principal varieties of these eryptocrystalline forms are defined helow. It may be well to premise their description, however, with the statement that as a rule none of the varieties is to be hat in pieces of more than very moderate dimensions, while the great hardness and tonghess of the mineral renders it very difficult, and consequently expensive, to work. Nearly all the systematic work of this nature now earied on is done in German, Japanese, and Russian workshops.

The most important source of chalcedony or jasper. for commercial muposes, within the limits of North Amerien, has been the so-called fossil forest near Holbrook, Arizona. Here are found numerons fallen tree trunks in which all organic matter has been rephaced by silica, sometimes with and sometimes without the preservation of the original wool structure. The prevailing colons are red and yellow rariegated with white and gray. The material takes a beantiful surface and polish, and has been used to some extent in the mamufacture of small ornamental colmmos, tops of stands, etc., as well as for paper weights and other small objects.

Of all muitern people the Rnssians have shown most skill and enterprise in working the refractory materials on a large seale. In the museum of the Hermitage in St. Petersburg is an enormons shallow oval vase of green gray polished chatcedony some 12 feet by 8 feet in

[^8]
STONE

diameter and 3 feet in depth, supported upon a base some 4 fect high and this resting on a rectangular block of the same material 6 by 5 by \because teet.

It is to be regretted that a more extended use camot be made of materials of this chass. At present our manntacturers and deaters decline to handle any stone the supply of which camot he considenel as constant, or the individual pectlianities of which are such that speeial care and taste must be exercised in its preparation. For this reason, many a fine piece which in proper hands might be worked up into something really unique and artistic is allowed to go to waste. Beantiful masses of clear or rose fuartz go to the making of road materials or abrasives. Occasional blueks of stalagmite from the limestone caves of the South might be made to yield beantiful columus, urns, or vases. In reality sueh are neglecter simply beranse the material eannot be quarried by the ton, sawed into slabs like so many mill lugs, and used for wall linings. In anclent times, before the adrent of the labour unions, stones of these types were used much more extensively in proprortion to wealth and population than to-tlay. While the present high valuation set upon labour might be a drawback to their extensive use under the old hand methods, the introluction of machinery would seemingly have equalized matters, and one can but feel that it is the artistic sense that is lacking.

It is a little singular that the art of working these refractory materials, if indeed they are worked at all, shombl be limited, to-day, so largely to people whom we do not regard as rejresentatives of the highest types of civilization. The best work in nephrite that has ever been done is Chinese: the best now being done in chalcedony, rhodonite, and malachite is Russian: and the hest in stalagmite, Egyptian. The art as practised by the French and Germans during the fourteenth century and the Italians during the sixteenth seems almost wholly lost. Since the decay of Roman civilization there has been nothing done with the beautiful antique green and red porphyries, and the use of jasper ly any people has long since practically ceased. - George P. Merrill.

STONE, NICHOLAS ; sculptor, architeet, aud master mason ; b. 1586 ; d. Aug. 24, 1644.

Stone was a pupil of Isaac James, a mason, and assisted Heulrick van Keyser (see Keyser, H. van) at Amsterdam. In 1614 he retumed to England and executed many works from the designs of Inigo Jones (sce Jones, 1.), such as the Banqueting Honse, Whitehall (1619-1622), the portion of cul S. Paul's ; the water-gate at York Stairs, and the fine portal of S. Mary's, Oxford. He was appointed master mason at

STONE CUTTING

STONE CUTTING

Windsor by Charles 1., and wals employed in the execution of a vast number of monnments. He was assisted anl suceecded by his sons Heury, Nicholas, and John.

Stephen-Lee, Dictionary of National Mioyraphy; Rymer, Fadera; Blomfield, Lrmotssunce in Englant.

STONE CUTTING. The art and practice of preparing stone for its place in a building,

Stune Cutting, Fig. 1: With Jorigled Joints, giving Great Sulidity to the Wurk; SYRiA, 4th Century.
including in the largest sense the rongh shaping of Rubble and the like, anl also the finishing of the taces as well as the beds and joints of stones for building. The scientific part of it, as the Irafting and calculation, is called Stereotomy. The finer torling of the fares, beds, ete., is also eatled Stome Dressing (which see) ; and the term "stone cutting" is often limited to the work of shaping C'ut Stone (which see) as distinguished from rulble and the like. Under

Stone Cuttino, Fig. 2: Detall of a Temple at Thebes.

Masoury the different processes are describerl. It is proposed to give here a brief historical account of building by means of stone, and,
therefore, Stom Setting (which see) must be ronsilerel tugether with stone cutting, berause the practice of the two arts is very chosely connected.

Thus, in Fig. 1, the stones are so fitted together that great solinity may lue given to the wall in a conntry where earthunakes are frequent. The stones are cut with Joggles as

Stone duttinf, Fig. : Th: That of the fle ehele levic Epor H. A Tholos at Mreensi; A very Large Tombal Chimber, with Dromos, all FACED WITH STUNE.
shown, with the immediate intention of fitting earh stone carefully to the neighbouring stones above or below, and such work is nsinally done on the spot, a common superintendence of the cutters and the setters insuring aceurate work. Figure ? shows such stone cutting as was done ly the Egyptians, the huilding represented heing of the 18 th dynasty ; but huildings of much earlier times show a similar skill in shaping and dressing and setting the stone. The sejarate stomes are in Egyptian work not often of very great size, except when they are usel as obelisks or in similar monolithic work ; but in the temples and palaces the number of rather large stones is very great, and the skill in jointing, shaping, and surfacing the stones is equal to anything that is known to exist. It is to be obserred that the public huildings of Egy]t, though generally huilt of stone only, are yet thought to have taken some part of their form and many of their details from an earlier structure of reeds and light woolwork covered with coatings of Nile mud. (See Egypt, Architecture of.)

The pre-Hellenic work of Creece is very inferior to the Egyptian work in finish and in

Stone Cetting, Fif, 4: Tholos at Mycene: ree Previots Cut, The blucks of siune are set with Horizontal Beds, and the Bee-hive Shape is got by Corbelling.

Stone Cuttlng, Fig. 5 : Eafly Gbeek Work in Soft Sandmtone, istexded to be coated with Stucco, but Incomplete. Temple at Selesta, Sicily.

STONE CUTTING

architectural character, thongh much less ancient than the latter, but it is peculiar in this, that it has no reference in its forms to other material than stone. Thus, the tomb at Mycene, illustrated in Figs. 3 and 4 (see Treasury of Atrens), is built as men would build who thought of no other material than stone ; anl in this respect it resembles megalithic and other prehistoric work (see Cyclopean ; Pelasgic Architecture) ; the stomes are as large as a man ean handle conveniently, they are rulely cut

STONE CUTTING

again more simple. The Greek temple, as illustrated by that at Segesta, shown in Fig. 5, is built entirely of stones laid one mon another, aml keeping their place by deal weight, unless aided by metal clamps within, as a partial defence against the vibrations caused hy earthquakes. The temple at Segesta was never completed by its buiklers, and hence it has been a valuable study to modern archaoologists. It does not follow, from the refinsal of the Cireeks of the fifth and the forrth centuries b.e. to use

Stone Cutting, Fig. 6: Barrel Yault of Peculial Cunstructiun; Nymirefla at Nìmes, Socth of Firance; Roman Imperial Work.
to an approximately uniform size, and are selected so that the stones of one course shall be of the same size throughout, constituting what is known as coursed work. Each successive course is then set somewhat in advance of the next lower course, all the work being corbelled inward in such a way that gradually the size of the rotunda diminishes until a single stone caps it at the top, the resistance of the very stones of the ring or course preventing one stone from falling inward, on the principle of an areh laid horizontally. The Dromos, or passageway, leading to the tomb is built of larger stones, generally set on their smaller faces, and the whole is covered with earth, much on the principle of the tumulus. It is to be noticed then how much more elaborate this work is, considered as stone cutting and as stone setting, than the more magnificent work of Egypt, confined to plain trabeated construction.

With the classical epoch of Grecian architecture, the character of stone cutting becomes

Stone Cutting, Fig. 7: Detall uf Nympheum, Nimes. See Cut abuve.
the areh in any form, that they were wholly unacquainted with its nature and possible uses. They, with the Egyptians and the Indians of the early time, seem to have thought the arch too dangerous and untrustworthy to form a part of dignified architecture, of which architecture repose should be an essential character. The constant tendency of an areh to thrust out its abutments and to destroy the work of which it forms a part was enough to account for this refusal, at a time when the value and interest of interior architecture had not been studied.

To the Romans of the Empire, however, the interior seemed of equal importance with the

STONE CUTTING

exterior, and the ards is in continual use, both singly, as in a wall, and ass extemed to the vault orer a large apartment. Figure 6 shows one of the few loman vanlts which, out of Syria, are known to have heen built of eut stone throughout, for the liman practice was usnally to huild these roofs with small stones laid in a bath of mortar. Fignre \bar{i} shows the detail of the constraction of this rery curions

stone Clottixg, Fif. s: Frenih Gothic Work of the Best Period; Churif of S. Eusebe, Auserre: 13th Cfatcrey.

STONE CUTTING

it conld be handled easily, two or three men at a time cutting a certain number of pieces out of a quaty and dressing them at onee, jreparatory to tramsporting them a short distanee and to placing them immediately in the work. To hithe built on a large scale with brick or rubble and abumdance uf mortar would have involved a long term ut preparation and more abundant resources; but any bishop, abbot, or baron who
ing parallel arches have servel no purpose except to enable the plamer of the work to simplity it by giving his workmen one arch or ring of ronssoirs at a time. These being eut and set, the other slabs conld be filled in between, with some unusual expenditure of labour, but with some facility for the work of ignorant workmen. Many examples of the cut stone work of the later Empire can be found in the illustrations under Sywia.

In the medieral epoch, stone was the material most eonvenient to the workmen, becanse could command the services of two or three stonecutters amd of twenty labourers, coud find a quarry in his neighbourhool from which sufticient material could be got to carry his building a few courses higher, or to turn one more arch of the nave. It is noticeable that throughont the Millile Ages the stones usell are of moderate size in all parts of the building, there being but few which can have needed any elaborate machinery for hoisting them into place, and the greater mumber being so small that eatch one could be carriel on a man's shonkler up a ladider and aloug a scatfoll. Fierure 8 shows an instance of such medieeval work, and it is evident that whether the large stones of the arch on the right amd of the wall above it are, as here shown, too heary to be hamdlet as abore described, there would be nothing to prevent the building of all parts of the structure by stones uf forty pounds weight and under. The lintels which stretch across the triforium gallery are the only pieces reguining larger size, ant these might be replaced by other devices. Figure 9 is a piece of the French interjur decorative work of the sixteenth century, in which the extraordinary skill gained during the long eloch of Gothic art was applied hy the builders in a different way. Simplicity of eonstruction haring sueceeded, muder the Renaissance, to great complexity, the ingennity of the stonecutters was then shown in their cletails, the niches, colonnades, and friezes of this tomb having been evidently intended by the workmen is a rare masterpiece, challenging comparison with any other work known to the artists: while the intimate relation maintained between the figuse senpture and that which is purely decorative carries still further the Gothic scheme, in which there was no sharp line of clistinction between the religions portrait statue and the onaments emposer of mere zigzags and nailhears.

The later stone cutting, as that of the postRenaissance styles in Europe, affected a solidity and simplicity fully equal to that of the

STONE DRESSING

Roman Imperiat builders, and includel even some metherls of work not lamiliar to then, so far as we know from the ruins. 'The groin viulting of the seventeenth century, especially in Italy and Spain, is far in excess of anything left ns by the Fumans, loth in elaboratemss and in the stone cutting skill displayed. In fact, it is only with the later years of European work, begun about 1450 , and then only in the south of Europe, that stone cutting is attempted which

STONE DRESSING

blocks ; in that case, the stone is dressed with a slightly receding or hollowed bed, and the edges of the faces of the stomes may almost tonch, no mortar being visible. Surh joints as these refure cutting as careful as that of the faces, but the astual suffece should ahways be more or less rough, in orfler to atford a good hold for the mortar.

As for the face, the simplest way of work, compatible with a uniformly vertical or uniformly sloping wall, is what is known as roek-

Stone Cuting, Fig. $9:$ finely Fininhed Work of the French Refiassance.
can be called elaborate in our morlern sense of the worl. - R. S.

STONE DRESSING. That part of stone cutting which relates to the surface of stomes prepared for building. Thus, the beds and joints of the stone may be hammer dressed, or where finer work is required and the joints are to be made as thin as possible, they may be worked with the point, for it is rave to earry them farther. Sometimes the actual thickness of the mortar joint is required to be greater than the extermal and visible joint between the two
facel or pitch-facel work, in which the joints being first determined and the external elges of the stone established (see Ont of Winu under Wincl), a drove chisel, or a pitching chisel of stouter make, is set with its elge upon this retemined angle of the stone, and with a blow a rongh splinter is broken off, the operation leing repeated until the face of the stone is at its edges true and vertical, whatever rough projections there may be on the fice beyond the joints. The finish may then be carried farther by establishing a traft on all four etges of the stone,

STONEHENGE

or at pleasure along the horizontal edges only, this process emphasizing the coursed look of the whole. In the case of drafted work, however, it is less usual to use a wholly rock-faced finish, the larger projection being then commonly knoeked ofi, so as to bring the stone to approximate uniformity of surface. When chisel work is to be usel, the workman begins with the Point or Pointing Tuol (see those terms), a straight bar of steel, square or octagonal, with a four-sided pyramilal point, or sometimes a very short edge. With this point the workman cuts chamels across the fiee of the stone diagonally, and acruss each other, all these channels being carefully kept in the same plane by reference to the elges and the use of the wooden straightedge. The spaces between, where the ruggerl stone still projects, are then gone over with the point until the whole has an approximately uniform surface. This can be carried so
entering the groove on one side and leaving it on the opposite side. The toothed ehisel ean be used witl great effeet on soft stone, if applied mueh as the lines of cross hatehing are applied in ordinary drawing; the edge blow of the tool gives seven or eight short parallel lines; if the sucecssive blows are at different angles, a surface is procured generally uniform and sufticiently smooth, but without a regular tool mark which ean be counted, and with a rery happy result. Hammer-finished work is done by blows direetly upon the surface, which bring a uniformly lined or finety grained surface, but these implements are hardly applieable to soft stone. The steps and platforms for stairs of marble or granite are nearly always hammer-dressed, and for this the coarsest hammer, or that which has the fewest blades, is used. A hammer with six blades gives what is ealled six-cut work, and from six to twelre-cut work is the limit. Other varieties

Stunehenge, Near Salisbury, Wiltshire, England.
far, and the lines cut by the point made so regular and fine, that the stone is considered presentable for face work. It is then saill to be Broached, the rough projections between the lines made by the point being never more than three-quarters of an inch wide, nor projecting more than one-quarter of an inch. Instead of cutting parallel lines by the point, short and irregularly spaced, lines may be cut, producing what is called pointed work, and sometimes rough pointed work, a surface very effective in granite, especially if having many party-coloured ingredients in its mass. If, however, it is intended to use the chisel of any form, the point is laid aside after the first evenuess of surface is obtained, and then, according to the quality of the stone - hard, soft, fine, or coarse in grain - there may be used either the Toothed Chisel, the edge of which is cut into blunt teeth, having about eight in an edge of three inches, or the Drove Chisel, which has a uniform straight edge, or the Patent Hammer, or Bush Hanmmer, the two last being used for harder rock, the two former for the softer sandstones and limestones. Drore work is done by the drove chisel, which euts shallow grooves sidewise, the edge of the tool
of dressing are known ; thus, Picked, or Sparrowbilled, Work has a somewhat uniform surface produced by the blows of a sharp point, so that it resembles pointed work of considerable regularity. A similar effeet is produced with less labour by means of the Crandall. Vermiculated work is that sometimes seen in neoclassie buildings, in which the surface looks as if worms had eaten their way about the surface without going below a certain fixed depth; it is an awkward way of expressing the effect of rough stome, which could be better done by some form of rock-faced work. Rusticated work is merely the sinking of the joints, or, more properly, the raising of the larger part of the face of each stone beyond the joint.-R. S.
(See Axe, II.; Boast; Chase; Dab; Draft ; Hammer-Iressed; Nig; Nobble; Quarryfaced; Toek-faced; Seabble; Scutching; Skiffling.)

STONEHENGE. A prehistoric and megalithic monument in Wiltshire, England, not far from Salisbury. It is the most imposing megalithic monument in existence, though not covering as mueh ground as those at Carnac, in Brittany.

STONE LIME

STONE LIME. Lime made by ealcining limestone or marble in a proper kiln. The quality of the lime varies with the amount of sand, clay, or silicates mised with the pure calcareons element of the stone.

STONE SETTING. The art and practice of putting into permanent plate the stones preparel for buikling, including the preparation and spreading of mortar, if nsen, the laying of leal joints where neeted (as between bases and shafts, or shafts and eapitals), and the exact turning of arches made up of welge-shaped solids (see Toussoir), and similar work. (See Stone Cutting.)

STONEWARE. Potter's ware male of very silicions clay, or of clay and tint, which, when properly mixed, moulded, and fired, becomes vitrified throughout. It is often moulded to form copings, chimney tops, ete.

STOOL. A. Same as Seating.
B. The small monlded shelf muder the sash of a window, serving as an interior sill.
stoop. A. In New York and in those cities which have followed New York in this respect, an out-of-door flight of stairs with a platform at the top, the whole constituting the means of approach to the front door.
B. By extension, in parts of the northeast United States, a porch, veranda, platform, or terrace of any sort. Thus, the inhalitants of a small frame house in a village speak of the front stoop and the back stoop, meaning anything from a flight of three steps aul a small platform to a veranda covering the whole side or end of the honse. (Also written Stoup.) -R. S.
Box Stoop. In New York, since 1880, a stoop making a quarter turn, having a platform, and presenting the side of the lower flight to the street. This structure requires a vertical wall aml parapet on the outer side, whence the name.

STOP (n.). Anything serving to keep a door or easement from swinging past its proper plane when shut or open ; or to keep a sliding sash, shutter, or door in its proper grooves ; or to stop a door or drawer from going too far into the frame in which it slides. Stops may be permanent or temporary, and the permanent ones may form a part of the structure or be inserted afterward at pleasure.

STOP BEAD. A continuous strip or monkling, ustally shaped into a half round on one elge, whence its name, bead, and serving to keep a sliding sash or similar member in its place. When such a sash has to be taken ont for repairs, or the like, the stop bead is usually removed ; it is therefore in good work often held by screws only.
stopcock. (See Cock.)
Storage battery. (See Electrical Appliauces.)

STORM CELLAR

STORAGE BUILDING; WAREHOUSE. (See Warehouse.)

STORE. A. A place for the storing of goods of any kind ; in this sense, nearly equivalent to Storehouse. (Compare also Wiarehonse.) Stores in this sense are not usually the subject of careful architectural treatment; they are apt to he extremely plain and hare buildings of greater or less strength in the floors and walls, according to the material expected to be depositerl in them.
B. A place for the exhibition and sale of goords ; a shop. In this sense, common in the United States and in many of the Britisll colunies. Buildings designed for stores in this sense have been erected during the second half of the mincteenth century in the great cities of Enrope and the United States, and some of these buildings are of very great size and cost. Builings for Departmental Stores (see below) have been erected covering 100,000 square feet of ground and six or seven stories high ; the whole being occupied by salesrooms and the workrooms for persons who receive and deliver goods, unpack, pack, and repair them, and in other ways serve the salesrooms to which the pullic has access. It cloes not appear, however, that as yet carefnl architectural thought has been given to the problem of the phaning and construction of these buildings. In the plural, Stores, see Cooperative Store below.

- R. S.

Coöperative Store. A store in seuse B, kept up by a coöperative society, to enable its members to promre gools cheaply by eliminating profits. In Great Britain, often called the Stores, in ordinary conversation.

Departmental Store. An estahlishment for the sale of goods of many varictics. The statl of employees being very great, and the goods offered for sale being of many widely different sorts, there have to be established departments almost wholly independent of the others, and each having a superintendent. - R. S.

STORE FRONT. Same as Shop front.
STOREHOUSE. A buikling used for the storage of goods ; the general term. (See Storage Warehouse, under Warehonse.)

STOREROOM. A room for the convenient storage of goods or reserved stock, not exposed for sale, in connection with a shop or store; or of domestic supplies in a dwelling honse.

STORM CELLAR. In countries where tornadoes are to be feared, a structure partly or wholly umlerground, intended for shelter and safety when a tornado threatens to pass over the spot. In the middle west of the United States the tornadoes travel eastwarl or northeastward, and the rule is, when you see the black cloud approaching, to run northwesterly

STORM DOOR

STRAP ORNAMENT

from what appears to be its course. As, then, the tornado approaches from the west or southwest, it is minal to place the stom cellar northwest of the lowse, and connected with the cellar muler the louse by a tunnel.

STORM DOOR. Same as Weather Door, (which see, muler Inor).

STORY. .I. The space in a building comprised hetween the top of a floor and the top of the flon next ahove: beace, one of the structural subdivisions in the beight of a house. (see Attic: Entresul: Etage: Mezzanine: Piano Nobile: liez-lle-Chanssée.)
B. A tier, a horizontal row of windows, or the like, forming a large arehitectural detail, and making 1 p one of several successive stages, even whare no floors exist.

STORY POST. In stories open to the street, as in some shops or sheds, one of the prosts under the beam which supports the exterior wall.

STORY ROD. A rod cut to the exact height of a story, from top of flow to top of Hoor, used to ascertain the proper beight for the risers of the staircase by dividing the rod into as many equal sublivisions as there are steps.

STOSS, VEIT : sculutor and engraver ; b. about 1445 (in Krakan. Poland) ; (l. 1533.

He was a well-known master as early as $147-2$, in which sear he finished the great altar of the King Kasimir in the cathelral of Krakan. In 1496 he made the first model for the shrine of S. Sebaldus in the church of that saint in Nuremberg. which was carried out by Peter Vischer (see Vischer).

Fäh, Geschichte der Bildende Kiinste.
STOUP. A. A basin for holy water, placed in a niche or against a wall or pillar near the entrance of a Coman Catholic church.
B. Same as Stoop.

STOVE. A. A heated rom of any sort, as a greeulouse, in which an especially high temperature is maintained for tropical plants: a drying chamber used in various manufactures ; a Laconicum, or sweat room.
B. A warming or cooking apparatus, generally of iron, and portable. In Germanic and other colld countries the stove is often a more important and permanent structure, built of glazed tiles, more or less decorative in character, and so situated. generally, as to warm contignous rooms. (See Kang.)

STOWE, RICHARD DE; architect.
He built the Eleanor Cross (see Cross of Queen Eleanor) at Lincoln (England), and about 1306-1310 was emplored as cementorius at Lincoln Cathedral. He contracted to continue the central tower.

Hunter. On the Derth of Queen Eleanor of Castille.

STRACK JOHANN HEINRICH : architect; b. July 2t, lع05: d. June 13, 1880.

He studied architecture with Sehinkel (see Schinkel), and in 1834 went to Italy. After his return he was made professor in the Academy of Berlin. In 1862 Strack went to Athens and superintended the excavation of the theater of Dionysos. He published Das altgriechische Theatergebünde (1843. folio): Zeipel Bumreske des Millelullers und der Remulswance in Italien (Berlin, 1889, folio) ; Bundenkwïler Roms des I V.- I'I. Jahorlinucleis: : ergü̈nzmg zu Letarouilly (Berlin, 1891, folio) ete.

Allgemeine doutsche Diographie.
STRAIGHTEDGE. A. A ruler used by dranghtsmen for ruling lung lines for which the T square canmot be conveniently emplovel; e.g. the converging lines of a large perspective drawing. It is ustally of light, hard wood, but hatd rubber and celluloid are also used.
B. An implement used in building, for various purposes. For laying off long lines aud for testing the evenness of a plane surface of plaster or stone, a thorouglily seasonel board with an edge planed perfectly true is emploved. For testing levels a long, wide board is used, haring the lower edge perfectly true and the middle part of the lack or upper elge parallel to it ; from this part the back tapers somewhat to either end. It is used by setting the lower edge on the surface or surfaces to lue tested, and applying the spirit-level to the middle of the back.

- A. D. F. Hamlin.

STRAIGHT LINE PEN. Same as Drawing Pen, B (which see under Pen).

STRAIN. The deformation or change of shape of a body as the result of a Stress (which see).

Breaking Strain. A strain so great that the hody subjected to it is ruptured.

STRAIN DIAGRAM : POLYGON. A genmetrical diagram used in the graphical method of determining the strains in a framed structure, such as a truss. The given loads or other outer forces are represented in amount and direction br a series of lines: other lines are plotted to the same seale corresponding in direction to the respective members of the stmeture. On completion of the polygon, these latter may he directly measured by scale on the drawing. The process is similar to that emplored in the Polygnn, and the Parallelogram, of Forces.

STRAINING ARCH. (See under Arch.)
STRAINING BEAM. (See under Beam.)
STRAINING PIECE. Same as Straining Beam (which see unter Bean).

STRAP ORNAMENT : WORK. A method of ormamentation, especially characteristic of the time of Elizabeth in England, composed of a capricious interlacing, folding, and interpenetration of bands or fillets, sometimes represented as cut with foliations.

STREET ARCIITECTURE

At Ronen, in Normandy. Two fronts of private honses dating from the sixteenth century. The ground story with the shop-fronts has been too much modified to be of interest, but the rest of the façade is in each case fairly well preserved. The
strongly marked central feature carried through the whole fromt, from the lowest story to the dormer, is remarkable as showing the indifference the designer felt with regard to the relative uarrowness of his façate.

STRAW HOUSE

straw house. (Nee Grats Honse.)
STREET. A pulbic way in a village, town, or city : the continuation of a road through a district thickly corered with houses and upon which the honses face. The term may he considered as incluling the actual surface of the gromm with the pavements, or other covering aud preparation of the ground to bear travel, together with the gutters and similar conreniences; or it may inclnte the soil below and the air space abore, as when an exerelise of the legal right of a commmity to carry out repairs or the like is in question ; or, finally, it may even be consitered as including the houses facing upon the rondway, and their gardens and approaches. (See Alley; Calle: Fontamenta; Galleria; Giallery in senses F^{F} and G; Hews; Passage (II), pronounced as in French: lio Terra; Pira; IV ynd.) Also under the greneral head come such terms as cuemue; place, in the sense of a lmited part of longer street ; roult, in the sense uset in Lomlon for lang streets, until lately suburban; terrure, in nearly the same sense as place, above; and local terms such as chunssie, curcle, citú, court, crescent, gusse, each of which is caprable of distinct explanation.

STREET, GEORGE EDMUND, F.A., F. S.A.; arrhitect; b. Jume 20, 1824 ; A Dec. 18, 1881.

In $18+4$ he entered the atelier of Sir George Gilbert Scott (see Scott, (4. (i.). In 1852 he was appointed diocesan ardhitect at Oxford, England, and afterward held the same ottice for the dioeeses of York, Ripon, and Winchester. In 1856 he established his oftice in London. He restored a large number of medieval monuments, the cathedrals of York, Carisise, Bristol, and Dublin, the church of S. Peter Maneroft at Norwich, the church at Hythe, etc. He built a very large number of new churches in the Gothic stylex, heing especially successful in the smaller designs. In 1867 he entered the memorable competition for the new Courts of Justice in Lomlon, and in 1868 was appointed arehitect of that work. A list of his works is given in the Buildro, Vol. XL1. (1881), p, Ti9. Street was made a member of the Royal Acalemy in 1871, and was afterward electel president of the Royal lnstitute of British Architerts. He published Brick and Marble Arrhiterture in Northem Itul! (1855, 1 vol. 8 ro), (iothic Architecture in Spain (1865, 1 rol. 8ro). and momerons contributions to periodicals, especially the Eeclesinorfist and the Tronscoclions of the Royal Institute of British Amedetects. His notes on the sepulchral momments of Italy were published by the Arundel Society (1 vol. fulio, 18.83).
A. E. Street. Momoir of fieorge Elmzend Netreet; Obituary in Builler. Ih81, Vinl. XlıI.. p. $7 \vdots$.

STREET ARCHITECTURE. That pre-

STRENGTH

pared to face the street, and, in a more general sense, city architecture generally.

The eities of antiquity seem to have had a street architecture of which the moderns can form but little conception. This is the arraugrement of numerous covered galleries, porticnes, and luiklings open to all comers, which, in the more smmptuons towns, oceupied in great deal uf spare. Antioch, Palmyra, Gerasa, and wther rities of Syria were remarkable for their long and straight arenues tlanked hy double colon maies supporting roofs, so that for cunsilerable distances the footway was roufed and formed a continuous portico. What the aity of Feme possessed were the splendid [mperial Fora, which were alded to the Roman Forum, ly different emperars, on the north and also eastwart of the Capitul. Meanwhite, the exteriurs of private honses were probably of mintur importance, and even great public moments were more commonly low and plain in their ontside appearance, temples only having an effective extermal architecture. For the modem city, then, the consideration of street architecture begins with the Middle Ages, going back to antiquity unly for lessons: in landseape architecture. It is with the improvement of those crowded mentieval cities, too, that the legal aspert of street architecture demands attention. Overhanging upper stories harl to be forbidden; private owners had to he checked when their fronts encroached upon the roalway ; dangerous ceilar steps had to be guarden; narrow and dark alleys hald to be closed with gates: and little by little the mollern city has grown up, sacrificing picturesqueness and often seemliness to sanitary comlitions aud the aprearance of uniform ordomance. - R. S.

STRENGTH. In building, commonly in the phrase strength of materials. The power of sulid boulies to resist forces which temil to change their shape, position, or consistency. This pewer is developed in their resistance to the rarious stresses to which they are subiected, riz., stresses of compression, of tension, of whear, of torsion, and transterse stressis. The science of the resistance of materials hats for its object to determine the internal stresses developed in the different parts of a structure, and to enable its parts to he proportioned with economy. It is in part theoretical and partly experimental.

Nearly all the solid materials used in construction possess a greater or less degree of elasticity, a property which tends to cause a bady to return to its original shape upon the removal of the external force ly which it has been deformet. If by reazon of the application of an excessive force the body dues not resume its original shape, its elasticity has been impaired, the elastic limit has been exieeded. Withm the elastic limit the deformations are

STRENGTH

proportional to the applied forces. The elongation or shortening of a bar unter tension or compression (l) is proportional to the applied force (I), and to the length of the bar (L), and inversely to its cross-sectional area (.1), and to a suecific constant called the "Modulus of Elasticity " of the material, represented by the letter (E); we have therefore the relations:

$$
P=\frac{E \cdot I l}{L} \text { and } l=\frac{P^{\prime} L}{E A} .
$$

As the ratio $\frac{l}{l}$ is rery small, E is generally a very large number. If A is made $=I$, and $\frac{l}{L}=1$, then $E=P . \quad E$ therefore is the imaginary force which would double the length of the rod under tension, or reduce it to zero under compression. Thesc forces are imaginary because the formula assumes them applicable to all clungations and compressions, whereas this is only true within the clastic limit of the material.

Compression tends to reduce the length of the body subjected to it, and is accompanied by lateral expansion. If carried to the limit, it destroys the body by crushing it. This, however, applies to short blocks three or four diameters in height. Wheu the length is twelve times the thickness or more, the tendency to bend modifies the distribution of the compression on the section, and in rery long columns produces rupture by bending. Short bodies when crushed act differently according to their structure. Grauular bodies, as brick, stone, cast iron, fail by the separation of cones or prramids which slide down along the slopes of a central cone or pyramid. If the body is four or five times as long as its thickness, two cones remain upon the upper and lower bases, and the sides flake off between them. If fibrous, as woorl, the fibres will buckle and the block will split endwise under pressure ; if the fibres cohere strongly as in wrought iron and steel, the body will bulge, in the shape of a barrel. This bulging varies with the hardness of the material. In a recent experiment with steel from the head of a rail, the side next to the surface, which had been hardened by the hammering of the wheels, bulged very little; most of the deformation was on the side of the specimen most remote from the head of the rail. Under tension a body elongates and contracts laterally, a feature which becomes very marked as the specimen approaches rupture.

Shear is a stress acting upon any section of a body parallel to the plane of section, tending to make the parts slide upon each other. Resistance to the shearing stress is the molecular force dereloped in the section equal and contrary to the shear. In a beam loaded with detached weights, the reaction of the supports

STRENGTH

being forces acting upward, the shear at any point is equal to the reaction at one end less the sum of all weights betweeu the point and the support considered, and is uniform from one weight to the next. It becomes zero at the point where the sum of the weights is equal to the reaction on the same side of the section. lf the load is continuous, the shear will diminish gradually from either support to its zero point. In a system of detached weights, the shear at any point by its distance from the next weight between it and the support, is the increase in bending moment, to be adderl to the bending moment at the weight considered.

Transverse Stress. Assume a prismatic bar or beam resting upon two supports and loaded with a weight. The reactions of the supports are forces acting upward. Consider a section between the weight and one support. This portion is acted upon by the force P, which tends to cause it to slide upward at the plane of section. This is the shearing stress. The resistance to shear is a molecular force dereloped in the section cqual and opposite to the shearing stress. Uncler the same conditions the force P, multiplied by its distance from the section, is the bending moment about that section. It tends to bend that portion of the beam upward, compressing the fibres in the upper half of the beam, and extending those in the lower half. If we had considered the other portion of the beam, the part carrying the weight, the treatment would have been the same, only the shear from the reaction of the support would be reduced at the position of the weight, which acts downward, making the shear between the weight and the section equal to the difference between the weight and the reaction. The bending moment also would be reduced by the moment of the weight, that is, the weight multiplied by its distance from the section considered. The moment of resistance of the fibres to compression and extension, that is, the sum of the resistance of all the fibres, each by its distance from the centre line which is neither extended nor compressed, must be equal and contrary to the bending caused by the external forces. The stresses upon the fibres are proportional to their distance from the centre line (the mentral axis), the outermost fibres are therefore the most strained, and rupture begins with them. By a principle of mechanics a shearing stress in one plane is accompanied by a shearing stress of equal intensity in a plane at right angles to the first. The vertical shearing force therefure at any section causes an equal horizontal shearing force distributed orer the section and greatest at the neutral axis. This horizontal shear is familiarly shown by the fact that two equal beams placed one on top of the other will hear only half as great a load as a single beam of the joint depth

STRENGTH

STRIGIL ORNAMENT

of the two, unless these be prevented from sliding upon each other by means of keys and bolts. The two resist bending as $2 h^{2}, h$ being the depth of each: the single (or the compount) beam resists as $(2 h)^{2}=4 h^{2}$.

Torsion is produced when a bar fixed at one end is suljeeted to forces forming a couple in a plane perpendieular to the axis of the bar. It tends to revolve in their own plane the transverse sections of the bar, and to change the straight fibres into spirals.

Of the materials eommonly used in haidding, cast iron is genemally the least reliahle, where exposed to hending stresses. Its resistance to compression is four or five times as great as its tensile strength. Wronght iron and mild steel have about the same strength to resist tension and compression, their resistance to shear is abont twothiris of their tensile strength. Wood varies greatly in strength. Its resistance to tension is, as a mle, considerably greater than its resistance to compression. Its resistance to shear across the grain is also slight, though very moneh greater than its resistance to horizontal shear (shear along the grain) which is very small, varying from 200 to 300 poumds to the square inch for the softer wools, to 600 or even 1000 for the harder and tougher kinds. It is difficult to develop the full tensile strength of timber because to conneet it in such manmer as to apply tension, notches or gains must be cut into it which weaken the stick.

The horizontal sliear from the key to the end of the timber must be equal to the compression of the key mon the fibre of the beam. Consequently the leeper the key seat the greater must le its distance from the ent. The depth of the key seat also diminishes the section of the timber. This may be made less if long timbers are to be comected by not placing the keys opposite to each other.

Breaking Strength; Crushing Strength; Shearing Strength; Tensile Strength; Torsional Strength; Transverse Strength; same as Ultimate Strength in resistance to a force tending to canse rupture; crushing; shearing (see Shearing Weight) ; tension; twisting; cross breakage, - respectively. This use of the term strength is familiar, but erroneous.

Ultimate Strength. The last and greatest strength in a piece of material as noted by testing in it the extreme power of resistance olb serverl just before it gives way.

Working Strength. The strength which in practiee it is considered safe to depend on, in any given material or member. It was formerly determined hy divilling the ultimate strength of the material (the Breaking Load) by a "factor of safety" which expressed a ratio determined by experionce to provide for unseen contingencies. At this day, however, it is
usual to refer the working stress to the clastic limit of the material, - the stress at which permanent deformation takes place. This cannot he exceetled ; and the allowed stress is genrally limited to onc-third or one-half of the clastic limit, or in extreme cases to two-thirds. Allowance is made for impact if the structure is exposed to shock, and for variable stresses according to the comlitions of the ease.

Midaleton, Streins in structures, a text-book for stulents, London, 1887, : vol. 12mo.; Kint, The Ntrength of Muteriats, New lork, 1890, 1 vol. 12mo.; Tam, The Mefhemies of trehitocthre, Lamdon, $180^{2}, 1$ vol. 12mo. ; lhillorick, Bermes and (rionders: Practicul Fermules for their Resistemer, New York. Vian Nostrand, 1886, 1 vol. 16 mo .

- W. R. Huttos.

STRESS. The mutual action cansed at the surfiue uf cuntact between two boties, whereby each exerts a foree upon the other. Also the similar force hetween two imaginary parts of a boty, as on the opposite sides of an imagimary seetion taken at any point of the borly under consideration. Thus, a columm exerts by its weight a downward force on its foundation, which reacts mpward on the colmmn: eath of these bodies is satid to be in a state of stress. And, in like manner, at auy part of the column, the parts on each side of an imaginary plane passed through the column react upon one another, and are in a state of stress.

The eflect of a stress on a booly is to produce at change of shape, which deformation is called strain. Thus, in the above ease, each of the two borlies is compressed or shortened vertically. These definitions are those maintained by Rankine' and other scientifir men, althongh the distinction made has not yet received miversal areletance, and the terims are in common usage confused and often taken as synonymous. - D. N. B. S.

STRESS DIAGRAM. (See Strain Diagram.)

STRETCHER. In masonry, a soliul, as a brick or stome laid lengthwise in the wall. (Compare Linder: Hearler: Throngh Stone.)

STRETCHING. Laying lengthwise, as bricks in a wall.

STRETCHING COURSE. In masomry, a course of stretchers, in contradistinction to one of headers, which would be a Bond Course.

STRETCHING PIECE. Properly, a tie; frequently a strut or brace, it term more common in furniture making than in huiding.

STRRIGIL ORNAMENT. In Roman architecture, a decoration of a Hat member, as a fascia, with a repetition of slightly curved vertical flutings or reedings, supposel to resemble the strigil or seraper used after anointing.

1 Rankine, Wilfiam John Macquorn (18201872), civil engineer and discoverer in physical science.

STRIKE

STRIKE. A. To drexs and smooth, as the onter edge of a joint of mortar between two bricks or stones. Struck joints are those which have been shaped either with a trowel or

A

B

Strike: Struck Junts $1 N$ Brif or Stone FAcing. A 3 E EAsy To make but leaven A SHOLLDER TO hold Water. B Shed Witer well, the Mortal proteets the, BRTCK BELOW ANO IS ALsU LeEs VisIRLE, SU that the Wall REmains of a mure uniform Culour.
a special instrument, and the striking of the joints is usually called for in the specifications of the mason work.
B. To take down and remove, as a temporary structure, expecially of a centre, as of an arch or vault.

STRIKER, A slightly bevelled metal plate set in the jamb of a door to receive and guide the door lateh to its socket in closing.

STRING. One of the sloping members of a stair, usually a thick plank, which supports the steps and landings. Hence, by extension, the Ramp or side piece of a stone or other solidbuilt stair, if not so high as to be a parapet.

Bracketed String. An Upen String having bracket-shithed pieces secured to its face in the angle between each tread and the riser below ; the bracket mitreing with the end of the riser and sceming to support the end of the tread.

Close or Closed String. A string having its upper edge straight, and in general parallel with the lower edge, so that the outer ends of the treads and risers butt against it and are concealed. (Compare Open String.)

Curb String. Same as Close String,
Cut String. When of wood, the same as Open String; the upper edge being cut into notches to reveive the treads and risers.

Cut and Mitred String. A Cut String of which the rertical ellges of the notches are made to mitre with the ends of the risers.

Face String. The string at the onter and exposed elge of a stair as distinguished from the wall and the rongh strings. It may be a part of the actual construction, or merely a piece of better material or finish applied to the face of the supporting member.

Horsed-out String. (See Horse, r.)
Housed String. (See House, v.)
Open String. A String which has its upper edge notched, or otherwise worked to the shape
of the steps, so that the treads and risers are supported by and overlap the step-shaped elge. (Compare Close String.)

Rough String. Jn a wooden stair, any one of the strings helind and conceated by the Face String, and which is intented to be covered by the plaster or other fimish applied to the soffit of the stairs.

Wreathed string. (See Wreath.)

$$
-\mathrm{D} . \mathrm{N} . \mathrm{B} . \mathrm{S} .
$$

STRING BOARD. Any board or plank, or facing of thin pieces ghed together, serving in a buikling to cover the ends of steps in it stair, as when hiding the trne string, or to cover the edge of a floor where a wellhole is cut through it. Often calle Bridge Board.

STRING COURSE. A horizontal course on the face of a buiding. When continuous with a row of window sills or lintels, it is called a Sill Course or Lintel Course.

STRINGER. A. Same as String, as in a stair.
B. Same as Stringpiece.

STRINGPIECE. Any long, continuous, and solid member-usually horizontal-of a frame, as in a pier or bridge. Also a smaller piece not forming part of the frame, but used teniporarily, as in moring or raising a buikling. (See description of such work under Shoring.) Stringpieces are almost always of heary timber.

STROKED WORK. 'The tooling of stone su as to prowhce a finely fluted surface, often produced by the Drove Chisel. (See Stone Dressing.)

STRUT (n .). In a truss or other frame, a rigid piece acting as a brace or supporter, but differing from a post in being commonly set in a diagonal position.

STRUTTING PIECE. A. Same as Straining Beam (which sce under Beam).
B. Same as Strut.

StUART, JAMES, F. R. S., F. S. A.; painter and architect; b. 1713; d. February, 1788.

He studied painting, and in 1742 visited Italy. His De Obelisco Cosonis Augusti was published at the expense of Pope Benedict XIV. (1 vol. folio,]750). January, 1751, with Nicholas Revett (see Revett) and W. Pars, a painter, he visited Greece and made a careful examination and measurements of the ruins at Athens. He returned to England in 1752. The first volnme of Stuart and Revett's mommental Autiquities of Alhens (folio) was published in 7762 , the second in 1788 (the year of his death), the third, eulited by W. Reveley, appeared in 1794, and the fourth, edited by I. Wroods, in 1816. A supplementary volume, Autirnities of Athens and Other Places in Greece, Sicily, etc., was published by C. R. Cockerell (see Corkerell, C. R.), IV. Kinnard, T. L. Donaldson (see Donaldson), and

STUCCO

STURM

W. Railton (1830). From 1 I58 until his death Stuart held the ottice of surveyor at Greenwich Hospital.
J. Woods, Memoir in Antiquitios af Athens, Vol. $1 \mathrm{I}^{\circ} ., 18 \mathrm{It}^{\circ}$.

STUCCO. Any material used as a covering for walls and the like, put on wet and drying hard amb durable. Plaster when applied to walls in the usuat way (see Plastering) is a kind of stuceo, and the hard finish is almost exactly like fine Roman stuebo exeept that it is applien in only one thin coat instean of many. Vitruvius (VII., 3) speaks of three coats mixed with sand and three coats mixed with marble dust, but does not give the thickness of the eoats, nor, what wouht answer the same purpose, how wet the mixture was mate. He speaks of well-finished stuceo shining so as to reflect the images falling upon it, and states that persons used to get slabs of plaster from ancient walls and used them for tables, the material being so heatiful in itself.

The term is generally applied to out-uf-door work. Even in motern fireproof buillings the decorative use of fine phastering to rephace woolwork, as for datues and the like, is not in the United States called stuceo, but takes the name of the material usen, generatly a proprietary name.

The term is used commonly for rough finish of onter walls (see Rough Cast). The practieal value of stuceo is very great as being so nearly impervious to water ; thus, an excellent wall three stories high, or even higher, may be built with 8 inches of brick on the inner side, 4 inehes of hriek on the onter side, an air space of 2 or 4 inches across which the outer and the inner walls are well tied, and two coats of wellmixed and well-laid stuceo on the exterior, this being finally painted with oil paint. - R. S.

Bastard Stucco. Plastering applied to walls according to a process considered inferior. A term probably not used in the United States.

STUD (I.). A relatively small projecting member as a boss, a small knob, a salient nailheali ; cither for qmamental or mechanical purpose.

STUD (II.). A small slender post used in the framing of partitions and the lighter portions of woolen houses. Ustally about 2 or 3 inches. ly 4 or 5 inches in lateral dimensions. (Compre Joist, B.)

STUD AND MUD. Same as Wattle and Dab.

STUDIO. A. The working room of an artist, preferably arranged - in north latitude, - to receive north light and espectally free from cross lights.
B. By extension from the above, any large apartment fitted as a working room, espeeially for more or less artistic employments, as photography and designing of all sorts.

STUDY. In a homsehold, a room preferally apart and remote, for reading, writing, or any simikur use.

STUDY OF ARCHITECTURE. A. That which is required by the architect, either in preparation tor the practice of his profession, or as required to keep his intelligence fresh and his ability at the highest point.
b. That necessary for the proper understanding and enjoyment of works of architectural art, on the part of those who are not expecting to pratice the art or the profession.

The course of study pursued by arehitectural stubents in different parts of the European world is considered muder the headings Architect: Architect, The, in Englamd; - France ; - Italy ; School of Architecture; Sucicties of Arehitects. It may be noted here, however, that the art of free-hand drawing, in the sense of accurate delineation and of aecurate setting down of visible forms, is not taught or insisted on with sufticient emphasis, even in the great Paris sehool, while it is still less a matter of careful consideration in the great majority of the arehitectural schools existing. If, however, anything serious is to he gained by the study of the past, it can only he had by one who has the hahit of continual drawing from the ancient buildings. If it were possilhe for every practising architect to spend some weeks of every year among the monuments of art which most interest him, and most closely appeal to his sense of what should be done in the present, his work would be kept from the otherwise almost inevitable lapse into eommonplace, and his practice from becoming an inartistic professional service, giving to clients that which they asked for, but nothing further or more exalted than that.

STUFF. Carpenters' and phasterers' materials taken in the mass; thus clear stuff means boards free from sueh imperfections as knots, shakes, ete. ; inch stuff, boards of that thickness ; merchantahle stuff, boards, and the like, inferior to clear stuff, but still fit for use.

STUNNING. A. The tleep scoring of marble surfacers, cansed in eutting slabs ly coarse particles of sand getting between the saw blade and the saw-kerf.
B. The injuring of the surface of stone by a hruise, which is often caused by careless cutting, especially in marble.

STUPA. In Indian architecture, a building erected tu contain a Chaitya (see Chaitya (ave), and usually of a towerlike form, with no more interior subdivisions than are sufficient to afford an adequate shrine: depending entirely mpon its exterior effect. (See India, Arehitecture of ; Tope.)

STURM, LEONHARD CHRISTOPE; architect: b. ahwut 1669 ; d. 1719.

A mathematieian and arehitect who was pro-
fessor in the Ritter Acalemy at Wolfenbiittel, and afterward at the University of Frankfort an der Oder, Germiny. He was later made Oberbundirector in Schwerin, and was Buudirector in Braunschweig when he died. Sturm is hest known by his many important works on civil and military architecture, published at Angshurg hetwern 1714 and 1720 .

Fïssi, Alluemeines Kunstler-lexicon.
STY: STYE. A pen for hogs; applied only to small shelters of the kimd, as on ordinary tarms.

STYLE (I.). Character; the stm of many peculiaritics, as when it is sad that a rertam building is in a spirited style. By extension, significuluce, individuality ; expecially in a groul sense and imputed as a merit, as in the expression, "Such a huilding has style."

STYLE (11.). A peculiar type of building, of urnament, or the like, and constituting a strongly marked and easily distinguished group, or epoch in the history of art ; thus we say that in Europe the Romanesque style prevailed from the fall of the Western Empire until the rise of the Gothic style; but we also say that during that homanesque periox such minor styles as the Latin style, the Rhenish or West German style, the Norman Romanesque style, more vigurons in England than cean in the country of its origin, and the Tusean roundarched style, as in the church of Samminiato al Monte, were all in existence successively, or at the same time. So it is an open question whether the Pyzantine style is properly one form of the Romanesfue style. Moreover, it is often said that there are but two styles of architecture, the Trabeated and the Arenated (see those terms) ; but this is forcing the word "style" out of its nsual meaning, and we should rather say there are but two principal Ways of Building. For a style to exist, there must be a recognized artistic treatnent common to all the buildings of an epoch, or of a group, while those buildings have also their individual peculiarities.

Going hack now to the earliest buildings known to ns, we find that the Egyptian style is characterized hy an absohute rejection of arched forms for all ormamental and decorative building, although it appears that the arch was known ; by the absence of any visible roof; by the character of great permanence, although this is not quite as essential to) the style as has been often assumed, for many of the features of the work contradict it, as where columns have the lower part of the shaft rounded, thus standing mpon a base much smaller than they might easily have received; by a very free use of surface sculpture, usually in concavo-convex relief (see Relief) ; by a free use of polychromy applied to such reliefs, and also to flat surfaces, the latter taking the two shapes of purely dec-
orative effect, and of elaborate representative bainting with limdscapes, figures, legends, histories of battle, of siege, and of ceremonies of peace.

The Chaldean and the Assyrian styles (see Mesopotamia, Architeeture of) are hard for us to realize perfectly. Until it is absolutely settled whether the palace halls were vaulted, or finished with Hat roufs, and a modification of columar architecture, we cannot he sail to know what any of the styles of Mesopotamia and the neighbourhood really were. The I'ersian style of the early times is leetter understood (see F'ersian Architecture, Part I.). The mmerous styles of India are to be discriminated one from another as Buldhist, Jaina, Hindu, and the like (see India, Architecture of); but there camot be saill to be an Indian style. On the other hand, the architecture of Japan is a national architerture, which has endured through many centuries, and in a single style; for the unchanging life of a people without the invasion of foreign influence, and renewing their impressions at the same source where they received their original civilization, has allowed the beautiful post-and-beam arehitecture of the ninth century A.d. to continue down to the latter half of the mineteentl century, when European ideas invaded the land. (See Japan, Architecture of.)

In Europe there have been the following important styles: The classical Grecian is marked by an absence of arenation as complete as that of the Egyptian ; by an extreme simplicity of structure ; by the absence of a general interest in large and monumental interiors - the one or two instances of such interiors, which we know something of, being local and cansed by special conditions (see Greece; Grecian Architecture; Sicily ; Thersilium) ; by a use of highly realized and perfected sculpture of human subject, contrasting boldy with other seulpture of the most severe and conventional sort, with hardly any representative meaning; and, finally, by a free use of polychromatic painting, applied not in the way of story and representation, but in the way of coloured adormment of the architecture. There was, of comse, mural painting, but, so far as we are informed, it hardly told upon the architecture, except as certain interiors were especially arranged for the reception of such painting. An extreme solieitude about details, extending to the profiles of simple mouldings, and the almost imvisible curves of the entasis, marks all the finer work.

The Green-Roman style is the style built up under the Roman Empire by the Italian structure of arch and vault, especially when made of solid mortar masomry, invested with the Greek orders or modifications of thenn, these orders being used sometimes as a mere decoration, but sometimes for screens, colonnades,

STYLE

STYLE

porticoes, and the like, so that a large building might be partly arcuated and partly altogether colummar. In Syria, and to a large extent in northern Afriea, the stone-built and stonevaulted buikings, both of imperial eivic purpose and of the early conturies of the Christian church, form a style by themselves, neither Greco-Roman on one side, nor Byzantine on the other, and as their interesting remains are more carefully sturlied, a name especially fitted to them will be brouglit into use.

In the East, the Byzantine style succeeded the Roman Imperial way of building, and in the West, what we eall the Latin style was introdueed into ltaly. (See Latin Arehitecture.) Bat the term Romanesque must of necessity be nseal to include the Latin (eren if not the Byzantine) ; and must be held to describe all those buildings of as yet immature artistic unality which were erected during seven centuries. In France, in the trelth century, and at a still later time in Germany, a highly developed and richly ornamented style hal taken sbape, and this undubtedly would have recelved a name separating it from the uther Romanesque work, except for the sudden appearance of the Gothie system of vaulting with its necessary results, whieb grew ont of this later Romanesgne.

The Gothic style is that of ribbed vaulting, with the pointel areh as an almost inevitable result, aul with an elaborate system of decoration biseal partly unon the pointed arch, with its eusps and resulting tracery, and partly upon a very free study of leatage, witll a constantly growing introuluction of animal anl human form.

Romanesque and Gothic in all their forms and at all epochs, as well ats the Byzantine of the Eastern Empire, with its resulting more recent styles in Russia, Moldaria, and Armenia, are all arcuate styles of the most marked character. Nothing in antiquity is so wholly dependent upon the arch, and its extension, the vant, as are the Byzantine huiltings and those of the whole of Western Europe. In the East, briek and abundant mortar is more used; in the West, stone from the nearest quarry, in relatively small pieces, cut with a eonstantly growing skill, and always with a great sense of the best metholl to follow for lightness and disrability, is the one material used; except that timber, in the forest-eoveren regions, gives rise to a style of framed building obrionsly very different from the Gothic structure, whieh is absolutely a masonry style, but partaking of its decoration and echoing its general forms.

The most noticeable thing about architectural styles is the spontaneity of their growth, developing from the obvious conditions of building, and also lleveloping one out of another, according to what we now see to have been an inevitable succession of processes and resulting forms.

There is, indeen, the self-eonscions element in architectural work, and a certain anomet of deliberate imitation of previons styles, these reatring at intervals when a commmity is comparatively leaned and literary, and begins to study and eonsiler the works of other epochs. Thus, there can be no donbt that the forms of Roman Imperial architecture were motified hy deliberate imitation of Greek art, and in like manner the domed buildings of western France were initatel from the far distant Byzantine models, imitated in shape and design, if not in the system of luidding atopited. In general, however, the growth of important architectural styles is fount to be as natural as that of a plant. When the classieal Remaissance of the fifteenth eentury began in Italy, although the purpose of the first arehitectural artists was a return to Roman forms and Roman principles of lesign, they were by no means consistent in that resolve, or else there were but few of them who were so determined, while others adopted only a certain amount of anti-medieval feeling derived from a study of the Roman monuments, but wholly withont care for the Roman details. In this way a style took shape in Italy, which developed itself in as natural a growth, from 1430 to 1500 , ats if it had not originated in a deliberate imitation of classieal antifuity. This succession was stonpel hy the elassical stury, first of the Tiemaissance artists, and then of the later men; and it is for this reason that the Italian writers, and we, following them, stop the Italian Renaissance with the heginning of the rinque cento, and speak of all the work of the sixteenth ceutury, the seventcenth century, and even a later epoeh, together as of the Classicismo, or of the Decadenza (see these terms). At almost the same time, however, that the Italim Renaissance stopped, the French Renaissance, the German Renaissance, and the Flemish Fienaissance took their rise, beginning about eighty-five years after the first appearance of the classical lienaissanee in Italy ; and each of these styles began its own evolution much as had been the case under the Italian Renaissance, each retaining moch of the spirit of mellieval work while abandoning its forms. Here, again, in the North, the growth of style was interfered with by deliberately renewed study of Roman Imperial lonithing; and there was also a deliberate imitation of Italy. At this period, intercourse between the nations of Emrope was freer than it had been, and it was possible for leamed men and artists to visit Italy, and remain there in safety and eomfort, pursuing their studies. The result is seen in the frect that soon after the beginning of the seventeenth eentury, the arehitecture of Western Europe is more alike in all the different nations than it had been at any previous time. There are often found existing, side by side, a formal

STYLE EMPIRE

classical style, entouraged hy the nobles of the court, and a simpler styte existing in the comtry ; but it is the stately mamer of building based upon that of Italy which generally prevails. So that, although we are now considering the epoch recognized as stmbious, scholarly, self-conscions, deliberate, mather than spontancous, we have yet a consistent and uniform growth from the seventeenth and eighteenth centuries as ohvions as that in the Gothic style itself.

The feeling of students of the second half of the nincteenth ventury has been generally hostile to these later neuclassic styles, as being fommed umon bad taste, without harmony or charm, but this feeling is gradually giving way to a perception of the greater relative value of these late styles, and especially of their inevitableness, eoming as they do from the efforts of men determined to be classical, and yet seeking something fresh and original, at least in detail.
(See Byzantine Architerture ; Cinque Cento ; Classicismo; Decalenza; Dravidian Arehitecture ; Grecian Architecture; Greco-Roman ; Henri Deux ; Hemi Quatre ; Latin Architecture: Louis Quatorze; Luuis Quinze; Louis Seize; Louis Treize; Pig Tail and Periwig ; Quattro Cento: lienaissance ; Rocoeo ; Romanesirue: Roman Imperial; Sei Cento: Style Empire; Tre C'ento; Zopf; also geographical terms.) -R. S.
STYLE EMPIRE. In French, and always pronounced as in French, the style of the Napoleonic empire; an elaboration of the style of the later part of the reign of Louis XVI. in which the serere and classically inspired design of abont 1780 is overlaid by rather incongruons omamentation, and loses much of its charm. This style had, however, so brief a reign, that it is impossible to jurge of what its development might bave been. It is the last of the naturally developed styles of Western Eurune, and has been succeeded by the chaos of modern times.

StYLOBATE. In Greek architecture, that part of the Stereobate upon which the peristyle stauds; by extension, any contimuons base, plinth, or pedestal, upon which a row of columns are set.

SUABIAN ARCHITECTURE. That carried on or inspired by the honse of Suabia, especially in other lands than in the Cerman kingtom (Holy Roman Empire) immediately under its control. Thus, the Suabian architecture of southem Italy is a style of recognized peculiarities, but the architecture of the Suabian emperors in Cremany, in the twelfth and thirteenth centuries, is hardly to be distinguished from the general eurrent of medireral arehitecture in that country.

SUARDI BARTOLOMMEO (BRAMAN TINO) ; Ililanese painter and architect; h. about 1455 ; d. after 1536 .

SUITE

He was practising painting in Milan when Bramante came there about 1472 (see Bramante), and seems to hare become his pupil aud assistant. Sept. 28, 1513 , he was in Milan, and made a contract for pictures with the monks of the Certosa of Chiaravalle, in which he is mentioned as domino Bertholomeo dicto Bramantino de šuardis filio Alberti. A volume of dramings in the Bibliotheea Ambrosiana at Milan is ascribed to him, and has been pullished in facsimile by Ginserpe Mongeri: Lee Rocine di Roma al mincipio del Secolo IV', Studi del Brumuntino (Milan, 1880).

Giuseppe Mongeri, Il Bramentino, in his edition of Riowine di Fiomu. Milan, 1880 ; Seidlitz, Bremonte in Mailom?; Clowe and Cavaleaselle, History of Peinting in Forth Italy.

SUBSELLIUM. Same as Miserere.
SUBSTRUCTION; SUBSTRUCTURE. A mass of building below and supporting another; especially referring to foundations, and plainer and heavier work, such as the retaining walls of a platform and the like.

SUBSURFACE IRRIGATION. A system of sewage disposal adapted for isulated country honses and institutions not within reach of sewers, in which the sewage is distributed under the top soil by means of a flush tank and tile or absomption drains. (See Drainage; Irrigation.) - W. P. G.

SUBWAY. Au accessible underground passage, especially in cities, for street cars and other public conreyances, to reliere congestion of surface trattic in the street abore, also to contain gas and water mains, telegraph wires, ete.

SUDATIO. An apartment in the Roman bath or gymmasium between the laconicum, sudatorium, or store, and the caldarium or warm bath, where athletes retired to remore the sweat from their hodies.

SUDATORY. A clamber used for the sweat bath. (For the stiveture built by the American Indians, see Sweat Lodge under Lodge.) - F. S. D.

SUGER (SUGGER); abbot and builder.
Suger, abbot of S. Denis, near Paris, rebuilt the church of his abley about 1137-1140. This eontains much of the earliest existing proto-Gothic work in France. Suger was also minister to Charles VII. of France.

Banchal, Dictionnaire; Moore, Gothic Architecture.

SUITE. A succession of connected rooms, generally on one floor. The term carries with it the double meaning of a common purpose being served by these rooms, and of their forming a sort of continuous gallery by opening into one another freeiy.

En Suite. In French, forming a series : in English, especially said of rooms opening into one another with doors carefully placed opposite

SUBSTRUCTURE OF CHUIR OF CATHEDRAL: ERFURI, SAXUNI, GERMANY.

SUMMER

one another. (See En Axe; En Enfilade, under the principal terms.)

SUMMER (I.). A principal beam ; the first or principal member in a piece of framing, as a Hoor. The term "girder" is now used fur such primary pieces, especially in the United States: but in ohd English practice the girder was a secombary piece which rested upon or was more commonly framed iuto the summer. Spelled also Somer. (See Breast Summer.)

SUMMER (II.). (Probably the French sommier.) A stune forming the top of a pier, or of that part of a wall at the jamb of an opening which supports a lintel, arch, or corbel. Called also summer stone. Where the barge stones of a gable start from the summer it is sometimes called skew Table.

SUMMERHOUSE. An open ornamental pavilion in a park or garden for out-of-door rest or retirement. (See C'asino, 1 : Kiosk; Pavilion, 13.)

SUMMER TREE. Same as summer, especially in the scuse of a woolen lintel orer an aperture: also called Breast Summer, Bressummer, Dormant Tree.

SUNDIAL. A derice for indicating the time of day by means of the shadow east by the sloping edge of a projecting point, or gmomon, set in a surface upou which the hours of the day are set forth on points radiating from the gnomon. It is sometimes in the form of a table in a garden, and sometines it is placed conspienously as an ornament on a wall or gable.

SUNK. Having the surface lowered or ent array, as a panel in sense A. A sunk siuare is usually an ornamental feature (see Cais:on, II. : Lacunar). Sunk work is usually decoration in relief upon a sumken panel, but may be inciserl or impressed.

Double Sunk. Fiecessed or lowered in two legrees or steps, as when a panel is sunk below the surfice of a larger panel.

SUNLIGHT BURNER. In artificial lighting by gas or electricity, the concentration of many lights or burners around a powerful circular reflector placed in or against the ceiling, often in connection with a rentilator, and corered by an inverted half globe of glass. (Called also Sumburner.)

SUN POLE. A sacrer pole made from the " mrstery tree" with much ceremony, for use in the "mrstery" lodge during the sun dance of the Sioux Indians. The devutees are attached to the sun pole by thong* fastened to skewers which are passed through their flesh.
-F.S.D.

SUN PRINT. In photograply, a print made hy some chemical process and by a direct exposure of a chemically prepared surface to the light ; especially a reproduction of a mecbanical drawing in the work of architects and

SUPERIMPOSITION

engiueers. Cyanotypes or "blue prints" are the most common, but there is also a process which gives blue liues on white gromul, and those which give black or brown lines on a white or light gray ground.

SUN ROOM. An exposed romm or gallery enclosed toward the sun by a glass partition or continuous window, generally for the use of invalids iu a hospital ; sometimes called Solar and sun bath.
suovetaurilia. In Fuman antiquity, a sacrifice consisting of a swine, a sheep, and a bull; the word being compounded of the Latin names of the three beasts. Hence, in modern archreology, a representation, as in relief sculpture, of the three creatures together.

SUPERCAPITAL. (Called also Impost.) A piece of stone above the capital proper of a column, perhaps recalling the aneient use of the entablature, as in Toman Imperial practice, even above isolated columns : perhaps intended rather as a constrnctional device to enable the capital to receive a still larger superinupsed mass. The use of supercaputals is characteristic of Byzantine art and all its imitations.
sUPERCILIUM. In Roman architecture, the fillet above the Cymatium, forming the top)most member of the cornice. Also, sometimes, referring to the fillets abore and below the Scotia of an attic base.

SUPERCOLUMNIATION. Superimposition in columnar architecture, with special reference to the disposition of the orders. The more elaborate orlers are at the top; lut where there are four or fire stories the Composite in some form is commonly placed above the Corinthian. (See Superimposition.)

SUPERIMPOSITION. In buiding, the placing of sulids, as piers or pillars, in ceptain relations to one another rertically. Thus, the main eoustrnctional uprights of a Guthic building were continued through from foumation to spring of vault, and that because of the necessity of seeuring the most perfect verticality or continuity in supports, whieh were by the very nature of the structure light and slender in comparison with the work they had to do. On the other hand. many buidings in which the strength of the structure is sutticient are naturally arranged on a different plan. The fenestration of the front having two or three large openings below and perhaps twice as many in each story above, is often more effective if the openings, whether arched or elosed with lintels, are arranged without reference to the axes of the openings and solids below; and this in many different styles of arehitecture.

Artistically, the propriety of such arrangements depends cntirely upon the style emploret, and the effect proposed, and the general harmony and charm of proportion which the designer finds within his reach. Constructionally, it is

SUPERINTENDENCE

SUPERINTENDENT

entirely a matter of the strength and perfectness of the work. - R. S.

SUPERINTENDENCE. The act or process of examining the materials and watching the Work of a building ; especially such services when remdered by the architect or his representative. As nearly all building is now done by contract, it is as carrying out of a part of the contract that superintemence demands special notice.

In contract work, the architect, acting as superintendent, has large powers given him by the terms of the contract. His remuneration for the work involvel in superintending is usually one and one-half per cent, or three-tenths of the whole Commission. (Sce that term; also Superintendent ; Surveyor.)

The person who watches a piece of day's work or piece work is not conducting superintendence in the above sense. Thus, if, in his absence, a pier or arch is built not in accordance with drawings furnished, the expense of taking down and rebuilding, in most eases, will fall upon the employer - the owner of the building. On the other hand, in superintendence properly so-called (i.e. in contract work) the architect coming to the buikling has the power to order such errors repaired at the buider's expense. On this account a day's work job will be watched hour by hour by some competent person, while the contract work need not be visited more than perhaps once a week; ant the last-named kind of supervision is superintentence in the technical sense.

Several attempts have been miule to introduce distinctive terms for the two kinds of care and watching described above, but none has been accepted as yet (see Supervision). It will be found necessary to agree upon such definite words or phrases, because there is a certain tendency towards day's work in the most important buidings. When a very costly structure is to be hurried to completion, as when a steel-cage building is to be finished in ten months, contract work is fomm harilly available.

SUPERINTENDENT. The jerson who examines otficially, as required by the contract or agreement, the work and materials of a building. This is usuatly the architect or his representative. (See Superintendence.)

The requirements of the superintendent are extremely numerous and varied. His personal characteristics are of much importance, and his nsefulness increases in proportion to his power of controlling men. Unfailing good temper, combined with firmuess, based upon an accurate knowledge of the subject at hand and wide experience, are qualities that make the ideal superintendent. He must keep himself perfectly familiar with the plans and specifications of the building under his charge by frequently eomparing the work in progress with the draw-
ings, and he must constantly check all measuenents to a void errors. lle must carefully note the aljoining buildings and their condition, also the grades, levels, sewers, and water conrses. Ator the exaration is finished, he shonhl examine minutcly all the gromod before any fomblations are laid, as mexpected (ftalities of the soil require special provision in the fommations. Many problems present thenselves in this connection, and adelitional spread of concrete or stone footings may be needed; and the discovery of 'quieksam, springs, on water courses will necessitate arching, piling, or grillage. Where buildings emme in contact with each other, as they do in wrererowded cities, puestions of party walls, neighbours' rights or encroachments, errors in surveyors' measurements, etc., must be considererl, and conditions arise not to be reasonably expected, and which severely tax the ingemnity of the superintendent.

The varjous materials userl must be earefully examined as they are delivered, and their ruality aml condition serutinized. The sand must be clean and sharp, the broken stone also clean and of proper size, the cement of the brand specified and unspoiled by air or water. The bricks must be of good torm, well baked, and haril enough to ring when sharply struck togetler. Terra cotta should be hard burnt, straight, and not warped or discoloured. The composition of the mortar, concrete, and plaster is of much importance, and the proportion of the ingredients and manner of mixing must be exactly as specified. The mixing must always be done in a trongh, wever on the bare ground. No plastering should be done and no masonry laid when the temperature is below freezing point, and in winter all walls shonld be protected at night during construction.

The tooling of stonework must be according to specifications and the arrises true and straight, and all stone free from oil or iron stains, sand loles, and quarry marks.

Iron castings must be of full thiekness, and all cohumns shouhl be bored as a test. Columns should have level beds, anl bearings of beams must be as specified and always on iron plates or capstones. Tic-rods for arches, anchors, and shutter eyes must be built in the masonry as required. All irnn must be delivered at the building, and inspected before being paintel. Loose rivets must not be permitted, and all counections must be carefully made.

There must be no large or loose knots in the lumber. Framing must be compared continually with the ground plans. All headers over 4 feet in length should be hung in britle irons. Woodwork for interiors, trims, etc. (see Inside Finish, under Finish), must be painted on the liack. Gutters and roofs shouk lie tested by water to ascertain their pitch. Tin llashing

SUPERINTENDENT

must be painted on both sides. All woodwork not to be varnished shouk be primed or have a coat of oil as soon as it is delivered at the building. It is important to insist on sufficient nailing for cross-bridging and for clapboards and shingles.
(rias pipes must grade to the rising lines, and must be tested without the use of water, which rusts the joints. Drain pipes in cellar must have proper fill amb the main trap be accessible. All the plumbing fixtures must be trapped and vent pipes rum to roof. The hot and cold water supply pipes unst be separated or be coverel with non-conducting material. Steam pipes must have proper fall, ami metal shiehds not mintted where they pass through floors or partitions.

These items, selected at rantom from the great mass of instructions necessary for the varions contractors, will serve to indicate a few of the inmumerable considerations that demand the attention of the superintendent, and the nature of his services. (For more detailed information, see Iron Construction; Masonry ; Wood, Construction in.)

The materials that enter into the construction of a brikling are so varied, and the branches of work so diverse, that it is difficult to insist upon a miform standark of excellence, but this must be the superintendent's endeavour, and bis duty is to supplement and interpret the specifications. He must also strive to make the work of these different trales harmonize with each other, and foresight and watchfuhess will prevent many future amoyances. He must see that openings in the walls for pipes and sewers are not forgotten, and that chases and recesses, which even if shown on the plans are often overlooked, are provided for phumbing and steam pipes and heating flues. Framing in tloors for plumbing fixtures, and spaces in partitions for ventilation Hues and hot air clucts, accommodation for electric and mechanical appliances, require prorision made for them long before their special work is to be performed.

The position of gas and electric outlets, and the location of radiators, registers, bells, and speaking tubes, must be verified, and similar matters which seem of lesser importance require carefinl attention. The success of a bnilding tepends largely upon the care with which these details are armanged.

Workmen must be prevented from recklessly cutting wooden beams and masomry, and from injuring each other's work. As a rule, mechanics employel in a builling exhibit no interest whatever in anything beyond their immediate tasks, the general result being a matter of no moment to them. It is even difficult to inluce them to protect properly their own work from injury by taking the most 683
obvions and simple precautions against accidental defacement.

The rubbish that accumulates in a building and all rejected material should he properly removed to prevent finished work being damaged, and to reduce the risk of fire.

Constant tests of materials are adrisable, and the knowledge that these tests will be made do much to induce the buider to maintain a high standard of excellence.

It would seem that phans and specifications made by a competent arehitect would ordinarily be correct, and the superintendent's duty would be limited to interpreting them and insisting upon their faithful performance; but etrors will creep in, and mexpected emergencies arise which must be met and promptly decided. There are many points which are perforce left unstudied in the plans for a complicated building, and these must be determined on the spot. This is especially apt to be true where buildings are altered or additions are made to them, when the most carefnl written specifications will fail to cover all the work requirel. It is, in fact, impossible to specify exactly in these cases, as so much depends upon conditions not known until the buiking operations are actually in progress; and fanlty construction which must be remedied, weak spots in walls, lefective framing, and other nnwelcome discoveries only come to light after the work has reached a certain stage.

Delinquencies of contractors and the failure of supplies, which necessitate the adoption of other materials, and even the deterioration of well-known materials, are matters that require immediate adjustment. The failure of contractors to provite the work and materials demanded by the specifications is the principal difticulty that the superintendent is obliged to meet, but when this neglect is wilful he has no option but to enforce the stipulations of the contract as far as lies in his power. The possibility of delay often forces the superintendent to accept an inferior material or a poorer method of construction. The speed with which a buikling can be erected is now nearly always an important factor, and demands for concessions or changes in the methor of carrying on the work are most frequently based on the plea of delay. These demands must be carefully weighed, and it is wlten the wisest course to jermit modifications in the ronstruction: the superintendent, therefore, must have a certain diseretion allowed him. Where there is telephonic communication difficult questions may be referred back to the brehitect's oftice for settlement, but emergencies arise where this is not possible, and a decision must be made on the spot to avoid delay.

It must always he borne in mind that no amount of superintendence will insure good 684

SUPERSTRUCTURE

work from a poor builder. If a builiter is not efuipled for good work and in the habit of constructing first-class buildings, mere desire on his part is not sutticient, and neither persuasion, threats, nor promises will make him raise his stamdard. This is generally understood where the element of art is involved, and no one supposes that entreaties or advice will make a poor carser, modeller, or decorator produce artistic results. The same is true of masonry, carpentry, and of all mechanical work. The superintendent may reject bad workmanship, and repeatedly refuse to accept it ; but he is ${ }_{\text {p }}^{2}$ owerless to compel the contractor to furnish the quality desired if he is unfamiliar with it and unwilling to furnish it.

A merely eareless builder, or one whose business is not well organized, may to a certain extent be kept up to a fair standard by faithful superintendence; but watching a dishonest or incompetent contractor is a fruitless task, and for the former, nothing short of a complete detective system will insure even an approximate adherence to the plans and specifieations.

The superintemdence given by architects or their representatives to the buildings in their charge should not be understuorl to mean constant supervision. This can only be obtained by the employment of a clerk of the works, who will be in attendance at the building at all times. Aceordingly, it is important for the superintendent to time his visits so that they will be of the greatest ralue.

- Arvold W. Brunner.

SUPERSTRUCTURE. A structure raised upou another structure, as a buikding upon a foumlation, basement, or substructure.

SUPERVISION. Same as Superintendence. The schedule of charges of the Anerican Institute of Arehitects, 1901, contains the following clause, "The supervision or superintentence of an architect (as distinguished from the continuous personal superintendence which may be secured by the enployment of a clerk of the works) means," ete.

SUPPLY TANK. (See Supply Cistern, under Cistern.)

SURBASE. The moulding or group of moullings forming the erowning member of a basement story; a plinth, dado, base course, or the like.

SURVEY. A plam, map, or plotting, made from measurements and angles taken, and lines run, as described imder Surveying ; also the whole operation of surveying a piece of ground or the like, ant recording the results in such a map.

SURVEYING. That branch of engimeering which has tor its object the Iocation and measurement of the lines surrounding any portion of the earth's surface, and from which the area of any such portion ean he determinch, and sub685
sequently plotted in the form of a map; also, more particularly, the locating of puints on the earth's surface relatively to one another.

Broadly, the measurements of surveying consist in cletermining the horizontal angle included between any two intersecting courses, and in measuring the lengths of these courses, - a course being a line as "run" (determined or laid out). By coutinuing in this way along the entire perimeter of any piece of ground, however irregular in shape it be, sufficient data may be obtained for the computation of the area of this piece of ground. Also from these clata, obtainet in the field, the survey can be acenrately plotted on paper, to any convenient seale, the horizontal angles being laid off with the aid of a protractor. However, in case greater aceuracy is desired, the different corners of the survey may be referred, by means of rectangular coürlinates, to a common point of origin, - the horizontal angles and the lengths of courses being neeessacy in the computation of these coordinates.

In most cases it is also necessary to determine the true hearings of each and every course, as distinguished from the magnetic bearings, in order that the survey slaall be completely loeated. If the true bearing of any one course is known, the bearings of the other courses can easily be calculated with the aid of the horizontal angles already determined; but when this is not the case, and when reference to prior surveys is not possible, it will be necessary to establish a line of true Meritian, and to determine the angle which some one course makes with this lime. When, however, a surveror's compass is employed, the mugnetic bearings of the different courses are read direct, and from them, the variation between the magnetic and true meridians being known or determinet, the true bearings may be computed with only a small remaining error of angle. This correc= tion does not, however, inclule errors of angle due to local magnetic attraction, such as is found in ferruginous districts.

The foregoing is an outlined deseription of the art of surveying ; in aldition, however, there is mueh important letail, some of which will be mentioned in connection with the deseription of instruments included below.

The engineer"s transit is the instrument now commonly used for the measurement of angles in the best engineering practice in the United States; it appears to he the same instrument as the transit theorlolite in Great Britain. It is the most important of survering instrmments, and the one ly which the most aceurate work can be done. For these reasons the transit is the instrument best adapted for those surveys uecessary to the architect or the builder. In the survering of city or town lots, and especially in thase cities in which real 686

SURVEYING

estate has a high market value, the very greatest accuracy is required, as a contlict or error in the lines bummong auljoming pronerties might be the somure of cunsiderable litigation and heasy danages. Also in the laying out of fommation lines, or the setting unt of individual piers, great care is necessary that these shall be aceurately lowated.

The engineer's transit consists of a telescope mounted upon a horizoutal axis supported ly two vertical stanlards which are, in turn, carricd by the mper of two horizontal circular plates. 'lhis, called the vemier plate, also carries a compass box, two reniers, and two spirit levels. lmmediately below and completely concealed by the remier plate, except for openings at the serniers, is a second plate called the horizontal limb, whose circumference is divided into degrees of the circle and subdivisions. These two plates are arranged so that they will rotate about the vertical axis of the instrument independently of one another. Thus, by clamping the lower plate to the vertical axis, and by directing the telescope in two successive and different directions, the vernier plate will have passell through an angle whose magnitude may be measured upon the lower plate.

Below these horizontal plates and detachable from them, there is still another horizontal plate to which are comnecterl four levelling serews resting upon a levelling plate. By means of the levelling plate and screws the instrument can be made truly horizontal, as shown by the spirit levels attached to the vernier plate.

A vertical circle graduated in degrees is attached to the horizontal axis of the instrument, and this axis with its telescope being free to revolve, angles of inclination can be read hy means of a vernier fixed to one of the standards.

Enclosed in the barrel of the telescope two cross hairs at right angles to each other enable an object to be accurately bisected. Attached to the telescope there is a spinit level or "long lubble," in order that the telescope may be made truly horizontal.

The transit is placed usually upon a tripot, and by means of a plummet or plumb bob, suspended from the centre of the instrument, the transit may be centred upon any desired point.

The surecyor's compolss may be used when no great amount of accuracy in the survey is required. It las two open sights througb which any distant object can be seen, and, when seen, the magnetic learing of the course between the distant ohject and the point of sight will be indicated upon a graduatel dial by the point of the compass needle. A circumferentor ${ }^{1}$ differs

[^9]from the compass only in that the compass box is free to rotate upon the brass plate earrying the sights. In this way, by means of an attached vernier, the measurement of horizontal angles is possible independently of the aeedle: that is to say, the needle is held stationary or fixed. The circumferentor also often carries an attaclument by which angles of inclination may be determined.

Loth the surveror's compass and the circumferentur are levelled, and shown to be lerel, in a manner similar to that of the transit. Also, as in the case of the transit, these instruments are generally mounted upon tripods, a so-called Jucol's stetf being, however, occasionally employed. This is simply a single staff, pointed at the lower end, and to the top of which the compass or circumferentor may be attached.

The demicircle is for measuring and indicating angles, and is not unlike an ordinary protractor, with a revolving bar mounted on a pivot at the centre of the circle, and a compass set firmly in the plane of the graduated arc. It may have a telescope in place of, or attached to, the revolving har. It may be levelled approximately by being laid or set on the plane table, and is used ouly as a rough sulstitute for the theorlolite or transit.

The only other angle-measuring instrument that needs mention is the surceyor s cross. Very simple in construction, it comprises two horizontal bars at right angles to each other, each bar supporting an open sight at either end. Obviously, the use of this instmment is limited to the laying out of right angles; it is now rarely seen.

There are two methods, other than that of triangulation, commonly employed in the measurement of lengths or distances.

By the first method the distance between any two points is determined by stretching a chain or tape of known length between these points. The telescope of the transit, or of other instruments, equipped with stadia or micrometer wires, is the means by which distances can be measured under the second method.

Gunter's chain, for so long in universal use, has a length of 66 feet, divided into 100 links of 7.9° inches, every tenth link having some distinguishing mark. Steel pins are employed for marking the end of chain lengths where the distance to be measured is greater than 66 feet. This chain las, to a large extent, been replaced by the engineer's chain of 100 feet in length, divirled into links of I foot.

The tape is a very thin steel ribbon, usually from $\frac{1}{x}$ to $\frac{3}{8}$ inches in width, and ranging betwepn 100 to 500 feet in length, subdirisions being desirnatel by some conrenient mark.
lutions by means of a crelometer, and so furnishing a rough measurement of distances.

SURVEYING

The result obtained by measuring distances with the tape is the most exiuct of all methods now 'ommonly in use.

In measuring distance by teleseope, two horizontal or stadia wires, one above and one below the horizontal cross hair alluded to in the deseription of the transit, are placed at such a distance apart that when sighting at a vertical rod 100 feet away the wires will inchude I foot (or some other convenient constant) of vertical height of rod, and will include proportional spaces for other distances.

In the operation of surveying, and in the subsequent mapping, that part of the earth's surface uron which the operations ire conducted is considered to be a horizontal plane, correction for the curvature of the earth being neglected in the ease of small surveys. For this reason it is necessary to rednce inclined measurements to horizontal lines. When the imclined distance and the angle of inclimation, determined by the vertieal circle of the transit between any two points, are known, this correction can readily be made. If the inclined distance and the difference in elevation between the two points are known, this will answer the same purpose.

To insure greater accuracy in taping or chaining, corrections also for temperature and for the eatenary curve, due to imperfect stretching, must be mate.

The art of Levelling is also to be ineluded under the general head surveying. It consists in determining the difference in elevation between any two points, or in determining the elevation of one or more points abuve or below a datum line or bench mark, the level of which may be assumed, if not known. In extensive surveys the datum line is assimed, whenever possible, to be the level of mean high tile. The operation of levelling may he contucted by means of instruments especially devised for this purpose, or by the use of the tramsit. If the latter is employed, the angle of inclination and the inclinel distance between any two points are tletermined, and from them the height of one point above the other is calculated.

Of the instruments in use for levelling, the only two that need mention here are the Y level and the han! level.

The \boldsymbol{Y} lecel has two standards, or \mathbf{Y} 's (from which the instrument derives its name), attached to either end of a levelling bar, itself connected by a spindle and socket joint to the levelling plates and serews below it. The lerelling arrangement is in all respects similar to that of the transit. The Y's support a telescope, and by means of clamps hold it rigidly in a position parallel to the levelling bar. Suspender below the telescope there is a spirit level, or long bubble. This bubble will show whether or not the telescope and levelling bur

SURVEYOR

have been mate truly horizontal by means of the levelling screws. As in the case of the tramsit, the telescope of the level is suphlied with cross hairs, and also, as with the transit, the level is supported lig a tripod.

The principle of levelling with this instrument consists simply in the prolonging of a kuown horizontal line, and in measuring the height of this imaginary line above any two points, and from which the difference in elevation, if any, between these points an be easily determined. To insure accuraty in reading beights a levelliug rod has been devised. It consists of a wooden rorl, wne side of which is graduated into feet, which are in turn subdivided inte tenthes and hundredths of a foot. A circular target divided horizontally and vertically into fuadrants alternating red and white in colour is tree to slide upon the rod, and by means of these quadrants the points at which a given horizontal line intersects the ron! can be determinet. An opening in the target, to the edge of which a vernier is attached, allows the graduations to be read to a thousandth of a foot. In general, the leveling roul is constructed of two intersliding pieces, in orker that it may be conveniently lengthemet.

The hour level, as its name denotes, is a telescope which, by holding in the hand and sighting through it, the height of the eye above any point car be found. The barrel of the telescope is divided in such a way that tny object may be freely seen through one side, whereas on the other side the refleption, by mirror, of cross hairs and the lubble of a spirit level are brought to view. When the horizontal eross hair is shown to bisect the bubble, the level is horizontal. The methor! of levelling with the hand level is in all respects the same as with the Y level, but the same amount of accuracy camot be expected. - D. N. B. S.

Note. - For assistance in the preparation of this article the writer is indebted to Mr. Edward B. Sturgis.

SURVEYOR. A. One who makes surveys, as of land. (See Surveying.)
B. One who examines anything to ascertain its fuality or condition - or, more technically, in connection with architectural pratice, one who estimates or examines, measures, and tests the extent and condition of lamis amil luildings and their accessories, and the materials and work expended upon them, or to be so expended.

This word has, in the specialization provoked by modern industrialism, still retained many of its old wide meanings and general uses, and consequent indefiniteness. Hence the necessity for the explanatory prefix which frequently aceompanies it. Land Surveyor, City Surveyor, and Quantity Surveyor are

SURVEYOR

modern forms, in use in the practice of and preparation for building.

Until recently the designation "surveyor "was borme by an individual who performed many or all functions implied by it. But now the tendeney is to break up and divide such labou's into varions gronjes ; and further, in America, the weaker influence of tradition in such professions has encouraged other new lines of development.

Huch of the work formerly done by surveyors is in morlern practice allotted to civil cugineers, and many functions of which a "surveyor" was the depmsitary before the stuly and practice of art became systematized have maturally come to be considered as belonging to the arelitectural profession. It is recorled that Inigo Jones was appointed and paid as "surveyor" of his Dajesty's works. Now he would be elesignated "architect," or "architect and surveyor," since that conjunction of terms is still quite usual.

In the United States the occupation of surreyor has been entirely separated from that of architect, and further clearly elifferentiaterl into special kinds of surveying. In connection with arehitecture and real estate, the old general title, "surveyor," wasunderstook to mean one competent to measure and map, existing buildings and lands, and to compare same with title leeds; and to estimate and supervise repairs repuired by covenants and titles upon their commencement and expiration, and to make valuations and appraisements of all such things. The great frequency in English real estate custom of holdings by lease and other transitory title makes this a very important profession in that country and its dependencies, while in the Uniterl States it is little known. In Ameriea, even in places where leaseholis prevail, they do not much molify the usual custom, under which the real estate agent and the experienced builder, oftener than the surveyor, negotiate such matters as the repair and restoration of buildings for delivery to the landlord, which in former times would have heen scherluled muder the sperial term of a Survey of Dilapinations. An architect is oceasionally called unon to perform duties properly those of a surveyor, and in England one who does such work frectuently will call himself "Architect and Sursevor."

The professional work most likely to arise in this way is the examination of existing buildings to determine their safety, or strength, or value, or the consideration of their possible improvement. Also, in case of clamages by fire or accident, the questions for and against their restoration are such as are muderstonl to be surveying rather than architecture, and the architect's inspertion of unsafe buildings in New York is otticially desiguated as a "survey."

SURVEYOR

The City Surveyor is one who does the necessary work of measuring and plotting the dimensions and levels of property and examining municipal and other records, and prepares the plans necessary to define the boundaries of properties and thoroughfares, in cities and other densely populated communities ; but those calling themselves city surveyors generally claim no knowledge of the building processes or theirvalues, or the real estate appraisements, for which the general surveyor was qualified.

The Quantity Surveyor renders important services to architecture and building in British practice, which has no counterpart in the United States, under this or any other designation. These duties consist chietly in the preparation of elaborately detailed bills of quantities of materials and labour recfuired for the construction of certain buildings, for which drawings and specifications have been prepared by the architects. The bills of quantities are multiplied, and a copy is given to each of the buiders who are to make proposals for the execution of the work, in order that the labour of " taking oft" such quantities may he performed once only, for all of them, and may be for all alike, uniform, and systematic. This work maturally allies itself with that of measuring up builing materials and labour after construction, and to some extent with the functions of appraiser and valuer. But the occupation in its customary lesignation of "quantity surveying" expresses the main part of its duties. It is somewhat surprising that in the United States there is little or no recognition of this office. Occasionally there have been efforts to fill the want, and men of English training have assisted estimators in their accustomed way. But the system has not found favour, and is not in use, and the ocenpation is still manown.

Part of the duties of quantity surveyor are, however, sometimes performed by engineers (and more rarely ly architects), when engaged upon public works, for which, with the design, they are callen upon to fumish a schedule of materials, giving also quantity of each. But this usually takes no note of labour except as implied in the descriptive title, and does not profess to emmerate all finishings and accessories other than by a blanket clanse, and it is clonbtful whether it is ever used by those tendering proposals as a reliable hasis for their estimates, and is conseruently not in any sense a substitute for the work of the quantity surveyor.

There is probably a field for the reeistablishment of this ancient profession in the necessity of expert appraisements of real estate and insprovements thereon, and in valuations for rents and insurance and similar things, which are now performed unsystematically by persons

SUTH DOOR

with whom they are only incilental to some other oceupation. (Sce Bill of Quantities.)

\author{

- lobert IV. Gibson
}

SUTH DOOR. One of the doors of a parish ehnreh, and generally the most important one. The word "suth" is most profably the old form of south, and refers to the tiect that the southern door was that for the entrance of the congregation, and that where persons accused of crime might take vath that they were innocent, as well ats that where notices of ectesiastieal ceremonials, feast days, and the like, were put up.

SUYS, T. F.; architect.
He was a Belgian by birth and came to Paris in 1807. He studied with Percier (see Percier) and at the Eonle des Bernir. 1 its. In 1812 he wou the Grand Prix de Rome in arehitecture. On his return from Rome he was extensively employed in Belgium and Holland. Suys assisted Haudehourt in the preparation of his work on the Peluis Massimi it Rome, and published himself Le Panthéon de Rome (Brussels, 1838 ; grand folio).

Lance, Dictionnuive.
SWAG. A festuon ; the common English name for that form which is very heary in the middle and slight at the points of support.

SWAGE. A tool or die usel in imparting a given shape to hot metal in a stamping press or rolling mill, or on an anvil, or to sheets of cold metal, as in galvanized irou or copper work.
swallowtail. Same as Dovetail.
SWAMP DWELLING. (See Pile Dwelling.)

SWAMP Village. (See Pile Dwelling.)
SWAN NECK. In stair building, a ramp terminating in a knee, as where a hand rail curves near a newel so as to the about vertical, and is then enntinued a short distance horizontally, entering the newel at right angles.

SWEAT HOUSE. (See Sweat Lolge, under Lollye.)

SWEATING ROOM. A roon for sweating bathers in a Turkish bath. (See Laconiemm; Sudatory ; Stove.)

SWIMMING BATH. An artificial pool, tank, or basin of water, either open to the sky or covered, intended for bathing, particulaty for swimmers.

Generally, we may distinguish open aml encloserl swimming haths, the former being a a ailable only huring the summer, the litter capable of being kept open the year round (swimming loaths in bath bouses).

Excellent as rain baths (see Bath House) are for personal cleanliness and hygiene, the need of well-arranged swinming haths for pleasure and general health in cities should also be reeognized. In this respect even small European cities are far better off than large Americau cities. Many persons bathe together in

SWIMMING BATH

swimming baths, which should therefore be supplied with water flowing through them continuously. Salt water baths are preferably located outside of harbours, in places where the sea water is purer than in the hatbour. The pollution of the neighbouring beach, either by drain outfalls from seashore hotels, or from city garbage, dumped into the sea and cast up by the waves and tides, must be prevented. Liiver baths likewise must be carefully located, preferably ahove the ontfalls of the city sewers, away from garbage dumps, and not too near to manufacturing establishments. The immense one at Viema is on the new canalized stream, two miles from the city proper; those in Paris are safe from sewerage becanse this is all discharged several miles down stream, below the city.

River and sea baths generally require the simplest kind of architeetural struetures, though there are some examples of more pretentions buildings, such as the Sutro Baths near San Francisco. There are some ocean baths which have both the dressing pavilions and the swimming place enclosed. Such structures are erected either on piles, or on Hoats, or pontoons. The river swinming baths are built on a Hoating dock, or ponton, anchored in the stream, with the eabins arrauged on the four sides.

City swimming haths which are to be kept open the entire year must be suitably warmed in winter.

The swimming basin may be oblong, or circular, or its plan is a rectangle with one or two semicircular ends. Onc or more series of steps are providel to enter the bath. The dimensions of swimming basins vary from 30 to 75 feet in length, 15 to 30 feet in width, and from - to 7 feet in depth of water. Even the lastnamed depth of water is hardly sufficient for diving, and none but experienced divers should attempt it in the molinary swimming basin. In European haths about of square feet of water surface are providell for each swimmer, amd 10 to 12 square feet for each non-swimmer.

The basin is built of brick or cement masomy, the walls are constructel with due regard to stability anl water fightness. The outer shell of the smaller basins consists sometimes of iron, lined inside with asbestos paper or other waterproof inaterial. The surface of the bottom and of the side walls is fimshed in cnamelled brick, glazed tiles, or with white marble slabs. Due attention should be given to the buttom, which, in the basins for non-swimmers, should not be too slippery. Where one basin answers both for swimmers and non-swimmers, the buttom is made sloping, and a net or line indicates the division. Overflow and emptying pipes must be provided, also upenings on the sile above the water line for spitting. There are needed also jumping boarls, a rail around the basin

SWITZERLAND
for tired swimmers, hook poles, life preservers, and life lines in calse of accidents. The gatugway directly aromm the swimming basin is malle B to 5 fect wide, and often prajects almout Is inches in width over the basin, the water lesel in the basin being from at to 4 feet below the level of the granway. Ahong this inner gangway are located the dressing romas, which are about + feet wide and deep, i or 8 feet high, and of which there ante sometimes several tiols. In the hest phans there is amother outer gangway limu which bathers enter the dressing roun, while thoy are pernitten! to walk aloug the inner gangryay only after umberssing. 'This precalution anoids the soiling of the inner gangway ly dirty shoes, cte.

The swimming basin must he well lighter, side light firmu high windows being preferable to orerlieal lights on accomt of the glare amb heat of the sum.

The water in the basin must be suitably Wamed aml mantained at a unform temperature of about 70° Fihr. The water is warmeit either by direct introluction of steam, or by suitably protected steam coils in the bottom or abung the sibes of the basin, or else water is heated in hot water tanks and mised with the cold water flowing into the basin. Sometimes the water is warmed by continued circulation, though this is not so desirable. The swimming basin must be completely emptieci, cleaned, and refilled with fresh water once or twice a week. There should be, when the basin is full, a contimuous admission of pure water, the amount being ealenlated to entirely renew the contents once every twenty-four or thirty-six hours.

A very desimble precaution consists in arranging cleansing or preparatory baths (foot and louche baths), where each bather must go to soap and clean himself thoroughly, before he is admitted to the swimming lasin.

Nothwithstanding all sneh precautions, the surface of the water in the basin may become slightly polluted by abrasions from the skin, by oily secretions of the borly, etc., hence it is important that the water be kept artificially stirred and in constant motion, as by fountains, eascades, or douches. It is also important that suitable water-clusets and urinals be provided near the dressing rooms.

Klinger. Die Brthp-Anstalt: Runge, Die öffentlicher Bertermstult in Bremen; Rabierske, Das Hollensehurimmbul in Brastan; sclultze. Ban uma Betriel, rou Tolks-Budeanstalton: Vetter, Dos. stutturtor Soherimmbod: Margeraft, Moderne Stullbüther; Osthoff, Bïnler umd Badeanstritten: Mondluch sler Alwhitoktur. J'art IV., Vol. 5. 8 Genzmer, Batr-umi-sichutimmuntalten;
 Shhummbint zu Fronkiunt-um-M, Win: Farrar, Bullis and Buthing; Kane, Xour siystem of Pathic Buthe: R. Owen Allson, Public Buths anil I'ashlenuses. - W. P'. Gerhard.

SWISS HUT. (See Hut, B.)

SWITCH: SWITCH BOARD. (See
Elentrical Appliances.)
SWITZERLAND, ARCHITECTURE OF.
That of the modern remblic as it has existed since 1815. Thrse different mees, French, fiemman, ant Italian, vecupy the country; hence the impossibility of a single and ummixed style of architecture. Besirles, in the past, Switzerland was smaller, and in 1200 contained only the three smatl primitive cantons. So a munher of monnments, that are now Swiss, did not helung to Switzerland six centuries ago, hut were Savoyard, Eurgundian, or German,

The coment that is mow Fremeh Switzerland was under the Burgmolian influcnce at the liomanespue and Gothic period, and the greater number of the momuments were built by the large religions communities of Clairvanx, Cluny, and Citeanx. The principal amung them are the churches of Lomaimmotier, layeme, Saint Sulpice, Grandson (Tami), Saint Imier (Berne); they belong to the Rumanesque period of the eleventh and twelith centuries.

In German Suitzerland at the same period: the Allerheiligen minster at Schathausen, Schöntal (Bile), the chapel of S. Ceorge, near Wallenstadt. A little later, and still Pumanestue, is the minstor at Zurich, one of the important monuments of that eporh. In civil architecture, the castle of Kyburg (eleventl century) and Hapshurg (the original seat of the Austrian imperial house) : parts of the eastle of Burgdorf (Berne); in French Switzerland, a part of the celebrated castle of Chillon and the eastle of Blonay (Vand).

During the Gothic period, the Burgundian influence of the Cistercian Order prevailed: S. Pierre at Geneva with adminble capitals ; the cathentral of Lausame whose nave and donble pillars are exceedingly interestiug, and which has a poreh of the Apostles of the purest ellect, the collegiate ehureh at Neuchâtel, and numerons other churches of lesser importance. The eathedral of Fribourg is of the funrteenth century, with a fifteenth century tower. In German Switzerland, the cathedral of Baile, with one Romanesulue door (twelftl century), the Cistercian monastery of Wettingen, and the cathedral at Berne are of importance. The castles in both garts of Switzerland are mumerons: the finest are those of Vuftlens (Vaud) of the fourteenth century ; and those of C'hampvent, Aigle, and Lathsanne, generally of the fifteenth. The Hotel de Tille of Late is also of interest.

Then comes the Remaissance. As everywhere we find the influence of the Italian monuments of the sixteenth eentury. The Maison Turretini at Geneva: the palace Stockalper at Brieg (interior court), and many houses and churches at Bate, Lurerne, and Geneva, in which the ltalian influme is clearly marked.

090

SWITZERLAND, ARCHITECTURE OF: HOUSE AT WOLFENSCHIESSEN: A CHALET OF THE LARGEST SIZE AND GREATEST EL.ibORATION

SWITZERLAND, ARCHITECTURE OF: MINSTER AT BALE; WEST FRONT AND TOWERS COMPLETED ABOUT 1500.

SYENE GRANITE

But there is another point to note as important in Swiss architecture, and that is, the long resistance that it male to the new spirit, not in the details, that became rapidly classical, but in the construction itself, in which we find an evident disposition to the picturesque, which is clearly the popular Swiss element in architecture.

We see, from the sixteenth century up to our time, high roofs, gahle ends, turrets, projecting windows, exterior staircases on corbels surmomed by acute pinmades ; and notwithstanding the Remaissance, its flat roofs, and Italian galleries. Notwithstanding the fashion of horizontal lines, Swiss arelitecture, as a whole, persists in profiling on the sky the slemler steeples of its roofs. Instances are to be seen in the castle of Arenches (sixteenth century), that of Nyon, the Hôtel de Ville de Lucerne, and innumerable other buildings in all parts of Switzerlan!.

During the eighteenth century a great number of country houses, calted chateaux, were built in a simple neoclassic style, without any ornamentation; but generally the roof is widespreading, and gives an air of granleur and comfort to the construction. Such a building is the Chateau de l'Isle, near Lausame, built in 1697°.

Wooden building has always been common in Switzerland, and the primitive \log honse long ago passed into the solid timber-built châlet. Since the sixteenth century the true originality of Swiss art manifests itself especially in wooden buildings.
-JEAN SChopfer.
Freeman, History ond Architecture of Siritzerland; Glabbach, Der Šhhreizer Holast!!; Hochstelter. Schweizerische Architertur in Perspek., etc.; Varin, Architecture Pltoresque en S'uisse.

SYENE GRANITE. Egyptian Syenite; grenito rosso. A coarse, red granite occurring at Syene, in Egypt, and much use!! by the ancient Egyptians in the monoliths and temples. The various obelisks, like those in Paris and New York, are of this material.

$$
-G . P . \mathrm{I} .
$$

SYENITE. A rock of the nature of granite, but liffering in containing no appreciable amount of quartz. Not a common stone.

> —G. P. M.

SYLE. One of a pair of Crutches, straight insteal of curved like the gavel forks. (See Woorl, Construction in, Part I.)

SYMBOLOGY. The art of retermining the signification and right use of symbols and emblems. A symbol is a picture, sign, or character by which something other than that portrayed is suggested to the mind; and it may signify a person, a fact, a virtue, a mys-

SYMBOLOGY

tery, a spiritual idea, or it may be manifold in its meaning and stand for all of these types. The cross, for example, is primarily and essentially the symbol ol the Christian faith, but it is also the symbolic sign of a person, C'lurist; of an event, the Sacrifice of Calvary; of a

Switzerland, Afchitecture of: Tows Hall of Zurich: c. 1700.
virtue, Hope; of a mystery, The Passion; and it is the Standard of Salvation, and thes symbolizes a spiritnal idea. An Emblem, in Christian symbology, is a device or object belonging to some particular person, and is employed to distinguish that jerson from all other persons; in this sense it is also an attribute. The Keys form the emblem of S. Peter, because Christ said to him, "I will give unto thee the keys of the kingdom of hearen" (S. Matthew xvi. 19) ; a cross in the form of the letter X is the emblem of S. Andrew, because it was the instrument of his passion ; and a pot of ointment, that of Mary Magdalen. Sometimes a symbol is an emblem, and au emblem a symbol: the sword

SYNAGOGUE

is one of the symbols of faith, becanse Christ satil, "I eame not to send peace, hut a sword." The sword is also the emblem of S. Paul, beeatuse he was decapitated with a sworl.

Colour. The symbolism of colour is much the same in all relgions and all forms of religions art ; light, represented symbolically by white, is the source of every colour, and stands for truth and for purity; and when represented ly red (breause the colour of fire is red) is symbolic of divine luve and wisdom, and of the Iloly Spirit. It has also a sinister symbolism, and the devil is elothed in black and red, red lneoming the symbol of hatred and egotism. Fellow is the symbolic colour of faith, but, if it is a dirty yellow mixed with black, it stands fur inconstancy, jealonsy, and deceit. Blue is the symbol of truth, fidelity, and immortality ; green, of life in aetion, hope, charity, abundance, and victory; purple, of a lose of truth; and violet, of the manifestation of divine love.

In Christian symbology there are a number of fixed forms and devices which have a symbolieal signifieation, apart from their particular iconographic application, riz., the halo, the aureole, the crown, the sworl, the palm, the rose, the lily, the olive. and the vine, together with a mumber of beasts, birds, and fishes (see Aurenle, (ross, Glory, Halo). The four evangelical symbols are taken from the vision of Ezekiel (i. 10), and from the words of the Book of Revelation (iv. 7). The beast with the face of the man is the symbol of Matthew, because his gospel is largely about the linmanity of Christ; the lion stands for Mark, lieeause it was believed that a lion was horn dead and did not eome to life until the father breathed upon it, and Mark's gospel has much to say about the resurrection ; the ealf belongs to Luke, because it is a sacrificial beast, and he writes of the priesthood of Christ ; and the eagle, who can gaze untlinchingly upon the sum, is the symbol of John, because his writings make plain to man the glory of the Sun of Pighteousuess, which he looked upon with the eye of an eagle.
X. Barlier de Montault, Traite d'Iconographie Chrétirnne. 2 vols. 8vo (Paris. 1o!k) : H. Detzel, ('mistliche Thonographie, 2 rols. Svo (Freiburg, 1896); William Durandus, The symbolismz of Churches and Church Ormuments (New York, 1093): E. I'. Evans, Aumot Symbotism in Ecclesilustical Architacture; F. C. Husenbeth. Emblems of shints; Raffaele Garrucci. storiu delle Arte Christiana; I. R. Allen. Christian Symbolisme in Great Britain.

- Caryl Coleman.

SYMMETRY. In architecture and decorative art, the balance of part by part; a balance which may be precise repetition, or repetition in counterpart, or may deviate very widely from that, as it involves merely the supposed equivaleut value of one part to another.

Thus, if buidings be considered with reference to their axes, a Greek temple will generally be found to be exactly alike, one half to the other half, but in counterpart, that is to say, the one half of the front is as if it lad heen revolved about the axis, from the other. The sculpture of this same temple would, however, be not exaetly the same, although similar, on both sides: that is to say, the recumbent figure in the northern angle of the pediment would be balanced by another reeumbent figure in the south angle, lut oue a little different from the first ; and in like manner the senlpture of the metopes to the north and to the south of the axis would be wholly different in subject, although equivalent in mass and in general treatment. Noreover, many instanees exist showing that the Greeks eared little for exactness in grouping several buildings. The human mind seems to find it easier to balance part by part, very exactly, than to protuce the equivalent in one set of forms to a totally different set of forms. On this account, where no inconvenience exists in plaming a building or a group evenly balanced about an axis, where there is plenty of roum and no immediate call for diversity, a lung bulling will be planned unifomly, like the splendid façades by Crabriel on the north side of the Place de la Coneorle, in Paris. So, when, in 1878, it became desirable to build a vast strueture on the hill opposite the Champ de Mars, to adorn and also to bound and limit the great exposition of 1878 , althongh the design was cast in a very free modification of Romanesque, and although the building stretches a quarter of a mile from end to end, the building is still as exactly symmetrical as any Greek temple. But in the Lonrre it has never occurred to any of the monarchs, nor to any of the arehitects who have workel at its gradual extension, to build another great court at the western end, amd to have the buildings between exactly alike in design in the whole length of either or each to the other. It is aceepted as a series of designs rather than as one design; and the designers' love of accurate symmetry is gratified by the lalance of part with part within each single facade of a hundred or two hundred feet. - R. S.

SYNAGOGUE. A place of assembly for Jewish instruction and prayer.

It is difficult to prove the existence of the synagogue prior to the Babylonian eaptivity of the Jews. It is referred to in the New Testament as a fixed institution, and there were many established in Jerusalem and thronghont Palestine.

While originally intended as a place for religions and moral instruction only, the synagogue soon became a bouse of prayer for those who lived at too great a distance to go to the

SYNAGOGUE

Temple at Jernsalem, and since the dispersion of the Jews it has been their customary place of worship. As far as possible the early synagogue in its interior arrangement represented the temple, and that in itself was but an enlargen type of the tabernacle. The building was always rectangular in form and of great simplicity. At the extreme eastern end was erected the holy ark or sanctuary, in which were deposited the scrolls of the law. These were written on parchment rolled from both ends, and were generally ornamented and covered with rich stufts.

The ark was placed on a raised platform reached by steps, with seats for the elders of

SYNAGOGUE

uniformly obeyed, hut the main traditions, the simplieity of plan, the position of the ark with its ever-burning light, the separation of the sexes (a custom dating back to the Temple, where there was a separate court for women), were invariably rigidly followerl.

The exteriors of the ancient synagogues appear to have possessed lut little architectural interest, and of interior decoration, as we understand it, there was none. Remains of synagogues fomd in Galike show that a stone porch ornamented with carving of plant forms was generally the only important feature. Sculpture and painting were never encouraged, and representations of the human face were strictly for-

Synagogee, Fig. I.: Temple Beth-fl, New York City; 1802.
the congregation, cither in front or at the siles, and before it hung the perpetual lamp.

In the centre of the building, also raised above the level of the floor, was a desk from which the law was read alond.

The women were always separated from the men, and the worshippers faced the east during praver.

The site of the building was, whenever possible, to be near the seashore or a running stream. The structure itself, or some part of it, was to overtop the surrounding buildings, and there were Talmulic instructions regulating the number of windows, the position and size of entrances, and other details. It was even supposed to be desirable to have the floor of the synagogue on a lower level than the entrances and vestibules. These commands were not
hidien. Nevertheless a certain amount of symbolism was permitted, and the form of flowers, the graje, the pomegranate, etc., were sometimes employed for decorative purposes, and the lion, the ancient emblem of Judah, appeared frequently. Gohl and silver lamps were profusely usen, and were often of great betuty: (Sce Syria, Architecture of.)

The synagogue at Worms, in Germany, is the oldest now existing in Europe ; and we find in Frankfort-on-the-Main and in Prague interesting Gothie synagogues, dating from the thirteenth century, which coutain excellent examples of raulting. These were built at the time when galleries for women first came into use.

These galleries were phaced at a considerable height above the main floor, and the occupants
were shielded from the view of the men by a close lattice.

During the Mithlle Ages the synagogues were always unpretentions, as it was not safe for Jewish buillings to attract too much attention. The interiors, however, were often richs and handsomely finished and equipped.

In Spain two noted synagogues built in the

SYNAGOGUE

and the main decoration of its walls is an ontamentel arcade, orer which is a sculptured frieze of great beanty and delicaey of design.

The synagogues of Enrope, as we find them to-day, have in their interior arrangement generally fullowed the traditional lines of antiquity. The position of the ark is retained and the plan is rectangular, the trausept being insariably

Sryagoget, Fig. II.: West Sevextieth Street, New lork. As the Ark mest be at the East Esid. it Is set didinst the Ivier llillo of the Great Vestibele, from which the Grousd ATORY IS ENTERED AT RIGHT AND LEFT.
fourteenth century still remain, and both are in Toledo. One is known as La Transito, so called from a picture of the Ascension it contains; the uther is s. Maria la Blanca, both now being used as churehes. They are good examples of Moorish architecture, and contain evilences of much former beauty. S. Maria la Blanca is divided by long lines of octagonal columus with Horiated capitals, from which spring horseshoe arches supporting the roof. La Transito is an mubroken rectangle in plan,
avoided, and galleries are provided for women. The most notable change, which, however, is seldom found in English synagognes, but often on the Continent and in America, is the remoral of the reading desk from its position in the centre of the building and its combination with the platform in front of the ark. This plan is now frequently adopted in the newer buildings, as it not only seeures a concentration of the service, but it reuders the entire Hoor space available for seating purposes.

Sinee the exprilsion of the Jews from Spain the Moorish style of architecture has frepuently ben employed by synagogne builders. This is, however, by no means the rule. Synagognes were comnonly built in the same style as the contemporary churches, and there exist innumerable buildings for Jewish worship resignel in all the styles of architecture. Many of the synagogues in London suggest Sir Christopher Wren's churches, those in Paris are in the prevailing French style of church architecture, and there are good speeimens of Classic, Gothic, Romanesque, and the various perionds of Remaissance scattered throughout Europe. In America we find the little synagogue at Newport, Rhode Island, built by Spanish Jews in 1763 , quite similar in expression to the architecture of its perion, thoroughly "colonial" or (reorgian in detail, and distinctively Jewish ouly in its plan and interins disposition.

It appears strange that, while there is so little scope for variations in plan, synagognes have no traditional lines of arehitectural expression, and that no distinct style has been developed. A vague but unmistakable Oriental feeling is nearly always evident, and this, notwithistanding the lack of an acknowleiged style, produces a remarkable general likeness. The modern freedom that characterizes the arehitecture of to-day has affected the synagogue as it has the ehurch, and a still greater latitule of expression is becoming evident in the latest examples.

The plans herewith given are of the two most important synagogues built in New York City within recent years.
Figure 1. is a plau of the Temple Beth-El, erected in the year 1892. The main entrance vestibule, which faces Fifth Avenue and is rearhed by a broad flight of steps, is flanked by two towers containing staircases lealing up to the galleries and down to the Sumday-school rooms, which octupy the entire basement. The ark is placel in a semicircular recess at the eastern end of the building, and is reached by steps from the platform, on which are seats for the ufticers of the congregation. On the platform is the reading desk, with the pulpit directly in front of it. There is a marble colomate above the ark, and in the space lehind the coluinns are placed the choir and organ. The galleries are on three sides of the auditorium, and a second gallery extends aeross the end facing the ark. The pews or seats eower the entire floor space, and there is accommodation for twenty-two hundred worshippers. The trustees' room and minister's stuly are at the eastern corners of the main floor, and are reached by a separate entrance from the street. The building is constructed entirely of limestone and is resigned in the Romanesque style. In the interior marble, hronze, and mosaic are

SYRIA

largely used. This may be considered as a typical plan for a molern synagogue for what are known as Reformed Jews.

The typle of builling for the Ortholox Jews, who in their worshij, strictly futlow the traditions of the past, is shown in Fig. 1I., which is the Synagogue Shearith Israel, erected in 1897. The dimensions of the main builting are 78 feet by 115 feet, and on the main flow there are also a small synagogue for special services, a minister's stuly, class rooms, and an open court to lee used for the Feast of Tabernaeles. The entire basement is devoted to school purposes. On account of the position of the lot, and as it was necessary to place the ark on the eastern end of the buidding, the anditorium is not enteral directly from the main porch, but access to it is gained through the two side vestibules, which also eontain the staireases leading to the women's gallery. There is an additional entrance on the northwest comer of the building. The ark is built against the wall of the main vestibule, and the platform in front is reachen lyy a broul tlight of marble steps, upon which stands the pulpit. The chairs for the ufficers of the congregation are placed on platforms in front of the screen which flanks the ark. The seats for worshippers are parallel to the sides of the building, leaving the central portion of the auditorime entirely free, and occupied only by the realing desk. The building is of limestone aml designed in the classic style, with pilasters and arches, and the front is enriched by four Corinthian colmmens surmounted by au ornamentel pediment.

- Arnoli W. Brunner.

SYNODAL HALL (French salle syno(dale). A hall in whicll the synod of a dinerese was accustomed to meet. It differs from the chapter house (in French sulle ("upituluire) in that the synol is a general gathering of the elergy of the whole diocese, and of representatives duly appointed. The hiall was, therefore, of necessity large. The Syumal Hall at Paris has perished, but is known ly ancient prints. That at Sens (Yome), built in the miditle of the thirteenth century, is perfent, and has been restored with much discretion. Viollet-le-Duc, who has given drawings of this noble building, states that it will hold nine humbed persons.

SYRIA, ARCHITECTURE OF. That of the country stretching from the eastern coast of the Mediterranean eastward to the Euphrates. This region can scareely be saill to possess an indigenms architectural style, possibly owing to the fact that the Semitie tribes who peopled it were mot a luilding race, and never aspired to the erection of monuments which should exist as records of their greatness. In all the earlier work of the country, down to the Mohammedan invasion in the seventh cen-

SYRIA

tury, there are two special characteristics not found elsewhere.

Early Characteristies: Momolithism. The first is that which Renan describers as "monolithism," viz., the employment of immense bucks of masoury, essentially Pluenician, not only in its origin, but in its continuance through-
the great labour involved in detaching them, as it were, from the main block. In Roman work, capitals, shafts, and bases, and in the case of pilasters, portions of the wall itself, were all cut out of the same block, and in the early Christian work, the arehes themselves would, with their archirolt, be treated in the same way.

Sybia, Arimitectile of: The so-caleen Pieturium at Musmigeh, beilt abult ifu a.d.
out the early periods. From this characteristic the native builders seem never to have emancipated themselves, and throughout the Jewish, the Roman, and the early Christian periods, they employed in their building blocks of stone of great size, in which were produced decorative features copiel? from other styles, regardless of the origin or meaning of thuse features, or of

Eurly Charucteristics: Diatted Musomy. The secoud characteristic is that which was originally considered to be of Phomician origin, but of which there are no gemine examples in Svria prior to the jerion of Herod, viz, what is known as dicufted musomy. In order to obtain a fine an? accurate joint, the masons worked round the edge of each stoue a draft of

SYRIA

from 3 to 6 inches in width, leaving the central portion in relief, thus constituting what is known as rusticated masony. The projection of this rustication varier from 2 to 3 inches for exposed work, to 12 or $1+$ inches in the fomulation courses. The draft was worked vertically with a chisel, in which there were eight teeth to the inch. Sulnequently, in the finished work, the rustication was worked off with a pick to within half an inch from the drafted surfice, and constituted what was accepted as an architectural embellishment. The finest examples of this work are fonmen on the wall of the Jews' wailing place, on the west side of the Haram, or second enclosure, at Jern-

SYRIA

Herod at Jerusatem was devised and carried out as an architectural embellishment, and must not be confused with the unfinished work of the Phenicians in the tombs of Amrit or of the palace of Hyremms at Arakel-Emir, ${ }^{1}$ in which the rustication is unly found on some of the stones, and the draft is not of equal width all round. The palace of Hyramms at Arak-elEmir is the earliest dated (171 1s.c.) building known in l'alestine. It is hoilt on a platform about 320 feet square, and consisted of a rec" tangular building measuring 126 feet by 62 fect, of which a purtion only uf the eastern wall remains and the foumdations of internal walls. The wall is about 22 feet ligh and consists of a

Temple at Bafalec; 2nd Century.
salem. In the working off of this rustication, the first step taken was to form a second draft within the first, examples of which are found in the tower of David. This type of work is the chief characteristic of Syrian masomry, and was aclopted afterward by the Romans, the Byzantines, and the Crusallers, each having his own method of finish. In the masomry of the Crusaders, the chisel was always nsed in a diagnual dircetion, amd many of the castles and enclosed walls formerly attributerl to the Phoenicians, as at Tortosa, for instance, lave of late, owing to this special methorl of working, been ascribed to their proper builders, the Crusaders.

It shonld be clearly recognized from the first that the system of drafting as employed by
lower course or phinth in one course 8 feet high, constituting the frieze on which there are varyings of lines. This was probally crowned by a cornice of some kiurl. One of the stones of the centre course is 17 feet 4 incles long, which shows the Phonician inflnence. The dentil conse and the frieze are I'ersian in character, thongh executed prohably by Greek artists. Varions capitals of Greek style were found in

1 M. De Togüe's drawing, published in the Temple of Jerusulem is incorrect. The finch draft shown above the milde stone in his drawing is at matt of the course out of which the lentil eomrse is cut. 'l'he joint is shown in the drawing $\overline{5}$ jumes abowe its real position, as proved hy photographs. The midnle stone referred to has a draft 4 inelhes to finches wide at the bottom, 2 inches on the left-haml side, 1 inch at the top, and no draft at the right-hand side. This is not drafted masonry.

SYRIA

the interior, and these probably belonged to an atriun at the north or entrunce end.

Herodiun and liomen Wosk. Of Herod's work in the reluilding of the Temple of Jerusa-

DuUR UF A TOMB IN STRIA.
lem only the lower portions of the walls enclosing the Haram enclosure (to which we have already referred) remain. In addition to the architectural embellishment given by the drafting of the masonry, much of the monumental eharacter is due to the immense size of the masonry. One of the courses, that which runs on a level with the sills of the double and triple gate on the south side, is 6 feet high. The foundations of this wall were put at the southeast corner, 80 feet below the present level. The upper portions of this sunken wall, those which enclose the Portico of Herod, were, it is supposed, rlecorated with flat pilasters about 5 feet wide and from 6 inches to 9 inches projection, similar to those still existing at Hebron. The bases of two such pilasters were found at the northeast end of the Haram enclosure. This method of breaking up the wall surface with wide projecting pilaster strips might be regarded as a third Syrian eharacteristic, except that it is confined to early work. The Roman pilasters have Corinthian capitals. There are known one or two examples with caretto eapitals, one at Brblos and a second in the great western porticus of the temple of Damascus, the south end of which forms nors the fonndation of one of the min-

SYRIA

arets. The pilaster strips at Hebron are 5 feet wide, 25 feet high, 9 inches projection, and rest on a plinth 15 feet high. They are crowned by an ogee moulding which returns and forms also the upper string course of the main wall. The spaces between the pilasters measure about \& feet.

Whilst courting popularity with the Jews by rebuilding the Temple of Jerusalem, Herod erected temples to Augustns and to the Phoenician god, Baal-Samin, one of which exists at Siah in the Haurau and has been measured and illustraterl in De Togué's Syrie Centrale. The cella was so much encumbered with ruins of subsequent buildings erected within it that its original plan was not determinable. Its façade consisted of a portico of two columns in autis between wings, probably carried up as towers in imitation of the Temple of Jerusalem, and to which allusion is made in one of the inscriptions which speats of "the lofty buildings" erected. (De Vogrié's restoration in a pen perspective sketch in no way suggests the probable design.) The temple was preceded by an atrium with porticoes round a great portal. The other temple with triple arehways would seem to have been added in later times by the Romans. The capitals of the columns of the portico, though Greek in the execution of their foliage, suggest an Oriental origin. The epistyle earried by these columns and the lintel of the entrance door to the cella are carred with the vine leaves and grapes, essentially Jerrish features. Similar capitals and bases

Details of the Chereh of S. Simfon Stylites at liafat semix.
are fonnd at Souideh, close by, and referred to the same period.

The tombs in the Fedron raller and others near Jerusalem are mixed in style. The earetto
cornice which crowns the sormilted tombs of Zachariah and of Absalon, and the leyramid among the former, is Egyptian. The semidetached columus with Ionic capitals and responds aml the Doric epistyles are SyroCreek. To the sime artists must he ascribed the frontispieces of the tombs of the Kings and of the Julges, who by the introuluction of the vine and grapes and the pot of mama show that they were working for the Hebrew race. The date of all these tombs is now generally arcepted as belonging to the period of Heroul and down to the siege of Jernsilem by Titus.
exact date, some claiming them to be the buikdings erected by Simeon Bar Yochai, who, ahout 120 A.D., is recorded to have built twenty four synagogues in Cratilee, whilst others, among whon is Fenan, ascribe them to the cod of the second century. They all fice the sunth and are always rectingular. With one exreption (the smatl synagogue at Kefr Birim, which has two rows only) they are all divided into five aisles by fon rows of columns, carying a timber ron' of joists 8 inches sleep, set cluse together and avered over with earth. On account of the weight of the roof the columns were set

Church and Cunvent of S. Simeon Stylites: 6th Century. Kalat Seman.

Symagogues. Though of much later date than the tombs just quoted, the synagogues of Galilee are best mentioned here. In the porticoes preceding them and in the design of the doorways and niches, they are evidently based on Roman examples, but the contour of their monlding shows they were probably executed by Greek workmen. They are neither sutficiently numerons nor important enough to have had much influence on the development of the Byzuntine style, but in the accentuation of the constituent features of the design and in the profiles of their monldings they precede by more than three centuries the architecture of the time of Justinian. Though generally accepted as the work of the second century, there appears to be some difference of opinion as to their
close together with small intercolumniation. The two end supports of the onter rows always consisted of a square pier, with two responds, whether to carry a gallery or for what purpose is not known. The masoury is well buit in courses of limestone, set withont mortar and finely chiselled. They all have three entrances on the south side, a lirge central doorway, and two small ones leading into the outer aisles.

The most perfect example, which may be taken as the type of all the others, is the great synagogue at Kefr Birim. This was preceded by a porch, hexastyle prostyle. The colmmus have the monded circular capital peonliar to some Syrian temples, carrying a square abous, and are raised on two perlestals. The angle supports consist of square piers with responds. In

APSE OF CHURCH OF s. SIMEUN STYLITES: 6Th CENTURY; K゙ALAT SEMA.N.
the great central doorway the lintel projects 8 inches beyoul the side jambs (as fonnd in early Greek work, such as in Beule's doorway entering the A(cropolis at Athens), and carred roumd it is a strongly profiled moulting which returns down the door jambs. Within these the ordinary faseit mouldings of the lioman prototype are carried round the door panel, but with sharply accentuated profiles, the inner mouldings not bent behind the main faspia. The cushion fricze, carved with the vine anl grapes, and the lintel are, in acoordance with the style of the comntry, in one stone. This is crowned with a simple ugee moulthing. The relieving arch is semicireular with seven youssoirs abont : feet deep, and in its design inchules all the subulivisions of a complete entablature, viz., arehitrave, frieze, and cornice. To the two smaller doorways there is no relieving arch, and the lintel does not project beyond the door jambs. The synagogne measures 60 feet 6 inches by 46 feet 6 inches withont the portico. Internally there are four rows of columns 2 fect \because inches in diameter, the intercolumniation being 6 feet 9 inches, and the height of shaft with capital 12 feet.

Roman Hork, Second Century and Later. With the exception of Baalbec and Palmyra, all the best-preserved Roman remains lie on the east sinle of the Jortan and in the Hauran. Through all these distriets the Romans ran their roals (some of which are used down to the present day), bringing into comnection the ancient cities of Moab and Bashan. These they apparently rebuilt, for, with the exception of a few tombs, there are no vestiges of any earlier architectural work than that of the beginning of the second century of onr era. The preservation of the Roman work is due mainly to the desertion of those towns in the Mohammelan invasion in the serenth centmy, and their subseguent occupation by wandering tribes, who contented themselves with the temporary shelter of the existing buidings, and such additional protection as could be obtained from the erection of enclosures built with the smaller materials thrown down by earthquakes. In some of the large towns, such as Gerasa, Gadara, and Pelle, for instance, there is no trace whatever of Mohammedan occupation at any period, and though from time immemorial there have been constant strifes between tribes, the destruction of the Roman work is mainly due to frequent carthquakes. At one time or another, temples, basilicas, colonnades, theatres, and tombs have nearly all been thrown down by earthquakes, and remain in that condition to the present day, the beautiful sculpture of the capitals and of the enrichments of the cornices, doorways, and niehes being as sharp and fresh as if carved only yesterday.

The temples, theatres, basilicas, baths, and
other structures built by the Romans in Syria do not materially differ from those erected in other parts of the Empire, except in a somewhat freer treatment. At the same time, owing to a strong Greek influence, the sculpture of the capitals and the profile of the mouldings is tar purer than that fomd even in Rome. This remark does not apply to the work in some of the larger towns, as Palmyra, baablec, and Gerasa, where, from the importance and extent of the monuments erectel, artists would seem to have been sent over from Rume; but even in these towns some of the capitals and the enrichment of the cutablature show in the excoution of their foliage the Greek rather than the Roman chisel.

Colonnaded Streets. There is, however, one architectural feature of importance, which exists, so far as we know, only in Syria and in one or two towns of Asia Minor, viz., the colonnaded streets. As a rule, the principal colonnaded street ran from east to west, and was crossed by one or more streets, also sumetimes with colonnades, ruming at right angles to the main strect. In the ease of a cross street, having also colonnades, their junction was afforded by means of a tetrapylon, a vaultel structure, having great archways on each of the four sides. For the main streets an archway, 20 to 29 feet wide, intercepted the colonnade, the entablature running throngh unbroken. Another characteristic feature in these Syrian towns, and these are found not only in the colonnades, but in the porticoes of the temples and the porticoes of the great enclosure courts, is the employment of stone brackets projecting from the column and forming part of the shaft about two thirds up, to carry statues or busts. None of these pieces of sculpture remain in situ, but the numerous inscriptions show that these statues or busts were erected in honour of distinguished citizens, who had contributed to the adormment of the town by erecting important public buildings at their own expense.

The prineipal colomaded streets in Syria are, first, that at Pahmyra, 3154 feet loug, with a central avenue, 37 feet wide, Hanked by a row of columns, 31 feet high on each side. Exclusive of the tetrapylon (in this case not a vaulted one) and the eight archways, there were 454 columns in this street, of which over 100 still stand erect. Second, the Via Recta at Damascus, 1550 fect long, and running through the town from gate to gate; excepting the two gateways, the last restiges above ground of this were destroyed at the time of the massacre of 1860, when the Christian quarter was destroyed. Third, that of Gerasa, 1880 feet long, terminating at the west end in a circular piazza of 300 feet diameter, surrounded with Ionic columns ; for about 600 feet at the east end of this colonnaded street the columns had also

[^10]Ionie capitals, the remainder being Corinthian. A vaulted tetrapylon existet here. Amman, Kinawat, Bosat in the Houran (with two tetraplolons), Gadara, Pella, Apamea, and other towns are referred to ly travellers. The most ancient colonnated street of which remains exist is that foumd at samaria, which was built by llerod. There are no remains of the celebrated strects erectel by Antiochus Epiphanes, B.C. lio, at Antioch, which extended over two miles in lengtlı.

Roman Temples. The Roman temples in Syria always face the east, eren though occasimally, by such orientation, they were placed at an angle with the colonnaded streets or other buidings. In Fome they were looked upon as the principal features of the fora, and face all points of the compass.

Four of the great temples, those of Palmyta, Gerasa, Husn-Suleiman, and Damasens, were enclosed in great courts with a porticus around, and onc, the temple of Jupiter Sol, at Barlbec, was precerlel by two great courts. Three of the temples in Fome had similar courts, but none of the dimensions approached those of either Damasens or Palmyra.

Nearly all the temples in Syria, as in Rome, were raised on stylobate platforms, the exceptions being the two temples of Palmya and the secoul temple at Gerasa, where there were stepus only. Flights of stejs built between pedestals, in which the comice and base of the stylobate are continued, precede the more impurtant temples, but in all the minor examples the stylobate runs tose up to the east portico. Access to the cella, therefore, rould seem to have been confined to the priests, who entered by small doors in the stylobate to chambers under the sanctuary at the west end, which was raised from six to eight feet above the floor of the cella, and thence throngh side doors into the cella. The most important of these internal raisen platforms is foumd at Baalbec in the temple of Jupiter, and here a Hlight of steps, no longer in existence, is said to have led down into the cella. A similar arrangement is found in the temple of Isis in Pompeii, with secret approach, which enabled the priests to enter unperceived to deliver the oracle from the statne which we may assume was placed on each of these flatforms.

We have already referred to the stone brackets which project from the columns, to carry busts or statues, and which form, each of them, a part of one of the drums of the shaft (for, with one or two exceptions, the shafts of the temples and colonnades are found to be of three or four drums, and not monolithic as in Fone). A second peculiarity in these Syrian temples is the raising of the columu on square perlestals. A third peculiarity, found in some of the temples, even of an early date, is the wide inter-
columniation of the two central columns of the portico, which necessitated the use of the arch, with its entablature complete, carried romm it. The emrliest dated example known is that of the temple of Atil in the Haurau, built by Antoninus Pius, lōl A.d. This precedes by about a contury and a half the well-known example in Diocletian's palace at Spalato. The Syrian coins had already suggested the existence of this feature, but it has hitherto been assumed to be a conventional representation of the shrine in the rear of the temple, and this is doubtless the case in many Foman coins ; but in the Syrian coins, the mouldings of the architrase, which is all they attempt to show, are clearly carried round the central arch. De Togiue refers to this peculiarity ou many occasions, but only in ttro cases, we think, gives examples, namely, that of the temple palace at Kunawat (spelt Qemuanat in his work, Syrie Centrule), and the well-known archway at Damascus, the inner or court eleration of the western propylaa of the great temple court. The profiles of the mouldings, and the sculpture of the capitals and other cromments, are of the same pure style as that existing in the temple of Atil, so that we may assume it as being also the work of Autoninus Pins. In both the temples of Baalbec, the central iutercolumniation is much wiler than that of the other columns, and another coin of the portico leading to the great court of Baalbec indicates an arch in the centre. The same coin shows the two wings carried up as towers, which suggests a much more probable design than that giren in Wood and Dawkins's work.

Although the great temple of the Sun at Palnyra belongs to the decadent period of Roman art, and, situated as it is far awar from the centre of Foman culture, shows inequalities of desigu which mould not have lecn comenancell in Rome, it nevertheless, with its magnificent court and porticus, must be looked upon as one of the great momments of Imperial Roman architecture. The outer court, with its enclosure walls, 730 feet wide and $\overline{2} 20$ feet deep, is raised on a stylobate, 18 feet high. In the centre of the principal front, facing the west, was a flight of steps leading up to the portico of the propyon, 120 feet wile. The prortico and steps are no longer in existence, but Dawkins's plan shows a wide intercolumniation in the centre of 13.6 , as against 11.6 in the other anl coupled columns, which suggest also that an arch was thrown across. The same columniation is shown in the inner propylon, facing the court, and on the farthest side of the court, the intercolumniation of that column of the porticus is also 13.6. There would have been no necessity for this unless it were to display au arch. The temple itself, octostyle prostyle, raisel on a stylubate of three steps, runs

SYRIA

north and south, and is mot placel in the axis of the propylon. The primipal homway, which faces west and lies in the axis of the propylon, has six columns of the peristyle on one side and eight on the other. At a later perion, probably during the Restoration after the destruction of the town by Aurelian, the attacherl semicolumns were added, and door jiambs and lintel fitted in between the attachel columns, all showing a great decalence in style. The prorticus on the west side, including the propylun, had one row of columns, 48 feet high, inclurling capital and base. The three uther silles hat a donde rauge of columns, $3: 2$ feet high. Externally, the enclosure wall was broken by Corinthian pilasters of the same height in each case ats the eolumn of the porticus inside. That whieh would seem to have been a pronas and posticum in the first temple built, had it portico in antis (now walled up), with eapitals of the lonie order, all the columns being Corinthian. Of the capitals of the temple itself, only the bells remain, the leaves and volutes being probably in metal.

The temple of the Sun at Gerusil, hexastyle peristyle, was also enclosed in a porticus, with enclosure wall measuring about 300 ly 150 feet. The temple at Husn Soleman, near Tartus, discoverel by the American Palestine Exploration Fund, was hexastyle pseuloperipteral, and of the Ionic orler, with enclosure walls, 442 by 252 feet, the late being given as 253 A.D. The dimensions of all these three temples known wonld seem to be far exceeded by those at Damasens, where the enrlosure measured 1300 feet from east to west, and 1000 feet from north to sonth. Owing to the eontimued accupation of the time, and the subsequent rebuilding at varions epochs, it is difficult to trace out the original plan. Small portions of the enclosure wall only exist, decorated with broad pilaster strips. The eastern side of the western propylon, already referred to, 40 feet wile, with its central arehway - the triple doorway of the eastern propyliea; the walls of an internal porticns, 320 feet long and 38 feet wile, which now form the west cnclosure of the great mosque (this was decorated with broul pilasters, surrounded by cavetto moubled cap, carrying in architrave with dentil comice) : and the triple doorway of the great temple, 70 feet wide, whieh is enclosed in, and forms part of, the south wall of the mosiue, - all exist. The great doorway of the temple and the remains of the two propylons, one of the same style of work as the temple of .Jupiter at Bather, are ascribed to Antonims Pins, but the porticus and the great enelosure would seem to be of an earlier date, to julge by the pilaster strips which are employed to derorate the wall surface.

The great temule of Jupiter Sul at Batbee was built on the site of the Phrenician temple of Baal already raised on a lofty platform, the
walls of which, on the north and west sides, were too close to allow of a porticus round. The great courts therefore precede it. The eutrance to the enclusure was through a portico in antis of twelve colnmns 180 feet long and 37 feet deep, originally preceded by a flight of steps. The portico was in antis between two wings, which were probably carried up as towers ; of the upper story the pedestals only of the pilasters remain. A coin published in Donaldson's Numismatica gives a superstructure of this portico, with a pediment in the midille on the fome central colmmes and an arch on the two centre ones. The columms of the portico all rested on square pelestals. The first court is hexagomal, the secoml court sipuare. The courts are surrommed, not by a porticns, hut by a series of rectangular and semicireular recesses, with an enclosure of columns in front not altogether dissimilar to those in the Pantheon at Rome, combined, however, for another purpose, within the thickness of the wall. The rectangular recesses are 25 feet deep, and vary from 50 feet to 75 feet wille. The hemicycles were 30 feet in lianeter anll roofed over with stone, the wall lecoration of buth, inside, consisting of two rows of niches for statues, one above the other. This scheme of decoration is one which seems to be miversal in all the Foman work in Syria. The decorative carving of the niches of the hemicycles is so free in its treatment as to resemble that of the early Italian Lenaissance. The great temple of Jupiter Sol was decastyle peripteral, with a wide intercolumniation in the eentre, also found in the smaller temple of Jupiter close by. This latter is by far the hest freserved in Syria, and, allowing for the distance from Rome and the perion of its erection, is one of the finest examples of Loman Imperial architecture. It still preserves part of the stone ceiling of the peristyle. This peristyle was 9 feet in the elear, and was covered over with stone slabs, cut to a segmental form muderneath, and smo with deep cofters, alternately diamond-shape and hexagonal, showing a complete departure from the ordinary stone beams and flat-entlered slabs of the Greeks. The entrance portal to the cella was oll feet wide aml 42 feet high, the largest in Syria. Its lintel was formed of five voussoirs, the centre one of which having slipped, is now earried by a pier. The cella was lecorated with three-fuarter detacherl, engaged colnmms of Corinthian style, each relieved upon a shallow pier, six ou eall side, with responds, and between them niehes in two ranges, one ahove the other. The fallen masses of stone in the interior show that these shafts were coupled together and earried broken pediments. The slight thickness of the wall, only 4 feet withont the piers, the absence of any portion of a vault, and the fact that none of the walls have ever been jushed out, remder it extremely improhable that it could have been

Vanlted over with stone, the internal width between the shatts being 60 fect. The raised platform on sanetuary, reluced to abont 28 feet in width hetween jiers, wats vaulted over. Although the decoration is of a somewhat florid type with redhmance of ornament, some of the (aphitals are of very pure design, evidently carved by Cireek artists. This characteristic is found thronghont in the haman temples of Syria, some of the carving of the capitals aml dow jambs being gutite equal to the furest work of the time of Augnstus. On the other hamb, in the ontlying districts, away from strict Roman influence, the carving is of the most primitive or most decadent tyre. There is a series of temples of the tonic order, with porticoes of two columns in antis, as at Hibheriyeh, Deir el Ashayis, Thek hatha (Neby Sutia), and Ain Hammul, with the Ionic capital also carved on the responds, and these are of the most primitive type. In these four temples the raised platiorm or sanctuary still exists; in the two former the parement of the raised platform is carried on vaults ; in the two others, it consists of slabs carried on corlel strings and bramets.
linmen Tombs. The tombs in Syria of Roman style are of two types, those erected in masonry and those which are cut in the face of the rock. Of the bormer, the earliest are those which are built in the form of a tower, 20 to 30 leet square in plan and from 60 to 100 feet in beight, of which a very large number still exist in Palmyra.

In wther parts of Syria the Roman tombs are derorated with Corinthian pilasters. Internally they are covered with barrel vaults, or domes carried on pendentives or stone slabs placed across the ingles.

Some of the Roman tombs in central Syria are sunk in the rock, and over them are built groups of two or more columns held together by their entablatures.

Of the trombs excarated in the rock, a large number follow the armanement typified by that of the Tomls of the Kings at Jerusalem, viz., a portico in antis with two or more columns, surmounted by an entablature and occasionally by a pediment.

The most important of the rock-cut tombs are the magnificent examples at Petra. Cut in the vertical sides of a cliff, and rising sometimes to over 100 feet in height, the artist was freed from the trammels of ordinary construction, and was able to realize his conceptions much in the same way as a painter produces a theatrical scene. The most perfect of the tombs is that known as the Khusneh, or the Treasury of Pharaoh, and it is evident that the perfection of its realization is due to many earlier trials. There are others of similar design showing incomplete and abortive attempits. As evidence of originality of design and richness of concep-

SYRIA

tion, these tomis are remarkable examples of the Lioman Imperial style, but the absence of any constructive character takes them out of the range of serions architectural developments.

Thentres. The Foman theatres in Syria were all excavated in the sides of a hill, and seen to have existed in most of the important towns, except in Patmyra. The largest is that at Amman, $\because=8$ feet in diameter with forty-two rows of seats. The large theatre of Gerasa had twenty-eight rows of seats, and retains portions (f the pruscemimm, whith was decorated with Corinthian colmmes conpled together, and niches altemating with the three doorways. The bestpreservel is the theatre of Akul el Beisan, 197 feet in diameter. At Bozralb, in the Hauran, there still remain (the only example of its kind exist"g in Syria) portions of the colomade gallery surrounding the upper row of the theatre, the uder employed being the Doric.

There are numerons other Roman buildings, such as therme and basilicas, but too little is known of them as yet to be able to detemme either their plans or architectural lesign.

Sassomian or Dunbtful Buldimys. Twe other interesting buildings exist in Syria, to whirh it is difficult to assign an exact date. The first is the palace of Mashita, in Moab, discovered by Canon Tristram and assigned by Fergusson to Chosroes, the Sassamian king, 614 A.D. The elaborate earving of the luwer portion of the walls suggests an carlicr date, the design resembling the work of Justinian. Perrot ind Chipicz (Vol. V., La Perse) point ont, however, that a Byzantine author, Theoplytactus Simocattil, mentions the construction of this palace which he ascribes to Chosroes, and states that he employed Greek artists to build and decorate it.

The other example is a building in the citadel of Amman, which consists of a central square court open to the sky, with four great recesses on either side, two carried with barrel vanlts, and two with hemispherical vaults on clamsy pendentives. The walls are richly decorated with blind areades enriched with flowing ornament, evidently sculptured by Greek workmen, and their string courses and arch moulds were carried with the zigzag fret, a decoration which owes its origin to brick construction, where bricks are placed anglewise to support a projecting string. This is found in nearly all the Sassanian palaces ; so that we are safe in ascribing this luikding also to Chosroes II. in his triumphal march to Jerusalem. The great arches are also of the same elliptical form as those found in Sassanian huildings.

Christion Buildings: Earliest Churches. Prior to the "Peatce of the Chumeh," the Christians in Syria would seem to have contented themselves with simple erections suited to their - faith, and the earliest church of importance now

SYRIA

existing is the great basilica, the church of the Nativity at Bethlehem, built by Constantine. This consistel of nave, with doulle aisles on each side, transept, and choir built wer the chapel of the Nativity. 'The eastern apse is probably also Constantine's work, but the transept apses were added by Justinian. Except for the wall which now cuts off the transept from the nave - the smbsernent decoration of the walls of the nave with mosaics executed in the twelfth century - and a reconstruction of the roof, this chureh remains practically the same as when built by Constantine, and may be looked upon as the hest example existing of an early Christian basilica. The great basilica erected at Jerusalem in front of the Holy Sepulchre and Justinian's church of S. Mary have disappeared ; and we have nuw to take up the most important architectural development of Christian architecture in Syria, only within a few years made known to us by the important work of M. de Vogiié on central Syria. Some attrmpt has been made by De Vogué and Viol-let-le-Duc to show a connection between the chmreches of central Syria and the Romanesque work of Europe; but although in the plans and designs of the early Christian churehes we reeognize very similar arrangements, none of their more salient features can be traced in the Romanesque work of Europe prior to the C'rusaders, and it they had heen known to the Crusalers, it is evident that the first attempts at reproduction would be found in their work in Syria. This, as we shall hereafter see, is far from being the ease. Almost the only Oriental features found in the C'rusalers' churches (apart from the domes or pententives, which are distinctly French in design) are the polygonal exteriors given to the aloses ; but these are found in numerons examples in western Syria and throughout Greece, so that the morlels in this case were much nearer at hand than in the deserted towns of the Hauran and north Syria. It is extremely doubttul whether the Crusaders ever penetrated so far as the Hauran in the west, or Kalat Semán in the north, but, at all events, a distinct Fomamesque style had already been developed in France, Italy, and Germany prior to the Crusates ; and the churehes in Syria are clear evilence that it is mainly to the two former countries that we owe the design of the Crusaders' work of the twelfth century.

Syrian Roumd-arched Style. The style develuped in Syria from the fourth century to the Mohammedan invasion, nade known to us by M. Ie Togite's remarkable work, La siyrie Centrale. is by far the most interesting, as it virtually contains the elements of a distinct arohitectural style, which, though based in its origin on the monuments erected muder Foman rule, would seem to have heen ahle to throw off their trammels and to have evolvet a homogene-
ous development, fommed on the special requirements of the Christian religion, with a simple and rational constructional use of the materials at hand. The subject divides itself into two sections: the develomment in the Hanran, and that of the north of Syria between Antioch and Aleppo and about 100 miles south of these towns.

Plan of the Stose House at Dutma: 2nd-3rd Century.
In the Hauran the principal material was the basaltic rock of the district, which, on account of its hardness, allowed little decorative carving. The absence of timber also necessitated an entirely different system of design, both roofs and floors being constructed with stune slabs. The bearing of these was limited, so that when the area to be carried exceeted 6 or \& feet, intermediate supports in the form of arches had to be thrown across the same. The carliest builling of this type at Shakha (Chaqqa in De Vogité) belongs to the Roman periot anterior to the fourth century, and is assumed by De Vogiué to hare constituted the reception halls of a Poman prefect. The principal hall measured 115 feet by 30 feet wide, and across it were thrown ten arehes ; each bay therefore measured about 11 feet wille, centre to centre of arch; the thickness of the areh is 2 feet \because inches, and the wall it carries is surmomited ly a curbel string of two courses projecting 1 foot 2 inches on each side ; on this corbel string the slabs, 6 inches thick, rest, their bearing being thereby lessened to 6 feet 6 inches. The piers carrying these arches project 1 foot 6 inches from the wall, and on the outside are buttresses of the same projection, the earliest exomples knoum. All the doorways and wintows in this part of Syria are fitted with stone doors and shutters working on pirots. In the same town is a Roman basilica with central hell, aisles, and galleries above, in which the supporting arches receive a further development. The intermediate support here may be said to consist of a screen wall with a great arch thrown across the central hall, its thrust being comuteracted by earrying the sereen to the outer walls; smaller arches on two levels are pierced on each side in this wall, the lower arches forming the aisle jassage, the upper ones those of the gallery. The whole work is carried ont with well-worked masonry in courses and regular roussoirs to the arches, all laid without mortar.

SYRIA

SYRIA

The churches built in the fifth and sixth centuries were based on the Roman basilica described, and architecturally do not differ except that there is less carving, limited in fact almost to that of a cross in a circle. There are two churches of exceptional form: the church of S. George at Eara, 510 a.d. (erroneonsly called Edrei in Murray and Fergusson), hats an octagonal nave covered with a lofty clliptical deme, built probalbly without centring. In bosrah, $\overline{0} l 2$ A.ı., are the external walls only of aur apparently similar building, lout of much larger size.

In domestic work the same method of construction obtains: the floors of the upper story and the roofs are all constructed with stone slabs, the large rooms having arches thrown across.

7 feet from the ground. The apses are semicircular, there being three exceptions, viz., at Hass (fourth century) and Behioh, where they are sutare, and at Tourmanin, where they are polygonal externally as well as internally. In the majority of cases the apse and the diaconicon and prothesis are enclosed within a square external east wall (all the churches are orientatel). At Bugouza the apse alone is circular externally, being built in between the square end of the diaconicon and prothesis: and in Kalat Semán, where there are apses at the termination of the aisles as well, all three are developed as circular externally. In this latter case the diaconicon and prothesis are on the north and sonth siles of the aisles. This latter church is of considerable dimensions, being 330 feet east to west, with transepts and porch

Stone Hotse at Chiqua: 2nd-3rd Cestury.

We now turn to the north of Syria, where there was less ditticulty in procuring timber, and where the construction, except in certain local peculiarities, followed very much on the same lines as those of the Romanesque style in Eurupe. In sume of the towns, as at El Barah, the system of employing arches to carry the stone flow of the upper story is still retained in houses and in monastic establishments, as also in the tombs, to whith we shall refer again.

The plans of all the principal churches are more or less uniform in their arrangement, consisting of nare and aisles, an apse, and, on either side of same two chambers called the Diaconicon ams Prothesis, the former reserved for the clergy only, the latter slestined for the offerings of the faithful. In the majority of cases the separation of nave from aisles is by arcales of from six to eleven bays carried on monolithic shafts with caphitals of classic trope, and without either the dosseret or the abacus moulding found in Byzantine or Pomanesque work ; the arcalles are high in proportion to their width (about one to three), and the columns are sometimes raised on low pedestals. The two exceptions are Fuweiha and Kalb Louzy, where the nave and aisles are separated by three wile arches carried on piers with impost mouldings,

300 feet long. It was built to enclose the pillar on which S. Simeon Stylites spent forty years of his life. It consists of nave and transept, both with aisles, and, in the crossing, an immense octagonal central space (the same wilth as nave and aisles together), open to the sky, in the centre of which remains the original base of the pillar. The west end of the nave, being on the side of a hill, is carried on a crypt, and the principal entrance was on the sonth side, consisting of a porch with three doorways and extending the whole wilth of transept and aisles. There are besiles these no fewer than twenty-one other entrance doorways, so that the pilgrims could stream in on all sides. The church was built at the leginning of the fifth century, and yet its porch might well have heen designerl and rarried out by the architect of S . Trophime of Arles, so close is the general resemblance. Many of the west porches of these churches are adaptations of the classic portico, but there are some in which the central entrance, consisting of a single arch tlanked by towers of three stories rising to the level of the nare, might, if raised higher and surmounted by belfries, pass for eleventh or twelfth century French work. In the church of Tourmanin a Hight of steps leads up to the porch, which con-

SYRIA

sists of a single archway tlanked by small arched openings on either site. Above the porch was a bateony of fotlo columns and responds coverd with a Hat stone roof, leyond which are the three west wimbows lighting the nave. The rooms in wings probably contained timber staircases to ascend to the balcony. The roofs of all these churches were in timber, with trusses over the nave carrici on stone corbels. The recesses in the end watls show the position of uther timbers, both in nave and aisles; the suppurt of those in the aisles is not clear in De Vogiie's drawings.

In the architectural design of these chmorhes there are two characteristics to le noted: first, the extremely original treatment of details, evidently borrowed from Loman sourses, but adapted so as to constitute a new style; secondly, the acceptance of the semicirenlar arch with its archivolt monldings, hut without the logieal sequence involved in the construction of these features. The arch is rarely, il ever, constructed with regular voussoirs; sometimes it is cut ont of a single stone, as in the small church of Mombeleia, or in two horizontal courses, as in the large church in the same place; and even when, as in the wide arcale of the nare of Kall Lonzy, there are nineteen voussoirs, each voussoir is more than twice the length of its own arehivolt monding, the outer label of which projected some I inches. The entire disregard, in lact, which, in the decoration, is pail to the real meaning of the feature introdnced and the origin of its development, would incline us to suppose that masonry was constructed en blac and carved or worked down

Plan uf Duor of a Tomb in sipria.
afterward. It is only from this point of view that the eonception of the peculiar winding terminations of the labels of the window jamhs ean be understoon : which, instead of descending vertically on the sills, are earried round to an adjoining window or door, or terminate in
large circular rosaces. ln the decoration of the exterior of their apses, the Christian architects of Syria adopted very much the sime design as those of the Romanesque style of Europe, exeept that the semidetached colmms are in Syria usually in two stories, superimposed.

Stone Dunf in the Pasidica of 'Tafeha.
The object of these attached shafts (sometimes carried on corbels) would appear to have been to give support to a boldly projecting corbel table carrying the gutter, with intermediate corbels betwren.

Hany of the tombs in north Syria, especially the examples excavated in the rock, do not differ from those of loman times, consisting of porticoes in antis forming the entrance to the tomb. There are, however, many instances which only in their inscriptions and in the Byzantine style of carving show their late date, as otherwise they might be taken for small Roman temples. There is one type known in which the tomb, square in plan and built in either one or two stories, is surmounted by a lofty pyranid with small projecting bosses in the centre of each stone, giving the appearance of a pine cone. The Roman origin of these tombs is shown in the enrichments of the string courses, the door architraves and cornices, and the angle pilasters and eapitals; the pyramilal covering was probably derived from these tombs already described, at Jerusalem, to which we have assigned an Egyptian origin.

To give an adequate description of the domestic architecture of the early Christians in north Syria, whether ecclesiastical or civil, would be beyond the seope of this article, and we must refer our readers to the interesting series of drawings given by De Vogié in his Sprie Centrale. The most remarkable development is foumd in the group of honses at El Barah, all based on the same and very staple plan, consisting of two to four rooms side by side, measuring about 20 feet by 14 feet, with an areh thrown across to carry the floor of a first story, and, on the sonth side, a portico of

SYRIA

columns on two Hoors, characteristic rather of a pmblic monument than of a private residence. One of these honses, with four roms on each tloor and with a frontage of about 90 feet, had twenty-two columes to the groumd story and a similar number above, the yuarrying, working, and carring of which would cost a fortune at the present day; esprecially as capital, shaft, and hase are all carved out of the same block of stone. At El Barah, in an area of about 250 by 150 feet, as shown in De Vogizé, there are nine houses with an aggregate of one hundred columns 1:2 feet high on the ground story alune, which shows considerable wealth and revenue in these towne, seeing that these columns were not taken from ancient buildings, but specially worked for the honses in question. All these porticoes face the south, with a court in fromt with lofty walls.
'rusulers' Work: Nearly all the Consaders' churches are built out the same plan, consisting of three bays of have and aisles (the width of the aisles being about two thirds of that of nave), hoth vaulted and with flat roofs, a transept with dome on pendentires orer the crossing, and three apses in the axes of nave ant aisles respectively, circular inside and polygonal outside. They were all huilt between 1120 and 1185 . The raults are intersecting, groined vaults, built with comparatively large stones, and have transverse ribs. All the arches are pointed, including those of the windows, and all hare keystones. The external stonework is in fine-dressed ashlar. With the exception of the polygonal exterior of apses (a Byzantine characteristic), the general design is of French or Italian origin, and the mason's marks belong to these two countries only. The interiors are of the greatest simplicity: the nave arches are of two orlers, slightly recessed only, one behind the other, which, with the centre keystone, denotes Italian or Sicilian influence. The dome. or pendentive, is built on the French srstem of Périgorl and Angoumais, and the pointed barrel vault of the churches at Beyrout and Byblos, erected possibly about 1130, and that of Tortosa, of later date, are all of French arigin. The western portals are the only highly decorated portions of the churches: they hare from three to four orders elaborately moulded, and in their decoration, as well as in that of the capitals carrying them, show a mixture of French, Italian, Sicilian, and Byzautine Greek carving, the latter predominating, which suggests that the Crusaders availed themselves of the services of those artists who hitherto had morked for the llohammedans.

The churches of S. Anne, S. Mary the Great, S. Mary Magdalene, and S. James the Great, all in Jerusalem, are examples of the general type above described.

SYRIA

The churches at Beyrout, Byblos, and Tortosa have pointed barrel vaults over the nave, the aisles being covered with intersecting groined vallts, and no domes. Whether owing to the difficulty of procuring suitable timber, or to the Crusaders haring recognized the custom of the country, all the Crusaders' churches have flat roofs over the nave and aisles. The triforium, therefore, is non-existent, and the churches are lighted by clearstory windows albure the aisle roofs.

The most important example built by the Crusaders in the Holy Land was the church of the Holy Sepulchre, and as this was attached to the rotunda containing the Holy Sepulebre, and had to include additional chapels, its plan differs somewhat from other examples, but the architecture is all of the same trpe. The only portion of the exterior which has any architectural pretensions is the sonth front of the transcpt, in the lower portion of which is a douhle portal with arches of two orders and a hood mould. The hood mould is enriched with Byzantine carring, the outer order has the enshion roussoir peculiar to the Norman work in Sicily, and the stone lintels carrying the tympana (now plastered urer), and carved with figure sculpture and conventional foliage, are evidently the mork of French sculptors.

Hoslem Work. The earliest Mohammedan building in Syria of importance is the so-called mosque of Omar, the Dome of the Rock (Kubbet-es-Sakkra), built by the Sultan Abd-el-Melik in 686, over the sacred rock on the summit of Mount Moriah in Jerusalem. Though constructel partly with materials taken from more ancient buildings, the building is, architecturally, one of the most lieautiful structures in the world, being admirably adapted to its purposes, and enriched, both externally and internally, with the most beautiful coloured materials. Some of these are due to the restorations of the sisteenth century by Sultan Soleiman, who redecorated the dome, filled the windows with stained glass, relined the walls with marble and mosaic, and covered the exterior with Persian porcelain tiles. Alrcady, however, in the time of the Crusaders, it was looked upon as a most beantiful type of building, and led, after the Crusales, to its imitation in the numerons Templars' churches through Christendom. In the mosque of Ell Aksa (to the south of the mosque of Omar) Abd-elMelik utilized the materials of the church of S. Mary, erected by Justimian at the southeast angle of the Hauran enclosure, and destroyed by the Sassanian monarch, Chosroes II. The pointed arches of the nave are probably restorations of the latter end of the eighth century, but even then ther antedate by nearly a century those found in Egypt. Architecturally, the mosque has few pretensions, and is completely
overshadowed by the mjoining structure，the Dome of the Rock．The errat mosque of the Omeiyales at Damascus，built by Al Walid， 705－713，amd almost entirely destroyed by fire in 1893，owed its great fane to the richmess of the marble and mosaie decoratiuns with which the walls were covered both externally and in－ ternally．Whilst the arches of the transent mrying the central fome are slightly puinterl， those of the arcales of the triple aisles to east anl west of the transept，and of all the win－ dows，are semicircular，showing，at all evonts， that at that period the pointed areh was not abways accepted．The mostics were executed hy Greek artists sent over from Iyzantium，and as the employment of figure subjects was pro－ hibited by the Mohammedan religion，the con－ ventional representation of towns of note formed the chief suhjects ；some of them still existed on the north transept wall prior to the fire． The minarets at the southwest and southeast corners of the mosque are alditions of a much later date ；the former was built hy Sultan Kait－ bey，and is similar to the numerons examples in Cairo．The dissimilarity of the three huildings just cited，and the dearth of any other archi－ tectural structure of note，suggests that there was searcely any development of the style in Syria itself，and that it is to Cairo，Bugilat，or Constantinople that we slould look fur the original models．The Klan Assad－Pacha at Damascus，said to have heen built in the com－ mencement of the last century，has a magnifi－ cent portal，which shows the same style in its design as that found in Comstantinople due to the Seljukian dynasty．The interior，covered with nine domes or pendentives on pointed arches，carried by four central piers and their responds，is built in alternate layers of white and dark green stone．There is no earved orna－ ment of any kind，but in its proportion and simplicity it is one of the most pleasing lmild－ ings in Syria．Compared with Cairo and Con－ stantinople，Mohammedan street architecture in Syria is barren in the extreme，and it is chiefly in the interiors of the honses and the court－ yards that we find any attempt at architectural ilisplay．This，however，seems to be confined to inlays of black and white marble for the walls，aud richly painted and gilied reilings in the Persian style．In this century a singuhar rococo style has crept in with a temdency to bastard Italian work．

Burckhardt，Travels in Syrit，London， 1822 ； Cassas，Toyaqe pittoresque de la Syrrie，l＇aris， 1799；Conder，Syrian Stome－lowe，Landon， 189 ； Fergusson，History of Arehitefture， 31 ed．， London， 1893 ；Lahorde，Journey throuth Irabia Petrica，London，18：3i：Foyates on Orient，Paris， 18：8：Lewis，The Ifoly Plares wi Jeruselem． London，1888；Longfeliow，Eneyclupmedia of IVorks of Architecture in Italy，fireere，and the Lecunt，New York，1895；Patestine Exploration Fund，various pubtications and photographis；

TABERNACLE

Perrot et Chiplez，Histoive de l＇dy dans l＇An－ tiquité，Vols．111．and N．；Porter，Fiue Ferrs in Irtmuseus，Londou，1855；lienan，Jission pn Phemcip，I＇atis，18ti4；Satey，Inguge on Tome－ Sumte，latis，1stia；Strange，I＇elestine unter the Mushons，Lomdon，18：4）；Vugué，hes ésfises de la Terer－siointe，l＇aris，18（4）；Tomple le derusalem， Maram－tch－cherif，Paris，1stit；Nyrif Centrale， L＇aris．18i7；Willis．Ifrhiticturnd History of the Chewreh of the Holy sipulehre at Jomestem，Lechl－ don，1sti！；Wont，liuins uf P＇elmyra，Lonston， 17⿹勹巳？；liuins uf Danher，London，175̈；Bandeker， Ginitle to Syrite，1894；Murray，Iftmelbook，Syria， Palestine，181：2．

－R．Phené Spiers．

SYRINX．In Greek archeology，anything tubular in form ；in architerture，expecially a tumnel－shaped，rockent tomb belonging to that epoch in Lgyptian antituity which succeeded the age of the Mastaba．（Sie Egypt，Archi－ tecture of ；Tunnel Tonh，under Tomb．）

SYSTYLE．A close arrangement of ed－ umns in a peristyle，the usual systyle interco－ hmmation measuring two diameters from centre to centre of shafts．（See Colummar Architec－ ture．）

T

taA．Sanse as Paoh－Tuh．
TABERNACLE A．The portable place of worship and religious ceremonial used by the Israelites during their wanderings，as described in Exodus．

Tabervacle：Maddiscul Chitre，Norfolk－ shlie：Abolt 1 （ 60 ．

B．A house of worship，especially a build－ ing for Christian worship，but su planned and arranged as to differ from the ordinary church， as where seats for a very large congregation are provided．

C．In the Roman Catholic C＇hureh，a eup－ board with doors，or similar shrine，used for

TABERNACLE

keeping the consecrated bread. The use of the tabernacle is recent, dating probably from the seventeenth century ; the name may, by extension, be given, as in France, to the metal

Tabernacle: Lady C'hapfl, Exeter CatheDRAL; C. 1250.
From this and the Kiddington example figures hare been re. moved.
rase or hollow dove used for the same purpose, or even the suspended 1 Px , when made decora-

Taberancle
Kiddingtun Cherch, OxfordSHIEE; C. 1450.
tive in itself and kept permanently in sight. (Compare Peristerium.)
D. A decoratel recess, as a niche, or a framed space (see Tabernacle Frame), especially

TABLE

when filled with figures of religions or ceclesiastical character. In this sense, any one of the niches with statues of saints, in a medieval chureh poreh, or the eanopicd open part of a pinnacle, as in Reims cathedral, or the Eleanor Cross at Northampton. (See cut.)
tabernacle frame. The frame for a duor, window, or other opening, when treated as a complete design with columns or pilasters and an entablature, and also, when the opening is high in the wall, with an ornamental pendant below the window sill. Also a similar frame for a permauent work of art. (See Tabernacle, D.)

Tabernatle: Qtefy Eleanor's Cross at Northamptun; 12e4.

TABERNACLE WORK. In medirval arehitecture : -
A. An arcalde or series of niches, highly decorated, with jamb shafts supporting carred overhanging canopies, and containing corbels for the support of figures or grouls of figures.
B. By extension, auy combination of delicate ornamental tracery, such as is peculiar to canopies of tabernacles, whether applicd to choir stalls, sedilia, altars, ciboria, or any other fixtures of a church, or to furniture and ressels, whether in wood, stone, metal, or fine jewellery. (See Canopy: Niche; Tabernacle.)

TABLE. A. A flat, distinctive, rectangnlar surface on a wall, often charged with inscriptions, painting, or sculpture ; if raised, it is called a raised or projecting table; if rusti-

TABLE STONE

cated in any way, a rusticated table; if raking, a raking table, etc.
B. A string course, or other horizontal band of some size and weight. (Compare Corbel Table, Skew Table, below.)
C. In medieval architecture, the frontal on the face of an altar ; the painted or carved panel behimi and over an altar. (See lietable.)
D. A slab set horizontally and carried on supports at a height of from 2 to 3 feet. In architectural treatment especially, (1) That used for the commmion service when for any reason the altar is not in use, as at the time of the Puritan revolution in England, and as kept in usage by many seets of Cluristians; called Communion Table; Holy Table. (2) One of those used by the wealthier people of Roman antiquity for out-of-door service, composed usually of a slab of fine marhle set upon carved marble supports. (See Monoporlium.) (3) One of those used in modern times for ormament rather than for use, as in the halls of the litti Palace at Florence, the tops of those heing composed of great slahs of Florentine mosaic, or of some costly and rare natural material, such as one which is entirely of lapis lazuli, and one which is vencered with malachite; the frames of these being of carred and often gilded woor.

Earth Table. The lowest course or courses of a stone wall visible above the gromm, especially when forming a projecting member for the purpose of a water table. (Called also Lerlgement Table.)

Grass Table. (Same as Earth Table.)
Ground Table. (Same as Earth Table.)
Ledgement Table. A band or belt course, usually moulded, especially one carried along the lower portion of a buikling, and which projects so as to form an Earth Table.

Skew Table. A stone set at right angles to the coping of a gable wall at its foot, and built into the masonry, to prevent the coping stones from sliding, and to serve as a stop for the eaves, the gutter, ete., of the side wall. When it projects, corbel-wise, beyond the angle of the builting, it is called a Skew Corbel. The terms Kneeler and Summer Stone are also used, no perfect distinction being preserved.

Water Table. A string course or other projecting memher, with a weathering, and otherwise so devisel as to guide water away from the face of the wall.

TABLE STONE. (Same as Dolmen.)
TABLET. A. A small slab or panel, usually a separate piece, set into or attached to at wall or other larger mass, usually intended to receive an inscription.
B. A horizontal coping or capping of a wall, smetimes palled Tabling.

TABLING. (Same as Coping.)
TABLINUM. In Foman architecture, a

TAIL TRIMMER

room, generally at the firther emd of the atrium, in which were kept the lamily archives recorded upon tablets. Applied by modern archaologists to a large and very oper room in a Roman house comected with the atrium, ami often serving as a passage from it to the peristyle or garien. (See House.)

TABULARIUM. At Rome, a building of the time of the Republic stauling on the extreme sontheastern edge of the Capitoline Hill. The upper stories have been replaced by the Palace of the Senator, but the lower stories remain almost maltered. The builing must have had one high story on the side of the Capitol, where is now the syuare of the Campidoglio, and two high stories crowning a very lofty basement on the side toward the Formm.

Tablet in the lon der Linde House; StorkHOLM, SHEDEN.

TADDEO GADDI. (Sce Garki, Taddeo.)
TAENIA. In a Doric entathature, the fillet which separates the frieze from the architrave.

TAH. (Same as Paoh-tah.)
TAIL. A. The exposed part of a slate or tile in roofing.
B. (Same as Tailing.)

TAIL BAY. (See Case Bay.)
TAIL BEAM. (Same as Tail Piece.)
TAILING. That portion of a projecting stone or series of stones, as in a cornice, which is built into the wall, and which, by its superior weight, is intended to prevent the stone from toppling over.

TAILLOIR. In French, the Abacus of a capital.

TAILPPIECE. A short joist or rafter fitted into the Healer. (Sce also Trimmer.)

TAIL TRIMMER. In flow framing, a trimmer, set clear of the brickwork of a chimney and parallel thereto, to receive the ends of the floor joists, thus avoilling flues.

TAJ MAHAL

TAJ MAHAL. At Agra in India, a tomb built in the sevententh century, of great size and of the most elaborate and refined design, especially in the details. It is a typical building of the Moslem style in the fir East. (See India, Architecture of.)

TALAVERA, JUAN DE; sculptor.
In $1 \bar{y} l \mathrm{t}$ he was cmployed on the decoration of the cathedral of Toledo (Spain).

Vinaza, ddiciones.
TALAYOT. (See Bulearic Islands, under Mediterranean lalands.)

TALENTI, FRANCESCO; architect and sculptor: 1l. after 1369.

The Talenti cane from Ponte-a-Lieve, near Florence. Francesco is mentioned among the sculpturs working on the Duomo of Orvicto in 1329 (Della Vralle, op. cit., p. 272, doc. XXIV.). His mame next appears in an inventory of marble for the campanile of the Florentine eathedral, dated 135l. This marble was for four windows. The three upper stories of the campanile are probably his work. (See Giotto and Audrea da Pisa). He is last mentioned in the records of the campanile in 135\%. May 29, 135\%, Talenti was commissioned to make a model for the cathedral (S . Maria del Fiore), which should determine the position of the windows of the nave. At this time it was decided to make the four raults of the nare sinare instead of ohlong, as lesigned by Arnolfo di Cambio, thus increasing the length of the nave to its present dimensions. In 1358 Giovami di Lapo Ghini (sce Ghini) was associated with him as capomaestro. Dee. 20, 1364, Talenti was discharged, but July 22, 1366, appears again in a position subordinate to Ghini. His salary was stopped in 1369 , which is probably about the date of his death. The nave was then nearly completed. (For the history of the cathedral at this time, see Ghini, Giovanni di Lapo.)

Guasti. S. M. del Firme; Del Moro, S. M. del Fiore; Rohanlt de Fleury, Toscone: Della Valle, Duomo di Orvieto; L. Runge, Gluckenthurm zu Florenz.

TALENTI, SIMONE ; sculptor and architect.

The son of Francesco Talenti (see Talenti, Fr.). He assisted his father at the Duomo (Florence), and in 1366 presented a model for that building. In 1:35 lie succeeded Francesco Salretti as copomciestro of the Duomo. In 1376 Benci di Cione (see Benci di Cione) was associated with him, and ther, with the assistance of Taddeo Fistoro, designed and began the building now called the Loggia dei Lanzi (Florence). In June, 1377, the three architerts were superseded both at the Duomo and the Loggia. Talenti afterward returued to the Loggia anil executed all the carvings on the piers and brackets, finished Nor. $29,1379$.

TAPESTRY

(See Logrgia dei Lanzi for the common attribution.) About 1378 Simone filled in the lower areles of Or S. Hichele (Florence), aud decorated them with tracery.

Karl Frey, Loggia dei Lanzi; Guasti, S. M. del Fiove.

TALL BOY. A chimney pot of long and slenter form, intended to improve the draught by lengthening the flue.

TALMAN, WILLIAM ; architect; d. probably about livo.

His principal work was Chatsworth House in Derbyshire, Englanl, built, in 1681, for William Cavendish, Earl, and afterward Duke, of Devonshire. He built Thoresby House (16il, burned before 1762). In 1694 he was appointed by King William 1II. comptroller of the works in progress at Hampton Court. Sir Christopher Wren (see Wren) was surreyor at Hampton Court at the same time, and was much disturbed by Talman's interference.

Blomfield, Renaissance in Enyland.
TALON. (Same as Ogee.)
TAMBOUR. A. Same as Drum, as of a cupola, B.
B. Same as Bell, as of a capital.

This is the French term often used in English: the original signifies also a drum of a cohumn.

TAMIL. Same as Dravidian.
TAMP (r.). To ram an earth surface, so as to harden it and form a floor, or the bottom of a treuch to make it fit to receive foundations.

TANK. A large ressel, reservoir, or cistern, of wood or metal, intended for the storage of a fluid, usually water. (See Plumbing; Water Supply.) - VI. F. G.

Supply Tank. (See under Cistern.)
TAP. A. A fancet or cock through whicb lipnor can be drawn from a tank or cask. (Fare in the United States.)
B. A steel screw bolt, the threads of which are cutting edges, used to screw into the smooth hole of a nut to form an internal or female screw therein.

TAPER. The slope or diminishing of a spire, or of a conical or pyramidal roof. Also the diminishing of a shaft of a columu; but as this is very nearly always curred, it is not often called Taper. (Sce Entasis.)

TAPESTRY. A fabric made by a process somewhat milike wearing : and, therefore, not a textile fabric. It is used for wall hangings. Anciently it was the most arailable corering for the stone walls of halls and chambers of a strong castle or other residence of the nobility, and was usually hung from tenterhooks by means of which it was suspended at a distance of at least some inches from the face of the masonry. It was often allowed to cover the door opeuings in such a way that even when

TAPIA

the door was thrown open the person entering had still no view of the interior, a parting or division between two pieces of tapestry alone serving as the entrance. In molern times, tapestry is used only fir its heaty of surface, and is too often stret-hed upon frames, pirtly on accomt of the small size of mokern romes, and their crowl of furniture and other oljects, and partly on account of the molenn taste for extreme aceuracy and smoothess. This practice is, however, ruinons to the best effect of the material.
tapia. A material like Pisé nsed in many parts of Spanish America. A superior kind has lime mixel with the fat earth; this is sometimes called T'apia Real or Royal Tapia.
taproom. In Great Britain, the same as Barroom, as being the place where liquors are drawn from the tap.

TAR. A product formed by the destructive distillation, mainly of resinous wools, extensively used, in combination with gravel anl paper, as a watertight roofing material ; or, alone, as a damp-proof course.
TARISEL (TARISGEL), PIERRE ; architect.

Maitre dreunre (architect) of the rity and eatherral of Amiens (Somme, Framce). In 1470 he designed the tower of La Haye at Amiens, and in 1479 plamed the new line of fortifications of that eity. In 1483 Tarisel male the great altar of the eathedral of Amiens. He designed also the main portal of that eathedral and the central window.

Nodier-Taylor-Cailleux, V"yages; Picurdie, v. 1 ; Jourdain-Duval, Iortail de la Cuthédrale d'Amiens; Bauchal, Dictionnaire.
taRkiber. (See Gravestone.)
tarras. A. An ancient spelling of Terrace.
B. A strong cement formerly used in hydranlic engineering.
TARSIA. The Italian inlaying of wood, usually light upon dark, eommon in the fifteenth century. The patterus were usually Renaissauce scrollwork and arahesques, but also eurious pietures with perspective effects were introlucell into the larger pawels. (See Inlaid Work.)

An imitation of the inlay was very commonly made by painting, as in the celchrated euphoards of S. Maria delle Grazie at Milan, known as Lo Scatfitle, which have been well reproluced in a book hearing the same title.
TARTARY, ARCHITECTURE OF. (See Turkistan.)

TASMANIA, ARCHITECTURE OF. The native iuhabitants, now extinet, were savages of the same type as those of Australia, and had no buildings, not even roofed and walled huts. The white inhabitauts are as yet less than 200,000 in mmber, nearly all of British

TAVERN

deseent, and have erected no buildings of impurtance. The eathetral of Port Arthur, the alandoned ronviet station, has gone ahost entirely to ruin. This was one of the few stone builtings on the islanu, lout it was almost devoid of architectural interest. The motel prison, at the same pint, was ofren, low in the walls, a mere series of ntilitarian buildings. The towns of Hobart and Lameeston are of about 20,000 and 30,000 inhahitants respectively, ant in spite of excellent roads and much comfort in the better classes of dwellings, little of architectural interest is to be found. The free settlers are of but recent arrival, and there has not yet been time for that development of interest in decorative treatment of a town which, unless in the rare case of individual enterprise taking that direction, is necessary to growth of lecorative art of any kind (compare Australia). There are, however, a partiament house and a city hall in Hobart; and a momument to Sir Jolun Franklin, who was at one time governor of Tasmania, stands in the square. In earh of the towns named there are ehurches of different sects. - R. S.

TASSEL. Same als Torsel.
TASSO, GIOVANNI BATTISTA DEL; woolworker (intarsiatore) and arehitect; b. 1500 ; d. May \& , 1555.

Battista belonged to a famous family of wool earvers which flourished during the fifteenth and sixteenth centuries in Italy. He was a prolégé of Pier-Francesco Riccio, majordono of Duke Cosmo I. dei' Merliei, and was much employed in the improvement of the Palazzo Vecchio. There is a ceiling ly him in the second story of the palazzo on the side toward the Uttizi. The curious door which he built for the chureh of S . Romolo is preserved by Ruggieri (op. eit.). His most important work is the loggia of the Mercato Nnovo of Fhenence, which was begun by the order of Duke Cosmo 1., Aug. 26,1517 .

Itans Stegmann in Geymiiller-Stegmanu, Die Arch. der Ren. in Toscona; Ruggieri, Studio d'Arrlitettura.
tatti, Jacopo. (See Sansovino, Jaеоро.)

TAURISCUS OF TRALLES.

Apollonios and Tanriseus of 'Tralles made the group of sculpture called the "Farnese Bull" at Naples.

Collignon, Mistoire de la Sinlpture Crecque.
TAVERN. A. A pullic house: properly such a house usel for temperary visits only and for the sale of wine anl other refreshments, exclualing eooked food.
B. By extension, a small inn of any sort.
C. Formally, or locally, in Great Britain, a small shop at the front of a house, either on the gromd floor or in a cellar, and usually not communicating with the rest of the building.

TAYLOR

TAYLOR，ISIDORE JUSTIN SEVER IN：baron ；French author and artist；b． 1789 （at Brussels）；1．1879．

Taylor Was the son ut an Englishman natural－ izerl in France．He was educated in Paris，and in 1811 begran his artistic woyages．He served in the anny in 1813 ，and was commissaire royml at the Theitre Francais in 18゚2t．In 1838 he was ereated inspecteur fénérel des bectur asts．He travelled extensively in Eu－ rope and the Liast，and pablished a series of monumental thnographical works，the most important of which is the Joyuges pittorespues et romantiques de loancienme France（Paris， $18: 0-1863, \because t$ rols．folio）．This work was never finishet．The immmerable lithographic illustrations are extraordinarity fine，drawn by Isabey，Géricault，Ingres，Horace Vernet，Fra－ gonarl，Viollet－k－Due，Ciceri，Duzats，and Baron Taylor himself．In the editorial work he was assisted hy Charles Nodier and A．de Caillenx．He puhlishen Voyuge pittoresque en E゚spatue，en I＇ortugal，etc．（l＇aris，18：6－ 183：， 3 rols． 4 to）；ぶ！rie．l＇Et！！pte，la Pulestine et lu ．Tucké（Faris， $1835-1839,3$ vols． 4 to ）： Péterinute dt Iérusalem（Paris，1841）：To！ age en sucusse（Paris，1813）；Les P！rénées （Paris， 1843,8 vo）．

Larousse，Dictiomuive．

TAYLOR，GEORGE LEDWALL；archi－ tect ；h． 1780 ；I．April， 1873.

In 1817－1819，and again in 1857－1868，he visited France，Italy，Greece，aml Sicily．June 3,1818 ，he discovered the monumental lion which commemorates the hattle of Chaeronea （ 338 в．c．）．Taylor published numerous archi－ tectural works，and is best known by his Auto－ bingrophe！，which contains descriptions ans］ ilhstrations of mamy important momments．

Taytor，Autobiogrophy of an Octogenarian Ar－ chitoct．

TAYLOR，SIR ROBERT；sculptor and architect；b．1714；1．Sept． 97,1788 ．

The son of a stome mason of Lomlon．He visited Rome，and on his return executerl，among other works，two momments in Westminster Abbey，a statue at the Bank，and the sculpture of the petliment of the Mansion House，Lombon． He had a large practice in England，and suc－ cended James Stuart（sce Stuart，J．）as surveyor of Greenwich Hospital．

Redgrave，Dictionary．
TAZZA．A vase having the form of a flat and shallow cup，with a high foot or stand． The term is applied to the basin of a fountain when supported by a billar：and some fomm－ tains lave two，or even three，tazzas，rertically arranged，and growing smaller as they asceud．

T BAR．（See special nown．）
T BEAM．（See spectial nom．）
TCHISH．The klamath term for settle－

TELESTERION

ment，camp，wigwam，lodge，village，town． （See Latchash．）

TEAGLE POST．In timber framing，a post supporting one ent of a tie－beam；that is to say，one of the lower angles of a roof truss．

TEBI．In Egyptian huilling，brick made of the mud of the Nile，mixed with fragments of pottery，chopred straw，or the like．（See Brick，n．）

TECASSIR．In Mohammedan architecture， a gallery in a mosque，especially one for the use of women．

TECCIZCALLI．（See Calli．）
TECPAN．The Aztec（Nahuatl）council house，or otticial house．－F．S．I）．

TEDESCO，GIROLAMO．（See Girolamo Tedesco．）

TEE（adjectival term）．Having the shape of a capital T．Compound terms legiming with this word are used to describe many ob－ jects，of which sometimes only the section suggests the capital T．The same fancied re－ semblance has caused the use of the worl，sub－ stantively，for the Burnese royal symbol， generally appearing as a crowning omament，as upon the spire of a lrgorla．

TEEPEE．Same as Tipi．
TEE SQUARE．（See under Square．）
tegula．A tile；the Latin term，and used in English for tiles of unnsual shape or material，such as the marble tiles of some Greek temples．（See Tile amb subtitles．）

TEL．A mound；the modern Arabic term， which enters into many eompound names of sites，as in Egypt and Mesopotamia．（Also written Tell．）

TELAMON（ pl ．TELAMONES）．A male statue serving to support an entablature，im－ post，corbet，or the like，and forming an impor－ tant part of an arehitectural design．Telamones are generally considered the same as Atlantes， which word is more usual in classical archecol－ ogy．In the chaborate architecture of the eighteenth century，half figures of men，usually bearded，and of exaggerated muscular develop－ ment and extravagant pose，are usel as sup－ ports of porthes，ant the like．The name ＂telamones＂may be extended to apply to these．

TELEPHONE．（See Electrical Applamees．）
TELESTERION．A place for initiation； especially the temple at Eleusis，in which were held the initiatory rites to the Elemsinian Mys－ teries．The builiting wats of umsual character for a Greek temple，having twelve columns in the front，the only dolecastyle portico known in antipuity；and the interior was hyonstyle， with forty－two columms in six rows．Seats cut in the rock were arranged on all four sides of the builling．The interior measured almut 170 by 175 feet．The manner of its roofing and lighting is not known．（Compare Thersillium

TELFORD

and the Zeus temple at Akragas, described under Sicily, for Grecian halls and interior arehitecture.)

TELFORD, THOMAS ; engineer ; b. Aug. 9, 1750 (in Scotland) ; d. Sept. 2, 1534.

He was apprenticed to a stone mason, and in 1780 went to Edinburgh. After 1782 he was employed on Somerset liunse in Lombun. Between 1795 and 1805 he constru'tell the Ellesmere canal, with its great arduednct, and letween 1773 and $18: 23$ the Caledonian ramal in Soutlaml. He made the rouds in the highlands of Scotland, with abont twelve humbrel bridges. His name is assoriated with a peculiar form of pavement for roads.

Rickman, Life of Telform.

TELLTALE PIPE. A small overflow pipe, attached to a tank or cistern, to show, by dripping, when the receptacle is full.

TEMANZA, TOMASO; architect, and writer on architecture; b. 1705 (at Venice) ; 1. 1789.

The son of an architect, a nephew of G . Scalfarotti, and a pupil of Niscolo Cunini and the Marquis Polen (see Poleni). In 1726 he entered the commission of engineers at V'enice, of which he became chief in 17t2. Among the few buidings constructed by him are the chureh of S. Maria Maddalena in Venice (Cicognara, op. cit.), the façarle of Margherita at Padua, and the Rotomdo of T'iazzolo. He is best known by his books: Dell stutichitè di Rimino, libri due, treterolta di Antichi itscrizioni (Venice, $17+1$); Dissertuzione sopra l’antichissimo teriturio di Sant' Mrerio uellu dioresi d' Oliceto (Venice, 1761, folio); I'ite de' piu celebri urchitetti e scultori Venaziumi che fiorirono nel secolo rlerimosesto (Venice. 17Ts, folio): Anticu pionta rlel inclite cittre di Venezia delineata cire la metu del NII. serolo, etc. (Venice, IT8l, tto). The Derli Archi e delle volte, etc., was not pulbished until 1811. Temanza's lite is one of the most imprortant books of its class.

Comolli, Bibliogratia Storico-rritica; Paoletti, Rinuscimento: Larousse. Dictionnaire; Cicognara, Fubbriche di reneziu.

TEMASCALE; TEMAZCALLI. A little alobe hut, built by Indians in Mexico as a Sweat Lorge. - F. S. D.
temenos. In Greek antiquity, a piece of ground specially reserved and enclosed, as for sacred purposes, corresponding nearly to the Latin templum in its original signification. In some cases the temenos contains but a single shrine, or temple, in the molern sense, while in others, as in the celebrated cases of Olympia and Epidauros, many important bulllings, including several temples of considerable size, are arranged within the endrisure. (See Delubrum.) Cut, column 75\%.

TEMPERA

TEMPER. A. To mix, moisten, and knead clay, so as to bring it to proper consistency to form bricks, pottery, terra cotta, etc., preliminary to hardening by tire.
\dot{B}. To bring a metal, as steel, to a proper degree of hardness and elasticity, by alternately heating and suddenly cooling the metal, its colour, by those processes, gradually changing from light yellow to dark blue, the metal becoming harder at each starge.
C. To toughen and harden glass by plunging it at a high temperature into an oleaginous bath, muler the process invented by M. de la Bastie, or by heating and sudlenly cooling it, according to the Siemen process.
D. To mix and knead lime and sand and water, in such proportions as to make mortar for masonry or plastering.

TEMPERA (L. temperare $=$ to mix in due proportion).

A water-colour process. It is also called in these days Kalsomine (which see) or Calcimine. The medium is water mixel with some binding substance, such as the white and yolk of egg, or the yolk alone, gum tragatanth, glue, honey, glycerine, milk, or the like. Unless mixed with, or protected by, some insoluble material, it is not suited to surfaces exposed to moisture. The Egyptians used tempera both on the outside and inside of their buidlings. It was the national method. The Greeks and Romans occasionally used it for interior decorations, and very frequently in combination with other processes. For instance, the anthor's investigations have led him to the conclusion that the ground of the panel or mural painting was often true fresco, and that the applied ornament or figure composition was in tempera. Tempera was much employed by the medieval artists for the interior decoration of buillings, and occasionally by the Renaissance painters, whose process peir excellence was fresco, thongh all retonches in this latter moress were made in tempera. Jt is much used in morlern times. (See Kalsomine.) The Italians use it to-day on the exterior of buildings, the milk with which the colour is mixel preventing its dissolution. Sometimes a touch of oil or a little ghe is mixed with the first coat, but the last coat is generally a simple mixture of milk, water, and colom: If these eoats are applied to fresh plaster, so much the better. (See Fresco Painting.) For the special fualities of milk as a medium the reader is referred to Casein. Cennino Cennini, who is the monthpiece of Ciotto's followers, gives two recipes (preferring the latter) for tempera on interior walls: (1) the colours to be mixed with egg and the milky juice of the fig tree: (2) the eolours to be mixed with the yolk of egg alone. All water-colour paintings, if protected from moisture and sunlight, are relatively durable. They

TEMPERATURE
fade slightly if exposed to an excess of light; but, on the other hand, they do not darken, as oil or varnish paintings darken, with time. Morcover, they have a dearl or Hat finish. Dampness, of course, is fatal to them. They

TEMPIO MALATESTIANO

(See Thermostat ; Temperature Regulator ; both in the article Electrical Appliances.)

TEMPERATURB REGULATOR, ELECTRIC. (See Electrical Appliances.)

TEMPIETTO. In Rome, a small circular

Temenos at Epidalrus: the Boundaries hate not been determined throughout; the Stadium was outside the Sacred Exclosure.
cannot be washed, and for that reason are not suited to walls requiring constant cleaning. (Also called Distemper.)

- Frederic Crowninshield. TEMPERATURE, REGULATION OF. 755
building designed by Bramante, and erected in 1502 . It stands in the cloister court of S . Pietro in Montorio.

TEMPIO MALATESTIANO. The church of S. Francesco, the cathedral, at Rimini, on

Tit

TEMPLATE

the east coast of Italy ; an ancient Gothic church which was altered by Leon Battista Alherti at the command of the lords of Malatesta, who governed the district. This was one of the earliest pieces of work done under the classical revival; for Alberti umbertook to cover the old building with detail studied from the antigue, and began the erection of a west front

TEMPLE
not ordinarily applied to buildings erecten by Christians (but see definition B) nor by Mohammedans ; by the modern Jews it is used in a somewhat special sense, as part of a proper mame, given to an individual synagogue in conmection with other words usually of Hebrew origin ; as the Temple Beth-El in New York.
B. A building erected for Christian worship

Temple, Fig. 1: that uf Khunsu, bullt by Ramses ili. at Karnak; the Hypethril Coert.
studied from the Roman triumphal arch at Limini.

TEMPLATE. Same as Templet.
TEMPLE, THE. In London. (For Inner Temple, Middle Temple, see Inns of Court: see also Temple Church, and Chureh, col. 568.)

TEMPLE. I. An edifice dedicated to the service of a deity or deities: more especially a buikling used for such purposes as worship and the performance of sacred rites, or the keeping of objects of reneration. The worl is
other than that especially recognized hy or prevailing in a given state ; as especially in France, a place of Protestant worship, and in England, in the sense of a proper name, nearly like the usage of the molern Jews mentioned ahove, especially a builling of the nonconformists or dissenters, and intemled to receive a large congregation. (Compare Tabernacle.)
C. An establishment of the Knights Templars; a mediseval and modern term replacing the full title of commandery or pre-

TEMPLE

ceptory ; especially in Paris, the important establishment, some of the buiklings of which remaned matil after the French lievolution. In this sense, in French history, the temple Was the huilding used as the prison in which King Lonis $\mathrm{Cl}^{\prime} 1$, and his fanily were confued. (For other places of worship, see Chapel ; Church; Synagroguc.)

Generul. In most languages the tomple bears a name indicuting that it is the dwolling place of the deity. The word templum (derived from the same root as the (rreek temenos, i.e., cut oft or seprated) was, with the Romans, originally used to designate the space of earth and sky marked oft loy an angur for divination. Later it was used of consecrated spaces generally, and it was probably not till the end of the republic that its use as applied to the house of a goll (superseding the ofler cudes or cedes sacra) became general.
sacred rites, it is thought by some writers to have also been in early times a fortress in which the god and his people defended themselves against loes who songht to conquer the comntry and destroy the local deity, Throngh the conservatisn so characteristic of the Egyptians, its defensive character was maintained even after the consolidation of the empire had checked local wartare, and after the establishment of a national pantheon had placed the temples of the goils beyond frequent danger from attack.

As a typical plan of an Egyptian temple we may take that of the south temple at Karmak. Olten, as in this instance, a great ceremonial gateway (see Vol. I., M. XXX.) domimated the approach, while beyond a roadway, flanked by rows of sphinxes or of images of the temple's sacred amimal, leal up to the real entrance of the temple. Sometimes the avenue of sphinxes

Temple, Fig. 2: that of Neptunf at Pertirm: Gection showing Two Suuried Culonsades Dividive NAus.

The temple is common to religions which have reached il certain stage of alvancement, having generally passed beyond the worship of natural objects and reached a point at which an innage of the grod neerls the protection of walls aud a roof. Thus the Cultos image is the raisone dietre of the temple.

The religions ceremonies of the ancients were largely centred aromed the altar, which, although it was not within the temple, was of more moment to them than the image of the got. Thus a temple is not necessarily a place of public worship, many temples being open to the priests only. In providing for the neets of both worship and ritual, a temple generally has, first, either in or near it, a place for the meeting of the womshippers (as aromul the altar in the Greek and Roman temple or in the great forecourt in the Egyption temple) ; second, an important chamber (as the naos of the Greek or the hypostyle hall of the Egyptian temple) ; third, a sanctuary, adytum, or holy of holies.

Eggypt. While in Egypt the temple was always a place suited to the performance of
terminated in obelisks which stood before the wall which enclosed the temple proper. The front of this wall consisted of two colossal pylons or wide towers, each with its four sides sloping slightly inward and crowned by a characteristic comice, made of a roll and a great hollow moulding. The passage between the towers was narrow, and, being fitted with a woolen door, plated with metal, it was easily defended. There were also, as a rule, some small posterns piereing the great wall.

Passing between the pylons, one entered a courtyard enclosed by the temple wall and colomarled on two or three sides. This part of the temple is called the hypiethral court. It was withont a roof except over the colomatles. (See Fig. I., though this is of a much smaller court.) Beyons the courtyard one reached the hypostyle hall, architecturally the most imposing part of the temple. Its roof was carried by many columns. Light was admitted by a clearstory, or, in later times, over a low screen wall between the columns of the front. (See Vol. L., pl. NXXI., for the exterior

TEMPLE

of a hypostyle hall and the screen wall.) Beyond the hypostyle hall lay the sanctuary, the part of the temple of greatest religious signifieance. Within it was a rectugular structure, serving in some eases as the eage of the sacred amimal, and in others to contain whatever other objeet was supposed to be the ineorporation of the got. The sumetuary was more or less surrommed ly chambers, generally dark, whieh served as storerooms for firniture,

TEMPLE

a gate directly opposite the pylons. Sacred ways, flanked by sphinses or amimals, led from one temple to another or to the Vile, where barks for the service of the temple or of the deal were moored.

The Egyptian temple seems always to have been regarded as open to additions. Its growth was gradual. The temple with the normal plan is seized upon by a new king, who couverts its courts into covered halls,

Temple, Fig. 3: that uf Neptuxe at Pestum; see the Section, Fif. 2.
sterel garments, processional objects, stamlarels, and the like.

The inner walls of the temple, from pylon to sauctuary, were atorned with scenes representing religious ceremonies. The front walls of the pyluns were sculptured with scenes of vietory over the enemies of the king and of the goul. The walls and their somputure were generally covered with fine flaster aml finished in brilliant colours. The sacred enelosure, whieh frequently eontained groves, lakes, and the dwellings of the priests, was surrommed oceasionally by a wall, and more frequently by an earthwork, the only aceess being through
buills new courts before the old, new pylons in front of all. Another sovereign repeats the process, until at length we have vast areas covered with buildings, as at Luxor and at Kamak.

There were some departures from the typical plan, and among these the most marked were temples exearated from the mountain side, as that at Ipsamboul, with its colossal, seated, roek-ent figures guarding its entrance; or those others partly built upon the plain and partly within the mountain, as that at Deir-elBahri, where the temple stands on a series of terraces. The plans of small temples are quite
variable. At Elephantine there is one of unusual beanty, the plan of winich, a cella surroundect by a colomiade, strongly suggests the Greck type. (See Eeypt, Arehitecture of.)

Mesomelcméc. The phain of the Tigris and Eophrates, simmar in many ways to the valley of the Nile, proilued, however, a temple system strongly in contrast with that of Egypt. In Erygt the temple overshatows in impertanes all uther structures. In Mesupotamia it is the palace which puts the temple in a secondary place. The temples of Egypt, built for the most part of enduring materials, are so well preserved that our knowledge of them is almost complete. In Nlesopotamia the temples, built as a mule of monnt loricks, have melted into shapeless momme. In spite, how-

Temple, Fig. 4: the Erechtheum at Athens; containing at least Three separate Shrines. Hexastyle Ionic Purtico partly indicated by the 'lhree Pokticoes; TetRastyle Iusic Portica with Two Culumis in ketyrn; And beluw, Tetrastyle Purticu of Caryatides with Two Figéres in return.
ever, of the unfarourable condition of the ruins, we have learned from them, and from ancient reliefs and texts, certain fundamental facts. C'ertain Assyriulogists maintain that the plaininhabiting races of Mesopotamia regarded their gods as mountain-horn and as dwellers upon mountain tops, and that, therefore, in erecting dwelling places for them, they sought to reprodnce their mountain homes. Certain it is that a mounl of earth was piled up and formed into a terrace for the temple, which, both in Babylonia and Assyria, took the form of a siquare tower, known as the zikkurat, which rose in successive stages, forming a stepped pyramil. (See cut under Mesopotamia.) This tower was ascended either ly steps leading from story to story, or by an inclined way running around it, by which access was had to

TEMPLE
the platform at the top, where stood, according to Herorlutus, a mystic shrine, the dwelling place of the gud. Hugeness and especially height were the criteria of excellence in the zikkurat. The mumber of stories varied. Three or four were usual, but in some cases there were seven. The monnd grew by accretions, a new ruler mising it to form his terace at a level higher than those of his predecessors, a method clearly demonstrated in the excarations of the temple of Bel at Nippur. While the mass of the zikkurat was of umbaked brick, one or more of the outer wall faces were generally of bumed bricks, while in some cases enamelled bricks of yellow and blue were used for facings. Within the temple there seem to have been certain chambers. At Nimroud two temples have been found showing a long hall and is small room containing the statue of the god. This was the Papakln, the most sacred part of the temple, to which but few harl access. One of these temples had, in addition to these two chambers, a small liall in front of the larger, and thus we have the usual threefold division. Within the temple area were smaller shrines, and in front of the zikkurat was a large open space where the faithtul congregated. Sacrifices were offered, not at the top of the tower, but on altars at its base. Clustered about the temple were dwelling places for the priests, schools, olservatories, halls of jurgment, and other buildings. (See Mesopotamia, Architecture of.)

Phomicia. The Phœnicians, who carried the arts of Egypt and Mesopotamia to all the shores of the Mediterranean, were undoubtedly builders of great temples. So scanty are the actual remains, however, that we can do scarcely more than approximate the general type. There is sufficient evidence to show that a monumental enclosure surrounded a great platform (as at Baalbec), on which stood a sanctuary. Of the sanctuary itself, our knowledge, derived chietly from certain medals, is very slight.

Judcea. The architecture of ancient Judrea was Phœnician in character. The temple of Solomon was largely of Phœnician workmanship. Its actual remains are most scanty, consisting of certain foundations, the megalithic aspect of which recalls similar work at Baalbec. Among the many restorations of the temple based upon Bihlical texts, great discrepancies exist. None of them bear such an air of inherent probability as to be really conviucing. From the texts it is easily seen that the Temple of Solomon hat an entrance $l^{1 o r c h}$, a rectangular chamber lighted by narrow windows, and called the holy fart, and a cubical sanctuary, the holy of holies. All these, excepting the porch, were surroumiled by many small chambers, three stories in height, apparently in the
PLATE XXVII

TEMPLE

TEMPLE

thickness of the exterior wall. Although the arrangement of the plan is char, the mamer in which the exterior was treated is not known.

The very detailes description of the temple seen by Ezekiel in a vision is partly a memory of the earlier structure and partly a fabrie of the imagination. Ezekiel shows us a temple with surroundings far larger and more complete than those of the earlier temple. The temple as actually reconstrueted by Zerubbabel was certainly less splendid than that of Solomon, but was probably larger.
consisting of a douhle enclusure, of the hearth or altar, have reeently been diseovered. Their plan is closely similar to that of Greek houses of the Homeric age, where the hearth had a sacred character. (See l'ersian Architecture.)

Greece. The plauning and construction of Greek temples haring been so fully discussed in other articles (see Greciau; Greco-Roman ; Grecee, Architecture of ; Roman Imperial) the origin of the temple anong the Greeks ann the relation of its parts to their worship will alone be consilered here.

Temple, Fig. y: that uf Vesta at Tivoli; Restoration of J. A. Levell.

Of the temple built by Heror on the site of Solomon's temple, several ancient descriptions exist, throwing some light upon it and much upon its surroundiags. The state of the evidence, however, is not such as to allow a plan of the temple itself to be made with certainty. Its architectural treatmeut was influeuced by the use of classic orders. (See Syria, Architecture of.)

Persia. The ancient Persians were both star and fire worshippers. Remains of a staged tower similar to those of Mesopotamia have been found at Djour, and sanctuaries for fire worship,

From the earliest times there seem to have been plots of land in Greece set apart for certain deities and consecrated to their uses. A sanctity was associated with caves or momtain tops or groves of trees. Even the Mycencean age reveals no strueture which is ilefinitely a temple, although such an arrangement as the Negaron of the jalace at Tiryns, a poreh preceding a room containing a hearth, was undoubtedly the arehetype of the Greek temple, the simplest forms of which approximate it closely (sce plan of amphiprostyle temple, under Columnar Architecture). Though Homer makes some slight mention of the temples
of the gods, he gires no description of them as he does of the palaces of his heroes, whom we see sacrificing unou the altars in their forecourts. Inteed, it is highly imprubable that such structures as we designate by the word "temple" ex-

TEMPLE

general stimulus to temple building was felt in Grecce. The Greek temple, properly so called, scarcely reaches an earlier period than the seventh century b.c.

Among the Greeks the temple was not a

isted at all at the time of Homer. It was not till anthropomorphic ideas ot dirinity, necessitating the use of images, came into rogue, that some form of artificial shelter for such images, i.e., a temple, became necessary. Centuries elapsed after the Dorian inrasion before any
building in which a congregation met and worshipped. It was regarded as a place where the god might favourably be inroked, though not necessarily his dwelling place. It thus happened that many temples were kept closed except on special occasions, some being opened but once a rear.

TEMPLE

The perfected Greek teuple was ordinarily divided into pronaos, naos, and opisthodomos. (See plan of Parthenon muler Colnmar Architecture.) Passing through the pronaos, in which stood statues or votive offerings, one entered the mas or cellit, which oceupied the eentral part of the building. In the larger temples the nows consisted of three longitudinal divisions, those on the siles being separated from the central by rows of columns. (See Figs. 2 and 3.) In the central division and at the end farthest from the entrance stool the chief object of veneration, in early times a rude image and at last a splendid statue of the deity. Beyond the nass, at the extreme eml of the temple, was the opisthodomos or treasury, the proximity of which to the sacrel image servel as a special protection to the wealth of votive offerings stored within it. These offerings, very varied in character, frequently of great value, were in certain cases so numerous that special storehonses or treasuries, as at Olynpia, had to be provided for them.

Not infrequently the temple contatined an adytum or place to which access was prohibited, a secret chamber in which sacred or mysterions objects were hidlen. These alyta were sometimes under ground, and to them were generally removed the older and more sacred images when they were replafed by more splenticl statues of the gools.

The Greek temple stool within a saered enclosure or Temenos (which see), within which may have been temples, treasuries, tombs, altars, monuments, and even groves, the whole enclosure being marked out by boumary stones, or enelosed within a wall and entered through a great gateway or propylawo.

Rome. As the primitive religion of the Romans was essentially that of the Etruseans, it is natural that their early temples shond have been based lirectly upon Etruscan models. In its early form the Etruscan temple seems to have been a wooden structure with columns widely spacel and with decorations of terra cotta and bronze. Its portico, of unusual depth, was livided into three parts, by two rows of columms, and its cella, similarly dividerl, usually had at its extremity the shrines of three deities. One important example of sueh a temple, that of Jupiter Capitolinns, survived until the time of the Empire. On this, Vitruvius based his account of the Tuscan temple.

The Romans seem to lave been far less impressed by the splendid groups of temples, such as those at Piestum, erected at an early date by Greek colonists in Magna Grectia, than one wonld have imagined. Indeed, it was not until after the conquest of Greece itself that the temples of the Romans were deeply influencer by those of the Greeks. Certain well-marked

TEMPLE

differences were, however, well maintained. The Roman temple differed from the Greek: lst, in the greater depth of its portico ; 2d, in the greater proportional width of the cella and the omission of its interior rows of columus ; 30, in the relatively infrequent use of a peristyle; 4 th, in the placing of the temple, not on a stylobate

Temple, Fig. 7: that at Elloha, India.
of steps, but on a lofty base or podium, with plinth and comice of its own. (See Vol. II., pl. XIT.)

The Romans, from the earliest to the latest times, showed a fonlness for the circle in their temple plans. In the Temple of Vesta, in the Forum Romanum, one of the earliest of Homan temples (compare that at Tivoli, Fig. 5) ; in the Pantheon of Hadrian, the noblest of cirvular buildings; even in such late cxamples as those of Spalato and Baalbec, this fondness manifests itself.

The altar stood before the Roman temple, and its treasury was usually formed under the floor within the podium on which the temple was built. (See preface to Tol. II.)

India. Of the temples of the first Bralminiral period in India, the age anterior to the third century b.c., but little is known.

TEMPLE

Of the Buddhistic perioul, begiming about the third century b.c., and extending to the fifth century of our era, abundant remains of temples, both above and below ground, exist. The gen-

TEMPLE

tope. (See Fig. 7.) The façade, ornamented with columns, was cut like the rest of the temple from the rock. The cells of a monastery usually surround the Buddhist temple.

Temple of the Wisds, at Athess.
eral form of the tope or tumulus raised over a sacred relic is a hemisphere carried on a circular basement, while that of the care temple is a basilica with two aisles and a nare, at the end of which stands a sanctuary in the form of a

The second Brahminical period, beginning about the fifth centnry and reaching to the present time, developed new temple types, of which the pagoda is the most striking and important. The pagoda is in some instances a building of

TEMPLAE. JLATE II

The Tamoji Temple anl lageula at Gakka, Japan ; the Ilondo and 'ro of a great ridigions estathislment. Originally of a very ancient epoch, they have heen
often rebuilt, and are now mealy of pure Tukngawa style, seventeenth or eightenth century. Compare plates and text illustrations under Japan and l'agoda.

TEMPLE BAR

TEMPLE OF CASTOR

two stories (as at Vllora) or more commonly a tower of many stories. Two types exist. In one the walls are vertical, and cach story is slightly smaller than the one below it, i.e., a stagel tower. In the other, the faces of the tower curving inward, produce highly interesting and eharacteristic masses. Thongh it is ditionent to summarize the types of Indian temples, it will be well to point out that in some instances great halls appear, the rools of which are carried by colunms, while in others domecovered areas are found. The ordinary accompaniments of Brahminical temples are gateways, covered halls for pilgrims, and sacred lakes surrounded by porticoes. At times the gateway takes the form ot the stepped tower, giving access to a columned hall which is the temple. In other instances the culumned hall is the gateway, and the tower plays the rolle of temple. Sometimes the entire group of temple anl accessories was cut from the living rock. As in the ease of Egyptian temples, the principal Brahminical temples were formed by successive growths around an earlier sanctuary. (See Intia, Architecture of.)

China und Jupuen. In so brief a smmmary the religions architecture of Chima and Jipan may be reduced to a deseription of the Budillist temple. Its type is a builling of two stories, of which the lower is open in front but surrounderl by a veranda, while the upper is covered by an ornate roof. The sunctuary is enclosel by a sort of rloister, helind which are rooms for pilgrims and cells for bonzes. At the entrance to the enclosure is a porch before which stands a gateway withont doors. Pagodas, which it must be remembered are not necessarily temples, often staml within the enclosure. As in Erypt and India, the temple gronp is often the result of successive growths. In China the arrangement of temples is generally a symmetrical one. Jn Japan, where the pioturesque prevails, the sacred enclosure is often treated as an informal park. In China the temple has an hieratic stamp ; in Japan it is a personal and living work. (See China, Arehitecture of; Japan, Architecture of.)

Merico: Tmatem: Peru. A similarity exists between the temples of Mesopotamia ann those of Mexico, Yueatan, and Peru. In these conntries the temple is usually set on a platiom or terruce. Its typical form, called a Teocalli, was a prramid or cone, up the sides of which ran straight llights of steps, learling to a sanctuary on the summit. In some pamples the slopes are continuons as in a true pyramind, in others they rise by stages, forming a stepped tower. (See Mexico, SI.; South America.) - Frank Miles Day.

TEMPLE BAR. (See liar.)
TEMPLE CHURCH. In general, a chureh belonging, or which has belonged, to a post or
fortress of the Knights Templars; especially a very interesting ind beautiful structure in London consisting of two parts, a circular liomanesque church of the twelfth century, and a choir with nave and aisle, built in the thirteenth century. The buideng is valuable areliitecturally, and contains some beautifin altar tombs and other monuments.

TEMPLE MOUND. A. A mound with level summit, supposed to lave supported a temple. The most noteworthy of these in at Cahokia, Illinois. It is 90 feet high with a summit area of 200 by 450 feet.
B. The Teocalli of Mexico and arljacent regions. (Sce Mouml ; Teocalli.) - F. S. D.

TEMPLE OF ANTONINUS AND FAUStina. Jn lione, fronting on the Formon on the northeast side; hexastyle, Corinthian, lunt with shafts of rich marble, and not thuted. The cella is used as a mhurd.

TEMPLE OF APOLLO DIDYMA巴S. At Miletus, in Asia Minor ; an Jonic building of great splendour, lipteral, the outer colonnade decastyle, with twenty-one columns on the Hank.

TEMPLE OF APOLLO EPICURIUS. At Bassie, near Phigaliea in the Jeloponnesus; Doric peristylar hexastyle, with fifteen columms on the thank, the nas divided in a very mmanal manner, and for purposes not well understood, the unnsual length of the buitding also reguiring explanation.
temple of artemis. At Ephesus, in Asia Minor ; commonly called, after the English translation of the New Testament (Acts xix. 27), Temple of Diana of the Ephesians ; a magnificent Iunic lnuilding, dipteral, the outer colommade octostyle, with twenty collumns on the Hank; the naos had a portico distyle in antis, and this and the inner chambers are divided by a double row of columns. (For the migne feature of this building, see Columna Ciclata.)

TEMPLE OF ATHENA NIKE. At Athens; a very small tetrastyle Ionic building on the Acronolis. When the Turkish fortifications were demolished the fragurents of this temple were liscoverel, and the whole was put together in 1836 by Gerinan architects, in what is probably a correct reproduction, though the exact ancient site cannot be letermined. There is a parapet of slabs of mable exquisitely sculptured in relief.

TEMPLE OF ATHENA POLIAS. One of the shrines contained in the Erechthenm (which sce).

TEMPLE OF BASSA. (See Temple of Apmilo Epicurins.)

TEMPLE Of CASTOR. In Rome; properly of the Dioscuri, Castor and Pollux, on the southerly side of the Formm. The partly existing building dates from the reign of Augustus; three Corinthian columns are in place.

TEMPLE OF CONCORD

TEMPLE OF CONCORD. At Rome : a very curious buildiug at the extreme northwest of the Formu. It was oblong, with the main entrance in one of the long sides; but it is so entirely ruined that its original charater is largely matter of conjecture. It is considered in Lanciani": Ruins cund Excucations.

TEMPLE OF FAUSTINA. Same as Temple of Antonimus and Fanstina.

TEMPLE OF FORTUNA VIRILIS. (See Temple of Fortune.)

TEMPLE OF FORTUNE. At Rome, in the Foum Buarium ; a very ancient Ionic temple, probabiy rebuilt in its present form in the thind centmy.

TEMPLE OF HEROD. At Jernsalem. (See the artide Temple: Judorn.)

TEMPLE OF JUPITER CAPITOLINUS. At Fome; more properly, of Jupiter Optimus Maximus on the Capitoline, the most revered of the shrines of Rome, standing on the southemp peak of the Capitoline Hill. Originally of Etruscan type, with columns in front only and wooden entablatures, atterward rebuilt, and finally by Domitian, but nearly on the old plan.

TEMPLE OF JUPITER OLYMPIUS. At Athens. (See Temple of Zens.)

TEMPLE OF JUPITER STATOR. At Rome, near the Arch of Titus, but wholly ruined, and named here only becanse the name has been erroneonsly given to buildings in other quarters.

TEMPLE OF MARS ULTOR. In Rome; a builling of the time of Augustus, in the Formm Angustum, northeast of the Forum Romanum. Three columns are erect, and a part of the cella wall.

TEMPLE OF MINERVA MEDICA. In Rome; a large decagonal hall rovered by a cupola; not a temple in the usual sense, though consilered by Lanciani a "nymplaenm."

TEMPLE OF NIKE APTEROS. Same as Temple of Athena Nike.

TEMPLE of saturn. In Fome, at the extrme eastern corner of the Form ; a remarkable ruin with a modified Ionic order.

TEMPLE OF THE SUN. In Baalhec. On the site of a rery ancient Temple of Baal, a colossal structure of Foman Imperial arehitecture, but probably never completerl. A rers large square court, an onter hexagonal court, and an outermost portico lead np to this temple.

In Palnyra. Of the third century A.D., surromuded by a great cmurt, which is enclosed by a high wall. This was one of the most gigantic of the buildings of Imperial Roman style, the Oriental modifications of which are less obrious than is sometimes asserted.

In Fome. On the Quirimal Hill, built by the Emperor Amrelian after his Yalmyrene War: a colossal structure, now known by its foundat-

TEMPLE WIGWAM

tions, by fragments only of the superstructure, and by medieval drawings.

TEMPLE OF THE WINDS. An octagonal bulding in Athens used to hohl a Clepsydra. The name is derived from the sculptured representations of the different winds on its surfaces.

TEMPLE OF VENUS AND ROME. At Rome, northeast of the Formm, in part existing behind the church of S. Francesca ; once an immense double temple with two apses back to back and a great peristyle, and surrounded by a con't, an onter wall, and colonnade.
temple of vespasian. At Rome, cluse to the Temple of Concord, and, like it, built close against the lofty wall of the Tabularium. Three Corinthian colmms are still in place.
temple of vesta. In Rome; a circular luilding in the Forum, the mins of which have been rediscorered since 1875 , and are described in Lanciami's Ruins and Ercacations. It was circular, with a peristyle and a conical, or dome-shaped, roof orer the naos.

Other round temples are often called temples of Vesta, generally withont sutticient anthority.

TEMPLE OF ZEUS. At Athens; often called temple of the Olympian Zeus. The inmense temple whose Corinthian columns still stand east of the Acropolis. It was begun in the very early days of historical Greece, but its existing remains probally date from the time of Hadrian, who is known to have worked upon it.

At Olympia: Doric hexastyle, with thirteen columns on the flank, the cella divided by two rows of columns.

TEMPLE, RAYMOND DU. (See Raymont du Temple.)

TEMPLET (I.). A pattern to secme acenracy and uniformity in shaping parts, and in repeating dimensions. It is marle usually of wood or of sheet metal. In stone cutting it gives the shape of the end or joint of the stone, showing the profile of such mouldings as it may have. The templet may be nsed on plastic material as a tool to give the body its shape. In boiler work and other riveted work, a templet formed of a strip of metal with holes at the proper distances is used to mark the position of the rivet holes, and thas secure acemacy.
-W. R. H.
TEMPLET (II.). A piece of stone, metal, or timher placed in a wall to receive the hearing of a giriler, beam or truss, so as to distribute the weight, or over an aperture, to sustain floor joists ant transfer their burden to the piers. (Sometimes written Template.)

> -H.V.B.

TEMPLE WIGWAM. An American Indian house or wigwam devoted to religions nses.

$$
\text { - F. S. } 10
$$

TEMPLUM

TEMPLUM. In Roman intiquity, a space reserved; pactically the same as temenos. The idea of a building is hardly included in the term in Latin until the later times of the Republic. (See Edes; Delubrum.)

TENACITY. The power of resisting a pull, that is to say, strength against breaking hy means of a pull. The extramolinary tenacity of iron wire is at the bottom of the use of that material for suspension bridges. Tie rods ind tie beams are used becuse of their tenacity, and the strength of the metal in tie rods determines their size; but tie beams are commonly mide, for arehitectural effect or for convenience, very much thicker than is required for tenacity alone.

TENDER. The offer made by any one to do certain work at a certain price, especiatly the offer of a builder with whom it is propused to make a contract, if the tender is considered farourable. More common in England ; in the United States offer or bid is more frequently usel.

TENEMENT. A piece of ground, a building, or similar piece of property held either in fee simple or by the payment of rent by any one tenant; especially a residence, in the sense of a house, or room, or set of rooms, or even a house with grounds and appurtenances. The use of the term as meaning especially a hired place of residence seems to have come from the general sense of holding implied by the word itself, as distinguished from ownership in lee simple. In some American cities the term is extended to mean a Tenement Honse (which sec). In New York City, the distinction between a tenement, as part of a Tenement House, and an apartment in an Apartment Honse, is very diffient to establish. The New York State law gives no help, as all such buiklings are classed together. The most usual distinction (apart from anount of rental, for which see Apartment House and Tenement House) is in the presence of a private hall or passage from which the rooms of the apartment open. The term "flat" (which see) is entirely general, and applies to any domicile in one story of a larger building.

TENEMENT HOUSE. A building ocenpien by more than one family and usually having suites of roons, a publie stairway, dumbwaiter, and toilet room common to two or more families on each floor, earh suite consisting of a living room, with one or more bedronms opening therefrom, and furnished with cold water suplly amd a chinney flue, and renting for less than $\$ 300$ a year. (See Apartment House.)

Mistorical. With the growth of a town, the first tenments have always been alrandoned houses of the wealthier classes, but these are ultimately replaced by houses divided into sep-

TENEMENT HOUSE

arate stites and occupied ly many tenants. The tenement house was undonbteily an carly result of ancient city life, coming as an inevitathle consequence of the increase of population within circumscribing defensive walls. Iome is known to have had temements many stories in height, and the erowded eities of merlieval Europe homsed their poor under steep gables and in high huildings. The conditions of life under these circumstances are always very ubjectionable, in both a sanitary anl moral sense, and the menace which such rrowding constitutes has berome well recognized by legishators and philanthropists.

The Morlerm Tenement Honse. This is the result of conditions which are diflerent in different lucalities and times. These are briofty:
(a) The size of the lot in Emope is large and approximately square, and the building is erected about a central court with ath open passageway to the street on the first floor ; in America long narrow lots are in vogue, resulting in buildings with small air shafts.
(b) 'The amount of capital employed limits the building to a certain size and character ; in Europe the investors represent wealth, in America they commonly represent small capitalists who erect buildings on small lots.
(c) Legal restrictions which have generally resulted from a struggle between forces allied to vestel interests on the one side and those associated with sanitary requirements on the other.

The New York Tenement IIouse. This being lwilt under what are probably the most severe conditions in the world, small lot, small capital, and stringent laws, is commonly erected on a unit lot of 25 feet by 100 feet. The law limits the percentage of the lot that can be ofcupied, requires an open rear and courts of a certain size, and regulates the plumbing, ventilation, construction, etc. The commonest type produced under these conditions is the "dumbhell" plan (Fig. 1), and the modified form of this plan which provides narrow courts along the party lines and open at the rear. Three or four families are accommodated on each floor, each family latving a living room looking upon the strect or upon the open yard, and bedrooms on the air shatts. Pullic halls are long and narrow, lighted only at the middle point, if at

TENEMENT HOUSE

all. The chief advantages of this plan are cheapness and simplicity of construction, and small running expense; the chief disadrautages are wasted room in public halls, narrow air

Henement Housf un a Plut 100 Feet SQciare, with Narrow OUter Peservations fur Light and Air, and a Central Court; Sixteen Tenemests in Each story. Fig. 2.

TENEMENT HOUSE

either from the living room or from a hall. It is very desirable that each suite should have a short prirate hall, stand for refrigerators, private toilet opening off private hall, windows on narrow courts not opposite each other, and a closet in each bedroom. The laundry tubs frequently have a removable partition so that they can be used for bathing. It is desirable to have the cross partition set so as to divide them unequally, making one tub larger than the other. The sink and the back of the laundry tubs may be of metal. Gas should be prorided for lighting with rising mains for the supply of each row of apartments and branches taken off so that metres can be placed in each suite, using either the old type or the new prepay system. Each suite of rooms should have a second exit by means of a fire escape. The drying of clothes must be provided for by a drying frame on the roof or by means of tall poles with pulleys thereon set on the rear lot line, and each suite must thare a locked coal box or room in the yard or cellar. Halls are lighted and cared for by the owner. Lighting of halls may be furthered by setting wire glass in the upper half of doors opening upon them. It is
shafts giving little light or air below the top story aud reudering privacy in summer almost an impossibility, public water closets, and the like. Other types of plan hare been used on wider lots which have a much better dispusition of area and arrangement of courts. An absolute departure from ohl lines has been made lately (Fig. 2) by building companies which have erected tenements upon large plots of ground, generally on a unit lot of 100 feet square. This type of building has a large square court in the middle with broad courts open at the street or yard along the party lines. The alrantages of aroiding the long, dark, public hall, the public toilet room, and the dark, narrow air shaft are erident. The chief disadrantages are the many living rooms which hare no outlook upon the street or rard, the amount of capital required to crect, the fewer number of suites on a given area than are prorided lọ the "dumb-bell" plan, and the smaller income from the capital inrested.

Requirements. The living room is the largest room and must accommodate laundry tubs, table, range, sink, and dresser, the minimum area being 120 square feet. The other rooms should have a capacity of at least 600 cubic feet with direct access to outer air by means of a mindors of at least 12 square feet of area. The living room must be accessible from the public hall either directly or through a private entry. The bedrooms must be entered
very desirable to provide for the safe use of the roof by the tenants in hot weather by

Texemest Huese, fig. 3.
A model plan approved by reform committees in Nerr Iork, 194m. It is adapted to plot- 100 feet square, esch plot containing fourteen tenements, and the deep and narrow conrts (about 20 br 60 feet) are olnen in every cave to the street, while a reserved space 10 feet wide is left between the rear wall and the centre line of the block.
means of slat platforms and proper railings and guards at front and rear and around courts.

TEN-FOOT ROD

Shower baths are sometimes provided in the basement. The walls aul ceiling of the passageway from the entrance donrway to the pmblic stairease should be fireproofed and have the floor concreted and the walls tiled or cemented to a height of five feet.

Construction. A complete fireproof construction is much the hest from every point of view except that of expense. It is feasible only when the only restriction on the builder is safe eonstruction. In any case the stairways, stair landings, and dumbwaiter shatts with all openings therein must be fireproofel. The ceilings should be wire-lathed and plasterel, both being earried completely across all Homrs to prevent the communication of fire between sturies. The first tier of beams shonld be of iron with fireproof floor construction. All toilet rooms should have water tight floors and impervious side walls to a height of at least two feet. - George Hill.

TEN-FOOT ROD. A device commonly insed by carpeuters in setting up their work. (See Rod.)
tenia. Same as Tienia.
TENNIS COURT. A room arranged for the ancient game of tenis, which is very nearly the French Jeu de Pumme; one third as wide as long, thinty or more feet high, receiving its light from windows high in the wall. On one of the long sides there is a ligh gallery for spectators. In order that the white balls may be the more easily sepm, the walls are sumetimes black; or, if the walls are made white for coolness, as is said to be the case in India, the balls are black.

TENON. The cutting of the eml of a rail, mulliou, sill, or beam to form a projection of smaller transverse section than the prece, with a shoulder, so that it may be fitted into a corresponding hole or mortise in another piece. (See Mortice; Shoulder; Teaze Tenun, below; Tusk; also Framing, Bracell Framing.)

Teaze Tenon. A double tenon, one tenou above another, with a donble shoulder, wrought on the top of a post, to receive two horizontal timbers at right angles to each other. (Written also Tease Tenon.)
tenpin alley. (See Bowling Alley.)
tensile strength. The strength of a member or material to resist a tensile firee, i.e., a foree tending to separate or break by stretching; an abbreviated and erroneons term. (See Resistance ; Strength of Materials.)
tension. The opposite of compression ; the force which operates by stretehing, as in a tie beam, a tie rod, a suspension piece of any sort.

TENSION BAR. A bar or rod to which a strain of tension is applied, or by which it is resisted.

TERRACE
TENSION MEMBER - PIECE. In a framework, truss, or the like, a piece calculated to revist strains of tension; as a tic.

TEOCALLI. The worship mound of the Aztecs. (Wee Mounl.) - ド. S. D.
teopan. An Aztec builing similar to the Tevealli, and like that ilevoted to the service of the gods. - F. S. D.

TEOSCOPOLI. (See Theatucopuli.)
TEPIDARIUM. In ancient Lioman baths, a rom of intermediate temperature between the Frigidarium and the Calidamum and fitted with bathes to correspond.

TERM. A teminal figne, esprecially one of the surt ealled by the Cirreks Hermes (which see; see also Terminal; Teminms).

TERMINAL (n.). The ornamental fimish, or termination, of an ohject, eorrespouling sometimes nearly to Finial or to Acroterimm, lut applied to minor and subordinate uses. Thus, the carved end of a bench, as in a charch, is ealled by this name. (Compare Knob; Hip Knob.)

TERMINAL (alj.). In Latin, laving to do with the Foman gonl Teminus.

A Temminal Figure is a decorative figure in which a heal, or a head and lonst, or the human figure to the waist and incluling the arms, is finished by a hloek, prisun-like, or shaped like a reversed trimeated onne, and either plain or decorated severely (See Gaine; Scabellum.) These figures are thought to have been used originally for statues of Hermes as gol of roads and boundaries corresponding to the Roman Terminus. Ancient Greco-Roman examples are sometimes arranged for two heals attached at the back and facing in opposite lirections.

A Terminal Petestal is a pedestal prepared for a bust, so that the two together would be a terminal figure.

It is to be noted, with regard to Terminal Bust and Terminal Pedestal, that the whole must be designed together as if one statue, and of such height that, when the bust is set mpon the pedestal, the two together shall have a height from the floor proportional to the size of the lonst itself.

TERMINUS. In Latin, the ancient Italian god of lamlmarks, the gnardian of property in land; hence the figure of that god, represented without legs and feet to express the irremovable nature of the landmarks, the lower limbs leeing replaced by a solid prism or inverted truncated cone (see Terminal).

TERN PLATE; TERNE PLATE. A kind of roofing plate in which the alloy coating the sheet iron is cumposed of tiu and lead.

TERRACE. An embankment or prepared and artificially levelled mass of earth, as where in a garden the natural inequalities of the ground have been regulatel, or wholly artificially raised surfaces have been prepared. Formal

TERRA COTTA

gardens depend very largely for their effect upon the proper use of terraces，perrons being used to communicate from the level of one terrace to that of another ；aut，esprecially in a hilly comutry，the whole design may be based upon the succession of these horizontal levels marked by their stome parapets．By extension（1）the row of a house when flat and very solid，inviting the use of it in warm climates as a place to sit after sumbown：（2）a balemy，but this use of it seems to have beem abamloned；（3）a pared or thered out－of－loor platform，as if the floor of a veranda withont its roof and partial en－ closure ；often used in the United States for so much of the veranla as extends beyond the roof． －R．S．
terra cotta．Hard baked pottery， especially that which is used in architecture or in decorative art of large scale．It may be left with its natural brown surface unglazed and mu－ coluured，or it may be paintel as was chstomary among the Grecks（sce Antefix；Grecian Ar－ chitecture；Polychromy），or it may be covered with a solicl enamel of grave or brilliant colonrs．

In parts of Italy the architecture of the later Gothic style and of the early Renaissance is marked ly the free use of terra cotta（see Ke－ ramics：Robbia Work）．In the nineteenth cen－ tury its use was largely revived，and in England from 1860 ，and in the United States from about 1880，it has been freely employed in comection with bricks of similar or agrecably contrasting colour for the exterior of buiklings，almost to the exclusion of ent stone．

Gruner，Terra－cotta Architecture of North Italy， 12th－15th Centuries；Jaravicini，Die Archi－ tektur der Lambandei；strack，Ziegelbanuerke des Wittelalters und der Renaissance in Italien． （See also bibliography for heramics．）

TERRA－COTTA LUMBER．A light por－ ons terra cotta which can be readily shaped with rough carpenter＇s tools，will hold nails well，and can be used insteal of boards for fire－ proof sheathing，and the like．（See Fireproofing， cols． 95,36 ．）
terrass．Same as Trass．
terrazzo veneziano．An inexpen－ sive concrete pavement usch for floors in the province of Tenetia，even in honses of some pretentions to elegatce．Lime－mortar made unusually dry is the principal material ；in this are inlaid small pieces of marble，nsually not too large to pass through a ring an inch and a half in diameter．The whole is beaten hard， rubbed down，aud polished．Fine examples are given，full size，in Gruner＇s specimens of Or－ namental Art．
terre pleine．In French，a level plat－ form of earth；used in English in fortification， rarely elsewhere．

TERRONES WORK．（From Spanish， terron，a clod of earth．）A wall or building 783

TETRASTOON

constructed of carth，mud，adobe，or similar compact and uniform material which hardens as it dries．（See Alobe ；Cajon ；Pisé．）－F．S．D．
tessellar．Made up of Tesserie ；after the fashion of nusail work．

TESSELLATE（ r. ）．To make an inlay or mosilic of tesserae．Tessellated work is an inlay of stuare pieces，generaily small．

TESSERA（phral Tesserie），a small，ap－ proximately cubical piece of marble，glass，or other hard material，used in nosaic．

TESSIN，NICODEMUS（I．）；architect．
Little is known ol his life．He studied in Italy and in 1645 succeeded Simon de Lavallée as architect of the Swedish court．Among his principal works in Sweden are the palace of Drottuingsholm，finished by his som，the royal villa of stroemsholm，and the mausoleum of Charles Gustar．

Larousse，Dictionnaire；Seubert，Kïnstler－ Lexicon．

TESSIN，NICODEMUS（II．）；court archi－ tect；b．1654；d．17こど．

He was the son of Nicodemus Tessin（I．）and was educated at the miversities of Stockholm and Upsala，Sweden，and learned architecture from his father．He visited Italy and worked four years under Bernini（see Bernini）and Carlo Fontana（sce Fontana）．In 1669 Tessin was appointed royal architect in Sweden．The royal palace in Stockholm，burned in 1667，was re－ built by him．He fimished the palace of Drott－ ningsholm，begun by his father，designed the parks of Drottningsholm and Ulriksdal，and made plans for the reconstruction of the palace in Copenhagen，Denmark．He took an im－ portant part in public and political affairs．

Larousse，Dictionnaire；Seubert，Kiinstler－ Lexicon．

TEST（v．）．To ascertain the quality，espe－ cially the strength，of material by trial．For building materials，such as stone，metal，and timber of all sorts，powertul testing machines are employed to ascertain their greatest endur－ ance unter specific strains．

TESTER．A flat canopy，as over a bed， throne，pulpit，or tomb．

TESTING．（See Test（v．）．）
TESTUDO．In Roman architecture，an arched vault or ceiling，especially when sur－ based or flattened．

TETRAPYLON．Something characterized by having four gateways as a building with a nearly equal gateway in each of four sides． Such a building is the well－known arch of Janus near the church of S．Giorgio in Velabro，Fome， and in a somewhat similar building at Constan－ tine in Algeria．（Sce North Africa，Architceture of．）

TETRASTOON．A．Having a porch or portico on each of its four sides，as a cloister．

TERRA COTTA: PALAZZO FAVA, BOLOGNA, OF WHICH THE DECORATIVE FEATURES ARE ALL MOULDED IN CLAY AND FIRED.

TETRASTYLE

B. Having four portiches: said of any building. (Rare in either sense.)
tetrastyle (alj.). Having four columns in the front or end row; consisting of a row or rows of four colunms. (See Columnar Architecture, and the terms given there.)

TEXIER, CHARLES FELIX MARIE; architect and archeolugist ; b. Aug. $2.2,1802$; d. 1871.

In 1823 he entered the Ecole des Beaux Arts and was appointed inspector of the public works of Paris in 1×27. In 1833 he went to Asia Minor and made extensive explorations of antique monuments. Returning to France in 1837 he presented the results of his investigations to the Académie and published Destription de l'Isie Mineure faite pur ortre du Gonvernement français (Paris, ٌ. vols. folio, 18391849). In 1839 he visited Persia, Armenia, and Mesopotamia, and published the results of his explorations in Destription de l'Arméne, la Perse et la Mesomitumie, (Paris, 1842-1849, 3 vols. folio). In 1840 Texier was appointed professor suppléent in Archeology at the College de France, Paris. July 8, 1845, he was sent to Algeria as inspectenr généval des batiments civils. He pubishel also Mémoires sur les ports antiques situés ì lembouchure du Tibre, 1858, 8 vo, L’Architecture Byzentine, Loudon, 1865 , folio, translated by R. P. Pullan, and in collahoration with Pullan, The Principal Ruins of Asia Minor, London, 1865, 1 rol. folio.

Rerue Générole, Vol. 28 ; Nourelle Biographie générale.

TEXIER, JEAN LE (JEAN DE BEAUCE); architect and seulptor.

Le Texier was employel in the construction of the church of La Trinité at Vendôme (Loir et Cher). Nor. 11, 1506, he rontracted with the chapter of the cathedral of Chartres to rebuild the northern spire of that edifice, according to a design on parchment which he that day exhibitel. This new spire (clocher neuff), eutirely of stone and one of the most splendid examples of the Flamboyant Gothic style in France, was completel in 1513. In 1514 Le Texier commenced the beautiful sculptured screen which surrounds the choir of the cathedral. This work, on which many sculptors were employed, was not finished at his death. Before 1510 he enlargel the church of S. Aignan at Chartres, by means of an arch with a span of fourteen metres thrown across the river Eure, on which he built the new choir of the church. Le Texier and Martin Chambiges (see Chambiges, II.) were the last great champions of the Gothic style in France.

Gonse, L'Art Fothique; Gilbert. Ëglise cathédrale de Notre Damp de Chartres; L'Abbé Bulteau, Description de la Cathédrale de Chartres; Monographie de la Cathédrale de Chartres.

THEATRE

tezcacoac. An Aztec arsenal. TEZCALLI. (See Calli.)
THALAMIUM. In Greek architecture, an immer room or chamber ; especially, the women's apartineut.

THALAMUS. Same as Thalamium.
THATCH. Roof corering of straw or reeds. Such a covering was generally 12 inches thick in England, and is said to have been better when several inches thicker. Wheat straw carefully combed and cleared of short pieces was consilered the best material, except where good rushes were available. Thatch was often whitewashed as a partial preventive against fire, and even plastering or clay applied in a thick coat was used for the same purpose.

THEATRE. A buikling prepared for performances on the stage with some attempt by means of scenery and costume to represent special epochs and places as well as the special personages of the drama. It is, however, supposed by many archeologists following Dr. Dorpfeld, that the Greek theatre of the preRoman time had no raised stage - that the performers occupied a part of the pavement not raised above that of the orchestra. Where the ruins of Greek theatres are known to contain raised stages these are thought additions of Foman Imperial times. The Greek theatres, moreover, were rarely elaborate in their architectural arrangement : it was usual to take adrantage of the slope of a hill and to conform the arrangement of the seats to that natural slope with but little alteration, while the skene, or stage, with its surroundings and architectural background, was rarely of much pretension. The theatre at Epidauros is perhaps the easiest to trace in all its parts of all the theatres of purely Greek design, as the stone steps forming the seats are generally in place, and large fragments of the proscenium remain within reach. This also is known to history as the most important and splendid of the theatres of Greece, the circular space occupied by the orchestra was forty feet in diameter, with a fountain in the middle evidently for the altar of Dionysos. The low building back of the stage is probably of Roman time, lut its design is as severe and almost as pure in detail as if it had been Greek of the great period, so that we may infer that the fane of the original theatre ascribed to Polyelitos (see Polyclitos) still controlled the Roman architects.

The Roman theatre, modelled upon that of the Greeks and consisting like it of a nearly semicircular funnel-shaped anditorium with seats either of wood or stone, differed from its prototype in having a semicireular space reserved for the chorus, and a stage much enlarged, raised high above the floor of the orchestra, and backed by somewhat elaborate architectural structures, often a two-story or three-story colonnaded 788

THEATRE

building. The lavish way in which the Roman pro-consuls and prators built is exemplified by the comparative indifference shown to taking alvantage of the gromed, as well as by the costly architectural work of the stage and proscenium. Where there was no convenient hillside the relief necessary was got by structures of wood, unter the Repmblic, and by structures of stone toward the close of the Republic and under the Empire ; the system often involving very elaborate series of vaults, sometimes cylindrical, sometimes conical in shape, and supporting the comens or half cone of seats. The theatre of Marcellus, at Rome, has preservel for us more of the exterior of the auditomim than any other (see the eut muder Alette), but the wall behind the stage and the other structures there can best be julged from the theatre at Orange (Vancluse) in the south of France, where the great wall forming the back or ontside of the proscenium stands almost intart, 140 feet high. The colonnades of the stage, which in this case was roofed and open on one side only, can be partly understood.

The modern theatre differs from the aneient in being always an enclosed building, one which so far from being a public monument with a semi-religious purpose, is devoted to pure amnsement or to the dramatic art in its higher sense combined with amnsement, and maintainell by private persons for gain. The only exceptions to this rule are the subventions to the-

THEATRE

The stage projects at this point some distance beyond the proscenium arch except in some few instances, as where, in the great theatre of Bordeaux, the whole armigement of the prosceniun wall is umsual and inclules towers of masonry which are utilized for hoxes.

In the design of the opera honse at Paris, Theitre de loprea, the building of the stage as described above rises high above the andituriun, the general lines of the design being extremely realistic and logical.

The other building, that which contains the awditorim, contains so much else in auldition to this that frequently the auditurime seems in plan to be but a minor comsideration. In any large modern theatre, vastly more superficial space on any one horizontal plane is occupied by lobbies, staircases, the foyer for the public,

Theatre of Roman Style at lasisus, Asla Minor.
atres which are pail by certain European states; thus in Paris, four theatres are separately aided by the state, the Théntre Framsuis being one. A molern theatre, then, consists properly of two buildings closely attached each to the other. The one of these contains the scenery and the galleries and passages for its arrangement and its easy management, together with the Dressing Rooms for actors, a Foyer or more foyers than one, and some few private rooms and ottices. This builling may be extremely simple, foursifuare, and roofed with an ordinary low-pitch roof, as mothing is needed but it large, safe, monobstructed interior in which the theatrical engineer and machinists can do their work. The arehitect cannot be said to have anything to do with the interior of such a building as we are describing, except on the sile towatl the auditorium, where the great arch of the proscenium must be built into the wall. and must he so arranged as to show with a decorative effect or to be compatible with other decorative arrangements on the side turned toward the public.
tieket offices, corridus, and the like, than for the mere seating of the spectators. All this has resultel from a natural evolution of the central idea, which is to make a certain limited number of people very confortable during certain hours of the evening; and to provide for their exit from the building in a very short space of time, either in case of necessity, as of an alarm of fire, or for more convenience both to, visitors and attendants. This matter of exit is especially important and is not aldequately met by the providing of certain doorways which can be thrown open in case of need. The requisite is that the doorways known to the public and in daily use shall themselves be sutficient, allowing of unencumbered cxit by the mere withdrawing or throwing down of slight temporary barriers. The mumber of seatings is generally kept down from ensiderations of acoustics, of easy view of the stage from all parts of the house, and of reluctance to have an anditorium so large that it will be lout rarely filled. Thus, the opera house at Paris above

THEODORUS OF SAMOS

alluded to, though built at lawish cost between leba atul lij, prorides for only 2156 spectaturs: and the famons Thentice Frumsuis, latrely supported by the state. Which supplies the homse as well as an amual inonne, seats lut $1.5 \geq 0$ persoms. The damons Oteon, standing free un all sides and forming an architectural monmment of some importance, hats 1650 seatings. If this is expedient in the case of theatres for ordinary dranatic performanes, it is still more desirable in the case of louiklings for especially caretul and serions musical cutertainments (see Music Hall). - İ. S.

THEOPHILUS

Defrase et Lechat, Epidenure.
THEOLOGEION. In the Greek theatre, the place where persons represeuting the deities of Olympos stered and spoke.

THEOPHILUS (Ringerus) : monk and writer on art.

Theophilus, supposed to have been a German or Italian " 1 niest and monk," wote the medieval techinical manual of the arts entitled Dirersthm attilm sehedula. It was probably written late in the twelth century, althongh the date is conjectured rarionsly from the tenth to the thirteeuth. The work is dirided into

Theatre: Ruin of the Larger One at Pompen.

THEODORUS OF SAMOS ; architect and artisan.

Flourished during the early part of the sixth century b.c., and was one of the principal artists of the earliest Greek schoul. In much of his work he was associated with Phekos and Smilis. Theodons, Rhokos, and Smilis built the labyrinth at Lemnos. According to Herodotus, Rhcekos built the Temple of Hera at Samos, a description of which was written by Theodorns. Theodorns was cousulted about the construction of the temple of Artemis at Ephesos, begun abont $5-6 \mathrm{B.c}$, and advised laying the foundations in charcoal. Theodorus designed the building called the Skias, at Sparta. Numerous temple statues and works in the precions metals were attributed to him, among others the famolus ring of the tyrant Polykrates of Samos, and the silver wine cooler which was sent by Creesus to Delphi.

Brunn, Geschichte der ariechischen hianstler.
THEODOTOS ; architect.
According to an inscription, Theodotos was architect of the temple of Esculapins at Epidauros, Greece, built between 380 and 375 b.c.
three parts. The first part is on painting, the seconl on the manufacture and painting of glass, and the third on metal work. It was first noticed in the last century by Lessing, who discorered the manuscript in the libmry at Wolfenbiittel, Germany, of which be was librarian. There are manuscripts also in the libraries of Leipzig, Paris, Cambridge (Trinity Cullege), and Venice. The first part was published by Faspe in his Critical Essay on Oil Painting in 1781, and the entire treatise by Leiste and Lessing in the same vear. A Latin and Fremels edition was published by Count de l'Escalopier in 1843. Another French edition with notes hy Bourassé was published by J. P. Migne in Jourelle encyclopédie théologique, Vol. 12, , 1851. An English trauslation by Robert Hendrie was published in 1815 (see bibliography). A translation of the second book (on glass), from the French of de l'Escalopier, was published by Winston in his Hints (see bibliography). The manuscripts have been collated and the Latin text published with a German trauslation and appendix by A. Ilg (see bibliogmphy).

Theophilus, ed. Ilg; Theophilus, ed. Hendrie ;
A. Entrance to rear of stage.
B. Staircase to dressing rooms.
C. Service stalircase
1). Dwelling of the jnintor.
E. Entrance for the mustcians.
F. Foyer for the supernu mernries.
G. Foyer for stagempenters
II. Post of the firemen.

1. Passage for scenery.
J. Open court.
K. Passaqeway with stairs to stage.
L. Stage.
M. Romom for direction of rehearsals.
N. Storeroom.
2. Public vestibule.

2 and 3. Ticket ottices.
4. Receipt of tickets.
5. Oflice of commissary of police.
6. Police othicers
7. Staircase to the boxes.
8. Open conrts with tuilet.
9. Entraner for the chief of the state.
10. Entrance for persons alighting from carriages.
11. Staircase lealing tu box of chief of stite
12. Stairs tire the andience.
13. Anditorinm.
14. Communications hetween the anditorinn and the stage.
The parts not referrel to are shops oluening on the street with prlyate apart toents in the entresol.

THEATRE: PLAN OF THE THEÁTRE DU VAUDEVHLLE, PARIS.

THEOTOCOPULI

Winston, Hints on Gluss Printing; Westlake, History ar Design in I'ainterl tilass.

THEOTOCOPULI, JORGE MANUEL ; sculptor and arehitert; d. March 29, 1631.

A son and pupil of Domenico Theotucopuli (EI Greco). Mareh 10, 1625, he was matle arehitect and sculptor of the cathedsal of Tubdo in Spain. In $16=6$ he began the empola of the Capilla Muzarafe in this cathechral, and finished it in $16: 31$.

THEOTOCOPULI (TEOSCOPOLI) DOMENICO (EL GRECO) ; pinter, srulptor, and architect; h. 1548 (in Greece, or perhaps in Tenice) ; (l. 1625.

THERMA

thermae in Rome in the reign of Diocletian, after the completion of the establishment bearing the name ot that emperor, which was by far the largest; and over nine hundred sinaller ones under the control of private citizens.

The pectiliarity of the architectural plan is so great that it can be compared to that of no wther elass of buildings. The outer enclosure of the thermae of Liocletian measured 1100 feet northeast and sonthwest, and nearly 1200 feet in the oplrusite direction, without inchuling certain projections, as of exerlre and decorative alcoves and the like, of unknown use, one of which, a rotunda, retaining its ancient cupola,

'Thersilita at Megilopolis; with adjoining Theatre.

A purnil of Titian in Venice, and in 1575 was in Spain painting altar pieces in the style of Titian. He desigued the church of the Caridad and the city hall at Tuledo, Spain, the church of the college of Doña Maria de Arragon at Mudricl, the church of the Francisean Monastery at Illescas, with the marble tombs of its founders which hare been destroyed.

Stirting-Maxwell, Ammels of the Artists of spain.

Berınudez, Diccionario.
THERM屚. (Latin, lout baths: a plural noun.) An establishment for bathing, of which there are many in the different cities of the Fuman Empire, some of extraordinary size and importance as works of elaborate architecture. According to Lanciani there were eleven large
is now the chureh of S . Bernardo. Within this and surrounded by open spaces the great block of the thermse proper was about 400 by 750 feet, and incluled a raulted hall (the Tepidarium) 80 feet wide, a part of which is now the nave of the church of S. Maria degli Angeli.

Here, as in the other thermse, the tejuid baths were small basins arranged around the edge of the great hall of the tepidarium. The caldarium or warm laatl gave its name in like manner to the halls in which such haths were contained, which were in the large therme circular and crowned with a cupola: but this form is not to be suposed especially fitted for that purpose, for in the Stabian baths at Pompeii the frigidarium is circular, the caddarium a rectangle with an apse, and the tepidarium a simple rec-

THERMOSTAT

tangle, while another coll bath, the swimming hasin, is entirely ont of dooms in this and in the other publie therme of l'ompeii, an arrangement which suits the much warmer elimate of that eity. The laconieum or sweat bath differs greatly in different establishments as to size, form, and comection with the other rooms, indieating a natural difference in the halits of the people. The vast extent of the therme is to be arrounted for only by noting the palestrie or grounds for ruming and for exercise, leeture rooms, libraries, rooms, and porticoes for conversation, all of which were provided within the walls, and were claborately built and richly arlorned. (For a description ol the Thermae of Ciracalia see Roman Imperial architecture ; see also Italy, part 1N.) - R. S.

Geymuller, Dornments Ineritits sur les Thermes 'A!rippu, le Punthéonutles Thermeste Diorlétien; Nispi-Landi, M. I. ei stioi temmi; le torme ral it I'entheon; Man, Iompeii, Its Life emb Aut; also Tiesturutions des Monuments -intiques (FirminJindot), Vol. for 182., Thermes de Careralla; for 1811, Thermes de Dioclétien; for 1871-1872, Thermes de Titus.
thermostat. (See Electrical Appliaures.)

THERSILIUM. A buikling at Megalopolis in Grecce, described by P'unsanias (VIII., XXXIl.) as already in ruins, aud as a council honse for the Arcalian Ten Thousand. Recent excarations show that it was a hypostyle hall, 3500 siquare feet in area. 1t is fully disenssed by Fraser, op. eit.
J. G. Fraser, Pausanias's Description of Greece.

THESEION. A temple or sanctuary dedieatel to Thesens ; especially a hexastyle peripteral Doric temple remaining at Athens, and long known by that name; but now ascertained to be a temple of Hephiestus (Vulcan).
thesilium. Same as Thersilium, probably a mistaken reuling.

THICKNESS (r.). To bring to a unifurm thickness; thus, it is common in specifications to state that the planks, as of a floor, must be accurately thicknessel. (See Mateh, v.)

THOLOBATE. The eirenlar substructure of a done.
tholos. In Greek and Greco-Roman architecture, a round building. The Tholus of Epilauros in the Morea, near the eastern coast, is the most celehrated; for, although entirely in ruins, it has been theoretically restoren with great appearance of authenticity, and was evidently a building of extraordinary beanty. The interior orler was Corinthian, and this ritfurifs, probably, the earliest instance which we have of fine Corinthian capitals in a luikding of pure Greek style. One eapital was found in a kimi of erypt or cell, undergromed, and was workel with the leafage differently suldivided in different parts, as if experimentally, the capital having served to all appearance

THORNTON

as a guide to the workmen who carved the others. (See cut, Vol. I., cols. 679, 680.) Besides the articles in archacological perioulicals, the student should consult the work by Defrasse and Lechat, L'pidenre, Restaurution et Description, P'aris, 1895. These writers think that the tholos was a spring house built over a sacrel well which is known to have existerl at Epilaurus and to have heen derlicated to the tutelary deity Asklepios. - R. S.

THOLOS OF ATREUS. (See Treasury of Atrens.)
thomas de cormont. (See Cormont, Thomas dr.)
THOMPSON, SIR BENJAMIN ; Count Rumfurd; b. Narch 2 (6, 1753 (at Wohum, Massachusctts) ; d. 1802 (at P'aris) ; soldier and scemtist.

The tamous Benjamin Thompsou who received from Charles Theorlore, Elector of Bavaria, the title of Count Rumford, laid out the Englischer Gurten, in Munich, Bavaria. (See Sckell, F. L.)

Renwick, Lifo of Comnt Irumford; Ameritan Arelitect, Vol. XXil., 303.

THOMSON, ALEXANDER ("Greek Thomson ") : architect; b. 1817 (at Balfron, Sentlanil) ; 1. 1875.

He hegan life in a lawyer's office, where he was discorered ly the architect, Robert Foote. About 1834 he entered the office of Johm Baird in Glasgow. Thomson male a special study of Greek architecture, and was funmons for his successful adaytation of Greek motives. Anong his many works in Glasgow are the churches in Calelunia Roal, Vincent Street, and Queen's Park, the Egyptian Hall in Union Street, and many buildings in Gordon Strect.

Obituary in British Architect, Vol. III., 1875; Stephen-Lee, Inctionary of National Biography.

THORNTON, DR. WILLIAM ; arehitect.
The first alvertisements in the competition for the Capitol at Washington were published in March, 1792. In October of that year Dr. William Thomton of the island of Tortola in the West Indies wrote to the commissioners asking permission to compete. His plans were sulmitted early in 1793, were much admired by the commissioners, and April 5th were approved by Presilent Washington. The designs which were considered second in point of merit were those of Stephen Hallet, who was placed in charge of the construetion of Thomton's design under the general direction of James Hoban (see Hoban), architect of the White Honse. Hallet was diselarged Nov. 15, 1794. Sept. 12, 1794, the President appointed Thoruton to be one of the commissioners in charge of the Distriet of Columbia, and he had general supervision of the Capitol until his office was aturishel in 1802. At this time the north wing of the older part of the

THORNTON
Capitol, now occupied by the Supreme Court, was complete, and the foundations and basement story of the south wing were partially laid. The exterior of this part of the building

THORPE
THOROUGH STONE. Same as Through Stone.

THORPE. JOHN ; architect.
The author of an architectural sketch book

Tholos at Epidatros as it exists, and as restored. The Outer Order Is DORI": that withis Curinthian.
is still much as Thoruton left it. After retiring Thornton was placed in charge of the Pension office and remained there until his death.

Glenn Brown. History of the E'nited States Capitol: Glenn Brown, Dr. William Thomton in Architectural Record.
preserved in the museum founded by Sir John Soane (see soane, Sir J.). It is a folio volume of 282 pages, containing drawings of about 140 different buildings of the early sixteenth century in England. Many of these represent buildings in course of construction, others are

THREE-CENTRED

sketches of existing buildings, others are copied from French works on arehitecture, especially those of Jacques Androuet Du Cercean (see Androuet Du Cerceau, J. (I.)). There is also a record of a payment made to him in the issnes of the Exchequer.

Gotch, Tohn Thorpe in Buildin! Neres, 1884, Vol. XLvil.; Gotch and Brown, lienaissance in England.

THREE-CENTRED. Drawn from three centres; constructed un three centres. (See Basket-handle Arch under Arch.)

THREE-COAT WORK. Plastering put on in three coats; superior to two-coat work, Ordinarily, in three-coat work the first coat is rough mortar, the second is seratchel, that is to say, scored with the trowel so as to cnable the finishing coat to hold to it more firmly, and the third is the finishing coat, which may be of saml finish or white finish.
three Pair. (See Two Pair.)
THRESHOLD. The sill of a door. The worl is hardly used in comection with modern buildings, and has gained a rather poetical signifieation, being used in a general rather than in a particular sense. (See Sallle, A. ; Sill.)

THROAT. In a chimney, the passage from the fireplace to the the. (See Chimney.)

THRONE. A chair of state, especially one appropriated to a monarch, or in ecelesiology, to a bishop (see Bishop's Throne). The throne of molern Emopean sovereigns is merely an elaborately decoratel armehair distinguished by its position on a raised platform aud beneath a canopy with hangings, upon which emblems, heraltic devices, and the like may be embroidered. Eastem princes, whose position when seated is usually cross-legged or sitting upon the heels, have thrones whith allow of a different treatment, and the throne in Persin, and anciently in other lands east of the Mediterranean, is a very splendid strncture four or five feet wide and of twise the depth, supported by a number of columens, and wovered with rich decoration and often with applications of costly materials. On the nther hand, the Mikarlo of Japan seems not to have nceupied a throne of any sort before the clange in the government, but a raised platform only ; and the Shogun in ancient times, and the Tenno to-day, like the princes of China, seem to have used a highly decorated armehair, or in some cases a campstool eurionsly recalling the use of the curnle chair by ancient Roman magistrates.

THRONE ROOM. A chicf room of state contaming the throne upon a dais and under a canopy.

THROUGH. In masonry, same as Perpend. (Compare Pond.)

THROUGH STONE. A bond stone passing through the wall and showing on both
faces, as distinguished from a Stretcher. (Also Thorough Stone.)

THRUST. A foree which pushes and tends to compress, crush, disulace, or overturn a booly ; as the thrust of an arch is the furce tending to push bark or overturn the pier or abutment. In an arch it may also be defined as the horizontal component of the raction of the abutment, and, therefore, mitorm thronghout the arch. - W. R. H.

THULITE STONE. A red or pink manganese epitote of a fine granular texture and pleasing colour. As yet but little usen. Found at Hinlerheim, Nurway. - G. I. M.

THUMB PIN ; THUMB TACK. A short, sharp pin with a large, flat heal, designed to be thrust in by the pressure of the thumb; used by draughtsmen.

THYMELE. In Greek architecture, an altar ; specifically, the altar of Dionysus, stamiing in the centre of the orchestra of a Greek theatre, and around which the chorus performed their evolutions.

TIBALDI, DOMENICO; architect; Ђ. 1541; d. 1583.

A younger brother of Pellegrino Tiballi, whom he assisted in many of his mudertakings. He built the choir of the chureh of S . Pietro, the arehbishop's palaer ($1575-1577$), the Palazzo Magnani Giadotti in the Piazza Rossini (one of his best works), the Palazzo Matteo, and the court of the S'alazzo di Giustizia, all at Bologna. Although in the baroque style, his work shows much classical refinement.
(For biblingraphy, see Pellegrino Tibaldi.)
TIBALDI, PELLEGRINO; painter and architect; b. 1527; d. 1598.

Tibadi legan as a painter, the pupil of' Danielo da Volterra (see Riccturelli). He was especially patronized by San Carlo Borromeo at Milan. Tibaldi applied the principles of Vignula (see Barozzio, G.) to a large number of churches and palaces. In 1560 he began the reconstruction ol the facte of the rathedral of Milan. Of this work five doors and five windows remain. He built the fine church of S . Ficlele, Milan, begun 1569 , the court of the archbisbop's palace, Milan, 1570 , the Palazzo della Sapienza, Pavia, 1562 , the church of S . Gaudenzio, Novara, 1575, the chureh of S. Francesco da Paola, Turin, and the court of the University, Bulogna, 1570.

Müntz, Renaissonce; Gurlitt, (Yeschichte des Barockstiles in Italien; Ebe, Spüt-Renaissance.
ticplantlacalli. (See Calli.)
TIE. Anything which is used to resist a pull, as to prevent the sprealing of the two sitles of a roof, the separating of the two solid parts of a hollow wall, the collapsing of a trussed beam, and the like. Much used in composition. (See Tie Leam anl uther titles below.)

TIE BEAM

Chain Tie. An iron tie to commect and hold securely the columms ind piers in arched construction, or other pirts of masony buildings, by means of tie bars or rods having an eye at each embl set upon the hooked ends, or pins, of other bars set in the masonry. Chain ties of many-linked burs were used to excess in French buidings of the last century, and are still used in Paris to tie the walls together throngh the floors, even where iron beams are used for the latter. Chain ties are also employed as belts about the bases of domes, and in consolidating defective masonry. (See Chain.)

Land Tie. A tie rod or chain tie used to holel a retaining wall, or out-of-twor tlight of stairs, or the like, algainst the pressure of the earth, as after rain. It is built into the wall and may be secured to a massive pier, or simply held to the earth by means of timbers or stone heams set crosswise.

TILE

TIJOU, JEAN ; ironworker.
Tijou, a French ironworker, was employed by Sir Christopher Wren to make the iron screens in S. Paul's cathedral. He made the fine gates on the north side of the Long Walk at Hampton Court, which are now in the South Kensington Museum. He published Nouvecu licre de desseins (1 rol. folio, 1693).

Blomfielt, Renaissance in En!land.
TIKI. (See New Zealand, Architecture of.)
TILE. A. P'rimarily, a pliece of solid material used for covering a roof of a buidding. Roof tiles may be either flat or may be of different sections, so as to produce ridges and valleys, and so that one form covers the joints between tiles of another form, as will be explained beluw.
B. Any slab of hard material, large or small, but especially one of many rather small pieces, used together to form roofing, flooring,

Thles of Baket Clay for holding together the Parts of a Hollow Wall; the Slofe coming in the Air Space.

TIE BEAM. In common wooden framed construction, especially in roofing, the large horizontal piece which crosses from wall to wall, or between any points of support, forming the lowest member of a truss, and into which the rafters are framed, its centre being often kept from sagging by a king-post. (See Roof; Truss.)

TIE ROD. A rot, usually of iron, used as a tie to prevent the spreading of an arch, or of a piece of framing in wood or iron. In the commonest form it replaces the tie beam, the king-post, or other simple member intended to resist tension.

TIEPOLO. GIOVANNI BATTISTA; painter ; h. 1693: 1. 1770.

By a sympathetic study of the great decorators of the sixteenth century, Tiepolo succeeded in reviving their methods and traditions. He painted an extraordinary series of frescoes in Venice, Wiurzburg, and Madrio.

U'bani de Gheltof, Tieprolo: J. E. Wessely, Tienolu; Zanetti, Pittura Venezianu; Molmenti, La J'illa J'elmarena; Lanzi, Storia Pittorica; Orlandi, thecederin.
tIERCE POINT. (See Tiers Point.)
TIERCERON. In later mediæral vanlting, a secondary or intermelliate rib springing from the pier on either side of the liagonal ribs or ares doubleaux.

TIERS POINT. In French, the point where the two determining arcs of a pointed arch meet, the apex. The term means originally the third or culminating point of a triangle.

Arc en Tiers Point. A pointed arch.
wall facing, or the like. Nuch the greater number of tiles have always been made of baked clay in some form ; but marble, stone, and other materials are used.
C. By extension, and becanse of the application of the name to all pieces of baked clay used for accessories to building, a piece of drain pipe; one section of a continuous tnbe. In this sense often called Draining Tile or Drain Tile.
D. A piece of hard material, especially of baked clay, used for any purpose whaterer, even for the preserving of written records, as in the case of those libraries entirely composed of inscribed tiles which have been found in Mesopotamia. (See, for the manufacture of Tiles, Keramics.)

Amé. Lps carrelages émaillés du moyen âtre et de la renaissunce; Bourgoin, Les Arts Arabes; Brenci ant Lessing, Majolika-Fliesen ans Siena, 1500-1550; Jacobsthal, Sïll-itulienische Fliesenornamente. nach Originatantuahmen; Prisse d'Avennes, L'drt Arule d'apres les monuments du haire; Lossi, Musaici C'ristiani e saggi dei parimenti delle chiese di lioma (for pavements of marble, etc.).

Book Tile. In the United States, a hollow terra-cotta tile for light fireproof roofs and ceilings; so called from its having the form of a closed book. When laid, the convex edge of one fits into the comeave edge of the next, the other, plane edges being supported by light T irons, or the like.

Covering Tile. Same as Tegula.
Crest Tile. One made to form part of a cresting or ridge covering, as of a roof. It may form part of a very elaborate eresting.

TILE

Crown Tile. A flat roofing tile, calted also in Englant "plain," "thack," or " roof" tile. The size has varied under different royid or parliamentary acts: $5 \frac{3}{4}$ by $9 \frac{1}{2}$ inches and $6 \frac{1}{2}$ by $10 \frac{1}{2}$ inches, $\frac{5}{5}$ incl! thick, are common sizes. They are laid like slates with two nailiugs upon laths or battens, with or without mortar. The term is ako apllied to a lidge Tile.

Dutch Tile. A wall tile of emamelled and painted earthenware; the term was applied originally to those mule at Delft and elsewhere in the Netherlands, and used for the facing of chimney pieces and the like. They are generally painted in lark bluc on a white ground.

Encaustic Tile. In English keranic work, a tile decorated with a painted pattern, as distinguished from one of a uniform colon, which is called a mosaic tile. The term "encanstic" is inacourate as used here, and is to be considered a trade name.

Foot Tile. A paving tile 12 inches square. Gutter Tile. Same as Imbrex.
Hip Tile. A Ridge Tile so formed as to serve tor the covering of a hip; each tile lapping ower the one next below.

Hollow Tile. Same as Hollow Brick (which see under Brick).

Pan Tile. A. A roofing tile having a concave surface, distinguished as an Imbrex or Gutter Tile, altemating with one having a convex surface, distinguished as a Tegnla or Corering Tile; the joint between two of the former is covered by one of the latter, so that when latl, the surface of the roof presents a series of ridges and furrows ruming continuously from the ridge to the eares; hence, this species of tiling is sometimes callerl ridge and furrow tiling.
B. A roofing tile made with a ridge ancl furrow in each piece, or with a double currature, so that, when laid, the upturned edge of the concave part of one tile is fitted to the downwarl-turned edge of the aljoining tile, making a water-tight joint, with the same general effect as is secured by the first-named system. - H. V. B.

Plame Tile. A flat roofing tile, usually about the size of a small slate.

Ridge Tile. A tile of arched form made to fit over a rilge and to correspond with the pan tiles or that tiles of the roof. Somewhat similar tiles are laid over the hips. Otherwise called crown tiles. In some cases the raised arched rilge is a part of the same tile with the that covering part. The whole is then called a ridge tile.

Roll Roofing Tile. One of which the joints are covered by overlap, or of separate guttershaped pieces inserted. When laid such tiles form a series of continnous ridges alternating with furrows running at right angles or diagonally to the ridge pole. (See l'au Tile.)

TINO DI CAMAINO

Wall Tile. Tile, thimer than tloor tile, especially adapted to the facing of a wall, as in the lining of a passage or in a bathroom.

Weather Tile. A tile used as a substitute for shingles, slates, or weatherboards in covering the walls or root of a frame building; such tiles are thin, pierced with holes for mailing, arranged to overlap, and often cut with round or polygonal-shaped tails.

TILE CREASING. (See Creasing.)
TILE PIN. A pin of hard wood passing through a bole in a roof tile and into the wood beneath to keep the tile in place.

TILING. I. The art and the practice of laying tile of any description.
B. A quantity of tile taken together and acting as one covering, facing, or the like, as in the phrase, a floor covered with tiling. (See Keramics; Tile.)

TILTING FILLET; TILTING PIECE. Same as Arris Fillet.

TILT YARD. A place reserred for the joust and the tommament, and in later times for riding at the ring, and similar exercises. Sueh grounds were not always mere lists enclosel from the open country, but were sometimes reservel in the rourts of castles ; indeed, the outer court, or Busse Cour, was often arranged for this purpose. (See List.)

TIMBER. Wool, whether growing or cut, of such quality and size as fit it for nse in building: excluding that which has been cut up into planks or boards, and, in the United States, that cut smaller than about 6 by 6 inches. (See Srantling.)

TIMOTHEOS ; sculptor.

Accorling tu an inscription of about 375 B.c., Timotheus made the sketches from which the sculptural decoration of the temple of Esculapius at Epidaurus in Greece was executed. The inseription gives the names of the sculptors who carried out the work. He was also associatel with Bryaxis (see Bryaxis), Leochares (see Lenchares), and Scopas (see Scopas), in the decoration of the mansolemm at Halicarnassus.

Defrasse et Lechat, Epiduure; Carradias, E_{f} ridaure.

TIN. Same as Tin Plate; the abbreviated commercial term.

TINO DI CAMAINO; architect and sculptor.

A phepil of Giovanni da Pisa (see Giovanni da Pisa) who was emploged on the cathedral of Siena after 1300. He male several monuments in Florence, the most important of which is that of the Emperor Henry VII. In the will of Maria, widow of Charles II. of Naples, Tino is chosen to construct her tomb. He is mentioned in other documents as architect of several huildings in the vicinity of Saples.

Reymond, siculpture Florentine; I'erkins, Tuscen Sculptors.

TIN PLATE

TOLLHOUSE

TIN PLATE. Sheet-iron plates coated with tiu, after having been cleaned, toughened, and annealed by various mechanical processes. lt is largely used for the covering of roafs of very low pitch; and also for flashing in connection with slate and shingles.

TINTORETTO (JACOPO ROBUSTI) ; painter.

Ridoltis lfurtriglie is the prineipal source of information ahnut Tintoretto. He served a short apprenticeship with Titian and Schiawone. Tintoretto was a most prolific painter, and the greater part of his work is to be found in Venice. The most important of his mural pictures are in the church of S. Maria del' Urto, the Scuuta di s. liocco, and the Duge's Palace.

Ridulfi. Le Muruciulie Ilell' Arte; Janitsehek, Tintoret in Duhme sories: Berenson. Venction Painters uf the Renaissance; Lanzi, Sturia Pittorica.

TI'PI. (tee'-pee). [From the Dakota "ti," a house. As "pi" is a common plural ending,

Tipi uf Biffalo Hide; Dakota Type. it is probable that in the beginning the form "tipi," applied to a single structure, grew ont of our mistaking plural for singular.] (See "ti" and "pi" in the DakotaEuglish Dictionary. Tal. TII.; Contributions to N. A. Ethonology. Ľ. S. G. S., pp. 421, 467.) The Dakota special name for skin tent is wo-ke'-ya (wah-kar'-ah), and for any shelter, wo'ke-ya.
A conical Indian tent composed of a number of poles, with their upper ends tied together near the top, suread into a circle on the ground, and covered with skins, or in recent times with canras. Primarily the portable tipi is a Dakota structure, belonging to the Plains. but the same thing is in wide use among other Indian tribes, and the term nor has an ertual range. The tipi has also heen copied with modifications in the Enited States army "Sibley" tent. As a portable shin tent it seems to have been perfecter] by the Dakotas, but it should be noted that other tribes (as well as the Dakotas) made bark-corered tents, and the Iroquois constructed a triangular one with bark covering, on similar principles. The poles of the tipi are 7 to 20 or 30 in number, and 15 to 18 feet long. tied together near the small ends, while the large ends euclose a circle 10 or 15 feet in diameter. According to Morgan the proper number of poles is 13 . The eover, being drawn around the poles, is pinned together by sticks thrust crosswise through holes, or laced, for about the middle third of the distance trom top to bottom, lear-
ing the lower third open for a doorway and the upper third for a smuke outlet. The door was protected by an extra shiu fastened, only by the top, to the tent outside, and spread by a stick fixed trimsrersely near its upper end. Sometimes a loose skin was auljusted outside to the aper of the tent to form a hood that could be turned according to the wind direction; but the usual practice was to place long outside poles in puckets provided in each of the two triaugular ends of the skin cover, by means of which these Haps could be arranged from below. If there was no wind, they were both left ojuen; but otherwise they were adjusted accordingly, the windward flap being set high, while the leeward one was drawn down close to the frame, leaving only hole enough for the exit of sinoke. The tipi was fastened to the ground by pegs through holes in the edges of the skins made for the purpose, and in high winds stones or other weights wene laid on the bottom portions. In travelling the poles were attached to the sides of horses; and the long ends, trailing on the ground. furnished a rebicle for rarious articles of bagcage. - F. S. Dellenbalgh.

TIPPLE HOUSE. A rongh shed or house to protect the tipples or dumps of a coal mine.

TIRANT. A tie rod or tie beam. (Anciently tiraunt.)

T IRON. In Iron Construction, a member approximating in section to the form of the Roman letter T (compare I Bar, ete.).
titian. (See Vecelli, Tiziano.)
TIYOTIPI. Amoug the Dakota ludians, a soldier's loudge. A sort of council tent, as well as a feasting and lounging place. Regulations for the camp, and especially for the hunt, were made in it and published by means of a crier. (See Tipi.) - F. S. D.

TLILLANCALLI. An Aztec building used for a military school.-F. S. D.

TOIL. In a binge, the same as Flap. - (A. P. S.)
toilet room. A. Same as Latratory.
B. In a hotel, railway station, theatre, or the like, a room for washing, msually having water-closets, ete., connected with it, and often having in connection with it a place for the storage of out-of-dour garments. (Compare Cloakrom : Coatrom.)

TOLEDO. JUAN BAUTISTA. (See Juan Bantista di Toledo.)

TOLLBOOTH. A stall or office where tolls in any sense are to be paid : heuce, by estension, in a way rarionsly explained, a jail, especially in Scotland.

TOLLHOUSE. Same as Tollbooth in its original sense: in the United States a house near the tollgate of a turnpike or bridge where tolls are paid, and serving as the resilence of the keeper.

TOLMEN

TOLMEN. Sinne as Dolmen; but some attempt has been made to apply the term to a stone pierced by a loule, of prehistorie or moknown date.
tolomer. (See Federighi.)
TOLSA, MANUEL ; architect, enginecr, and seulptor; b. abont 1750 (at Valencia, Spain); d. abont 1810 (in Mexico).

In I781 he went to Mexico as govermment architect. He directed the erection of the towers of the cathemral of the city of Mexicu, 17871791, designed the College of Mines in Mexiro, 1797, and other buidings. In 1798 be was appointed director of the Acmdemy of S. Carlos, city of Mexico. His chief work is the fine equestrian statue of Carlos $1 V$., now in the Prisco de Bucureli, city of Mexico.

Appleton, Cyflopedien of Ameriren Biography.
TOLTEC ARCHITECTURE. That of the pre-Aztec inhalitants of Mexioo and contiguous country, attributed to a race called Tolter. (See Mexion, Architecture of, s. I.) - F. S. D.

TOMASO DI ANDREA PISANO : seulptor.

Accorling to Vasari (Vitu di Ludrea Piscmo), be completed the Campo Santo aml Companile at Pisa. Docmments of $\mathrm{T}: \mathrm{B} \mathrm{G}$ discovered by Professor Bomaini prove that he was the son of Andrea da I'sa (see Amlrea da Pisa).

Vasari, Milanesi ed.; Vasari, Blashfield-Hopkins fed.

TOMB. Primarily, is grave, perhaps a hollow in a rock or a natural cave nsed for this purpose rather than an excavation in the earth. More usually, a montment of some importance, but always placed at a grave ur erected for the purpose of forming the hurial plate within itself. Thus, the tombs in many churdess and sonne of those erected ont of doors duming the Milalle Ages eontain each ia sarophagets in which the lody was really lain, the lid being msually very heary, and commonly secured as strongly as prosible. The Cenotaph is sometimes, but improperly, called a tomb.

A tomb of the most magnificent sort is often called it Mansoleum ; one ul the simplest sort is called Gravestone, burial slalb, or the like.

Difference in custom is extremely minked in the matter of tombs, as of all burial arrangements. The tower-like structures on the hillsides above Palmyra seem all to be of Romam date. They have but little ornamentation, and their comparatively great size (one of them is 80 fect high and nearly 30 feet situare) amd their striking composition, are all that wall attention to them ; but these are rather close copies of Creek tombs certainly foru humbed years earlier, of which some still remain on the hillsides of Asia Ninor, and some have been removed bodily to Emopean musemos. The famons Harpy Tomb (which see, below) is one of these. Uther Greek tombs exist on the main-
land of Grecee and in the colonies (for those which are merely slabs, however rich, see Gravestone ; Stele). Large ones are the Nereid Tomb (which see, below): the Heroon, so called, of Gjolbaschi (which see, Huler Ileroun) ; the Lion Tomb at Cnidus (Knidns) (see Lion Tomb, II., helow) ; and of irregular work, the extraordinary tombs, partly rock-cut and partly built, recently discovered in the hill country of Asia Minor (for one of which ste Lion 'Tumb, I., below). The Romans of the Empire, althongh using cremation rather thin sepulture, and placing the cinerary ums in Columbaria, yet made these receptacles into decorative structures; moreover, sepulture was never entirely abomdoned. The result is that the Campagna of

Tomb, Fig. 1, of the Two Seate, Celvetri, Italy; I'lan.
A, entrance. B, onter chamber with the two seats, C, and later sarcoflagi, I. E, ti, 11, K, Tombal chambers with platrorms, F, on which bodies were laid. L, chamber with satcophagi.

Pome fontains many tombal structures; and mins of a vast mumber cam be traced. These were commonly arranged outside the gates of towns, as in the well-known canse of Pomperii, and on the Via Appia, south of linme; but also in what seem to lave been private plots of gromal, probably not often reservel for the express purpose of a tomb, lout rather forming part of the gardens, etre, aefompanying a place of residence. The tomb ut Cerilia Metella, and several others named in the subtitles, are instances of these. The pyramid of C 'ams Cestins amd the sarcophagns of the Scipios are earlier instances of the same sort of derorative treatment.

The tombs of Moslems generally take the form of a nearly square vanltel structure of hrick with a small dome. The vaulted chamber above ground has a door of entraner, ant it is customary to resort there at certain times. The actual grave is usually a viulted chamber beneath. The most magnificent tombs among the

Cumb, Fig. 2, uf the Twu Seate, at Cervetri, Italy. See Plan.

Tomb, Fig. 3, that of Caecilia Metella, near Rone, 1st Century, b.c. The Battlements are Medleval, the Tower having been included is a Casthe. See Fig. 4.

Moslems are those buildings ontside the walls of Cairo, gencrally ealled tomb mosques. These are really places of worship, and might perfectly well be eomprated with the mosques of the rity itself, or of other centres of the worship of Islam. There are a number of these bullings, larger and smaller, some of them adomed with minarets of extraordinary beanty, and they form

TOMB
Trmbs of the neoclassic period in Enrope have heen geuerally set up in ehurehes. Even those of princes have seldom been large mausoleums, especial memorials taking generally other forms, as votive ehapels, or monuments, unconnected with the grave itself. The same tendency existed thronghont the mineteenth century. The tomb of the private person of wealth is apt

Tomb, Fig. 4, Setthon (see Fig. 3). The Solid Core of Masonky facei with blotrs of Cut StuNe whs urigivilly cieowned by a Coxicil or Stepped foor-hike Coverivg.
almost a town outside the eastern gate of Cairo, which is known by the commun name of Karafa, or the cemetery. Among the Christian nations of Europe the tomb twok many forms, which are best described under the subtitles: Altar Tomb: Wall Tomb ; aml the like. The most important ont-of-loor structures of the Miblle Ages are thuse at Veroua (for whieh see Scala Tomb, below).
to be a family monument (compare Grave Hont ment), and in comection with this, the family tombs of American cemeteries should be mentioned, whieh have usually a chamber for the access of the living, and separate receptacles for cottins opening out of it on one side or on many sides, or opening upon a burial chamber beneath the parcment. These "family vaults" as they are popularly eallerl, ate sometimes of great size
and cost ; one near New lork city is octagonal and of general Byzantine form, vaulted and very

Tomb, Fig. $\overline{\text { B. that of Iamlichés, Palilira, a.d. } 83 .}$
massive. each side of the octagon having three receptacles for coffins opeuing sidemise into the

Tumb, Fig. 6, that uf Iamlichics; Section, see Fig. jo.
central chamber. The more usual form is, however, a parallelogram with some reference to the

TOMB

form of a Greek temple, and this, although entirely above grouml or built upon a hillside from which it seems to emerge. - R. S.

Altar Tomb. A tomb built in the general form of an altar. This kind of sepulehre origimated from the custom the early Christians had of placing beneath or within their altars the bodies of the martyrs. Upou many altar tombs

Tomb, Fig. T, that of Iamliches: Plas: see Fig. 5.
erected luring the Midnle Ages and the Renaissance there are recumbent ettigies of the deceasenl, accompanied with heraldic derices.

> - C. C.

Harpy Tomb. An ancient tomh discovered at Xanthos in Asia Minor, and decorated with a remarkable frieze at the top of the square rertical shaft, and set abont 18 feet abore the site. The sculptured parts are now in the British Museum.

Tunb. Fig. S, tTH CENTURY A.D., AT NANA, IN Siria.

High Tomb. One raised from the floor instead of being a mere slab inlaid in the parement. Cisually an Altar Tomb.

Lion Tomb (I.). A tomb adorned by the ettigy of a lion. Of these there are screral

816

TOMB. PLATE I

That of Leomardo Bruni in the church of S. Croce, at Florence. 'Ihis is a masterpiece of Bernardo Rossellino. Bruni, the historian, died in 144,
and the tomb must have been erected almost immediately afterward.

Tomb, Fig. 11, surrolnding a Court or Churchifard at Mfanchum, Syrla.

Tomb, Fig. 10, those at Khurbet-hîss, in Syria; see Fig. 9.

Tomb, Fig. 17, in Cloister S. Antunio, Padua; A Mural Painting under the Canopy.
among the ruins of primeval Greece and Western Asia. The full significance of the lion in

Tosb, Fig. 12, of fith Century, at Roveiha sybia: Seventres feet Sigeare without the Littie Pore h. †his Fury, with Cepula, has been cofied By the Muslem Peoples for Cesturies.
these compositions is not perfectly understood. At Ayazinn, in Asia Minor, is a tomb recently

'Comb, Fig. 1:, is the Payfment, 'hidech of S. M. Del Pupolo, Hoak, 14 y.
discorered, the front of which is decorated hy two lions carred in the rock, their position

TOMB

being similar to that of those on the Lion Gateway at Mycene. They are much larger, howerer, their size being apparently 18 feet long, and they are rudely carred in tery high relief. As the tomb is ahnost wholly inaccessilise, it has been drawn and described from a distance. Another tomb, with sculptures of

Tomb, Fig. 1G, that of Matino II Della Scala; c. 1831, a.d., it Verona.
hetter rquality, exists near Reykeui, in Asia Minor, and this, which the explorer, I'rofessor IV. 31. Ramsay, calls "The Broken Lion Tomb," is a very large rock-cut sepulchral chamber with the entrance 20 feet above the ground, and most interesting and curions protoIonic columms. The liead only is left of the lion, but it is a powerful and vigorous picee of arelaic sculpture. This tumb was also adomed by relief sculpture of warriors combatting, a

TOMB

precions and unique piece of arehaic sculpture not wholly explained.

Lion Tomb (II.). One found at Cnidus by Sir Charles Newton of the British Museum, and now preserved in that institution, was adorned by a crouching lion 10 feet long, and

Scala Tomb. One of the momments in the little ehurchyard of S. Maria Antica at Verona, ill of which belong to the ruling family, Della Scala, powerfnl from 1260 to 1380. The monument of Can Grande is over the ehurch door. This is of great beauty, and

Tumb, Fig. 13, that of Biehup Giles of Bridpurt, 19liz. A.d. Cathedral at Salisblity, Wiltshire. altar lumb tider Canopy.
this formed the apex or finial of a monument of great height. The conjectural restoration by Mr. Pullan shows an oblong basement carring a superstructure of solid masonry decorated with engaged columns and entallature, and this erowned by a stepped pyramid, the lion and his own perlestal resting upon this, the whole about 63 feet ligh.
it is unusually severe and formal. The culminating point of the peculiar system of design, constituting almust an independent style, is in the monmment of Mastino II., of which a cut is given. There is a larger and later tomb, still splendid. but of degenerate strle.

Tunnel Tomb. In Egrptian archeology, a tomb excarated in the roek, usually of the

TOMB. PLATE II

Monument in the church of S. Thomas at Strasburs, commemorating the Marshal Naurice de Saxe, who died in 1750. It is the work of the sculptor Jean Batotiste P'igalle, and perhajs his masterpiece. It is also the finest specimen in Europe of the drscriptive and highly allegorical tomb of the eigh-
teenth century. France personified tries to keep back saxe from his open tomb, which he faees eleerfully, and to banish Death. Ilerenles appears as a Mourner, and the ereatures emblematie of the: Empire, England, and the United lrovinces, are seen in terror and flight.

Tomb, Fig. 14, of 14th Centuby, Assist, in Umbrta; Church of S. Francesco.

Tomb, Fig. 15, in a Cherch at Limburg, Germany; 14 th Century.
825

TOMB, FIG. 18, THAT OF KING LADISLAES ($\div 1414$) IN CHCRCH OF S. GIOVANNI CARBONARA, NAPLES.

TONDINO

period of the Theban empire, and, therefore, of a time later than that of the Mastaba (wholn see). The general type is that of a tunned leuling horizontally into the rook from which a deep slaft lends to the burial chamber below. (See Egypt, Arehiterture of.)

TONDINO. A moulding of empex rommed section, especially a large are, such as it torus; the Italian tern sometimes user in Vinglish.

TONGUE. A projecting member, as a tenon ; it contimuons ridge left on the elge of a boral or plank, and intended to fit into a groove worked in the elloge of another board or plank. The joint so marle is in eonstant use in Hooring, and is used occasiomally in the sitling of houses. Tongned and grooved Hooring is objected to by some becanse, when heary pressure comes at a point near the edge of a plank, whe side of the groove may break away aml the floor be permanently injured ; in this wiy, in the United States, the best floors in Buston are laill without this joint, and those in New York almust universally with it.

TONGUE

tenoned frame. On either side of the tenon a strip of hard wood is let in to the shoukler

Tomb, Fif. 2l, that of the suns of (harles Vlli., at Tuurs.

Cross Tongue. A piece of the nature of a dowel used to give additional strength to a

Loose Tongue. A slender strip fur securing the joint between two abutting parts

TONGUED AND GROOVED

TOPE

other material or the same material may be bonded into it and make a continuous surface. The jamb stones of an aperture are made long and short so as to tooth in with the general wall surface, whether of stoue or brick.
TOOTHED CHISEL. A chisel of which

Tomib, Fig. 22, that uf Bexedetto Penaru, Church of S. Mhia Gloriosa dei Frari, Venice.
one edge tongued and the other grooved. (See Tongue.)

TOOL (r.). To finish or dress a surface, especially of stone, so as to leare the marks of the tool ; said especially of work with the Drove Chisel and the Toothed Chisel.

TOOL HOUSE. A honse where tools are kept, especially farming took.

TOOTH AXE. (See Are, II.).
TOOTHING. Leaving projections or tenons on the end of a wall, so that when required an-
the cutting edge is indented, used to roughen regularly, give texture to, or dress a surface of masoury.

TOOTH ORNAMENT. In Romanesque and early Gothic architecture, an ornament consisting of a series of little pramids often cut to form four-leared flowers, projecting generally from a hollow monlding. Called also Dog Tooth Moulding.

TOPE. A Budlhist monument, common in India and Sutheastern Asia, consisting of a

TOPIARY

tumulus of masonry, gencrally domical in form, for the preservation of relics, when it is distinguished as a Dagobat or to commemorate an event, when it is called a Stupa. It is sometimes elevated on a siluare, cylindrical, or polygonal substructure huilt vertically or in terraces, and is nearly always crowned with a finial, cattel a Tee, slaped like an mombella. (See In lia, Architecture of.)

TOPIARY. Relating to the elipping of trees and shrubs into regular or fantastic shapes, in a formal garden. This practice is called the topiery art.

TOP OUT (v.). To finish the top of anything, as of a chimney ; to cap. In briekwork, such a finish is called the topping-out conrses.

TORAN ; TORANA. In Buddhist architecture, a gatewiy, composed of from one to three horizontal lintels, generally of wool, but sometimes of stone, placed one above another upon two posts, the whole being often elaborately carved. Similar gateways are, in Japan, called Torii, aml are used to give dignity to the approach to a slurine or sacrel place. (See India, Architecture ol (Buddhist Structural Monmments) : Japan, Arrhitecture of.)

TORCH. In architectural decoration, an emblem fonnded upon sculptured representations; in Greco-Romau work, usually, of a hundle of strips held together by occasional withes or bands. This feature is generally repeated without a clear unlerstanding of its significance. The torch inverted is used to symbolize death, probably because of the obrious inlea of turning the burning toreh downward in order to extinguish the flame against the gromul.

TORCH HOLDER. (See Bracciale.)

Torch Holder; Bronze, 1atth Century; Palazzo del Magnifico, Siena.
TORELLI, GIACOMO ; painter and architect; b. 1608 ; d. 1678.

833

TORREGIANO

Torelli was especially associated with the rapid development of the construction and

Torch Holder: Bronze, 15th Century; Palazzo del Magmifico, sient.
decoration of theatres and scene painting in the seventeenth century. He madle improvements in his native city, Fano, in Italy, which were engravel and attracted much attention. He was called to Venice, and at the theatre of SS. Giovanni e Paolu in that city invented a methorl of ehanging seenes which was unirersally adopted. Torelli was called to Paris by Louis XIV., and remained there until 1662. He arrangel the theatre of the Petit Bourbon. The Andromedn of Corneille was first placed upon the stage by him. Returning to Fano, he built the still existing Teatro della Fortuna.

Gurlitt, Geschichte des Barockstiles in Itulien; Milizia, Memorie.

TORII. (Sce Toran.)
TORREGIANO, PIETRO (PETER TOR-
RYSANY) ; sculptor and architect; b. 1472 ; (l. abont 1522 .

Torregiano was one of the hoys selected by Lorenzo de' Merlici to sturly in the Gardens of S. Narco, Florence, where he was associated with Miehelangelo. Leaving Florence, he entered the army of Ciesar Borgia. About 150.3 lie drifted to England. In 1512 he made the contract for the monument to Hemry VII. in Westminster Abbey. The momument to Margaret, Countess of Richmond, also in Westminster Abbey, is ascribed to him. The latter part of his life was spent at Seville in Spain. Some mimportant monuments in the churches of that city are supposed to be by him.

Perkins, Tuscan Sculptors; Müntz, Renaissance; George Gilbert Scott, Fleanings from Westminster Abbey; Neale, Westminster Abbey.

Tower; Central Tower of Church at Nugent les Yierges (Onee), France, 12th Cexturi.

TORRYSANY, PETER. (See Torregiano, Pietro.)

TORSEL. A piece of solid material used to receive the end of a beam or girler aud so distribute the weight over the masonry of the wall heneath. Stone, iron, and even hard wool are used for this purpuse. (Compare Templet.)

TORSION. The act or result of twisting, as of a timber so distorted in drying or under some especial strain.

TORSIONAL STRENGTH. The strength of a member or material to resist a torsionil force; i.e. a force tendiug to separate or break by twisting: an abbreviated and erroneons term. (See Resistance ; Strength of Materials.)

TORSO. An imperfect statne, of which the body alone, or the body with parts of the limis, is in place and tolerably perfert. By extension, the body of a complete statue. The adjectival term

TOWER

applied to a twisted or spiral shaft is founded on confusion between a French and an Italian term of wholly different meanings, and should be avoited.

TORUS. A bold projecting monlding, convex in section, forming generally the lowest member of a base wer the plinth, especially of a column or pilaster. When two tori are used, separated by a scotia with fillets, the parts being of normal relative size, the combination forms an Attic Base.
tosh nailing. Same as Blind Nailing (which see unter Nailing).

TOTEM POST. A wooden post set up in front of a dwelling ly some North American Inclians, carved with totemic emblems. The most remarkable are those of the tribes of the Northwest roast, like the Haila. - F. S. D.

TOURELLE. In French, a turret; in Englisln, espectially one which is corbelled ont from the wall or springing from a gronp of piers or buttresses, as on the angle of a larger building, and finishing with a steep conical roof.

TOWEL PATTERN, Same as Linen Pattern.

TOWER. A structure, of any form in plan, which is high in propertion to its lateral dimensions; or which is all isolated building with rertical sides and simple character, even if not high in proportion (see Tower of Silence) ; or a part of a structure higher than the rest, but always having vertical sides for a part of its separate and detached altitule ; or, in buildings erected for defence, a projecting part, nearly equivalent to a bastion, often, but not always, higher than the curtain. Towers include the

Tower; Gruup of Five Tuwers: foth ind 11th Centuries; Tournai, Belgilim.

Tower; Rayensthorpe, Northamptonshire;
C. 1:00.

Tower of Town Cherch, Bozen, Tyrol; c. 1590. 837

Tower; Tows Church of Guaz, in Austrla; C. 17 s

838

TOWER

ancient Pharos and the modern Lighthouse; the Keep, the Gateway Tower, anl other projeeting breaks in the walls of mediaval castles (see Castle) ; the Pele Tower, ant other isolated towers of defence, observation, or refuge of feulal times ; the Iound Tower in its limited and its more general semses; the Lat, Stamba, Vimana, Sikra, and the so-called I'agoda, in all its meaungs, aul often the Tope and Stupa; the Campanile of Italy; the Bell Tower of the

TOWER

the ground, and rise from it without serious break in their vertieality; but there are important exceptions. The whole elass of Ceutral Towers (see below) are without continuous vertical lines, except as the reëntrant angle of nave and transept is carried up by the projecting angle of the tower. The church towers of London city are, in some notable instances, set uron the roofs of the columnar porticoes of their fronts (sce eut under Gibbs) ; and this, though an obvious anomaly, has been followel elsewhere, and makes an important feature of a subordinate style of neoclassie art. (For the gateway towers of India, in which a similar plan was followed in very early times, see Gnpura; and for its reappearance in medieval pseudo-Byzantine forms see Russia; see also Betfroi ; Roeveo and euts ; Turret ; and euts under Belgimu, France, Germany.)

Sutter, Thurmbuch; Thurmformen aller Stile und Lënder; C. A. Levi, I. C'ampanili di renezia.
Bell Tower. (See under B.)
Butter Tower (in Freneh, Tour de Beurre). A ehureh tower supposed to have leeen built from funds raised by selling the privilege of using in Lent butter and other things not compatible with the fast. There are several towers called by this name, as one attached to the eathedral of Rouen.

Central Tower. In a speeial sense, that at the erossing of a chureh, and therefore resting upon open arehes and detached piers. One of the most remarkable is that of the Creisker at Saint-Pol-deLéon (see France, Part V.); another (muel higher) is at Salisbury (see England); but many exist in all the mediaval styles, and many more have been ruined by the burning of the roofs of the elurches. The towers named above are crowned by stone spires. Other central towers are finished as Lanterns, as in S. Ouen at Rouen (sce France, Part III.). The enpola at the erossing

Christian world, ineluding the Central Tower (see below), the spire-topped tower or Steeple; the Minaret of Islam; the Shot Tower: the Water Tower ; the Cloek Tower in all its forms, and the Beffroi; and, in modern times, such engineering works as the uprights set to earry the anchorage of the suspeusiou bridge; also, in fact though not in name, the higl many-storied otfice buildings or sky serapers of the United States, when assuming the furm of a shaft of uniform width and depth, high in proportion to horizontal dimensions, and rising above surrounding struetures.

The general rule is that towers stand upou

TOWER

Wall Tower. A tower built in comection with, and formiug an essential part of, a wall;

Tower; Church of S. Anya at Viexna; c. 1747. especially onc of a series occurring in a mural fortification, as a city wall.

Water Tower for a Farm; Plas, showing Two Cattle Troughs axd Large Basin for filling Vessels. The Tiwer trself is a Reservolr.

Watch Tower. A lofty structure intented to cuable the approach of enemies to be detected, as by sea or through a mountain pass. The

TOWER OF SILENCE

term is often applied loosely to any high building whose use is not known. (See Bell House; Echanguctte ; Noraghe; Talayot.)

Water Tower. A tower constructed to hold a columis of water at a level high enough to supply fountains or to afford a head for the distribution of water through a system of pipes for fire service, etc. ; sometimes movable, and even light enough to be dragged hy horses to a conflagration. (See Stand Pipe.)

White Tower. The keep or donjon of the fortress callel the Tower of London. (See that term.)

TOWER OF LONDON. In England, commonly called The Tower, as a building much identified with English history and romantic tradition. A very ancient castle on the north side of the Thames, now used for rarious purposes, as a musemm, and a place of storage for valuable national possessions.

TOWER OF SILENCE. A tower nsed by the Parsees fur the expusure of dead botlies. The buildings are about forty feet in height, and of large diameter; with smooth cylindrical wall, unbroken cxcept by one doorway: They have a grated floor a few feet below the top of the wall, upon which borlies are laid exposerl to birds of prey, the separated hones talling into pits below. Also Dihkme: Dukhual Dokmeh.

TOWN

TOWN. In ancient times, a collection of houses enclosed hy a wall of defence, with mural towers and fortitiod gates. In morlern times any collection of houses larger than a village. In the United States, a geographieal subulivision of a county, a township; but in thickly populated countries, the town is the area occupied by an agglomeration of houses under a specific town or manicipal government. (See City.) - H. V. B.

TRACERY

contrasted with any form of arched construction ; hence, by exteusion, an eutablature.

TRACERY. Decoration made up of lines or of narrow bands and fillets, or of more elaborately moulded strips, but always withont, or with but little, representation of natural objects (but see liranch Tracery, below). By extension, and beeanse the word becane identified with the subdivisions of a window, design

Trabeated Constryction; Cloister of S. M. della Pife, Rome: Upper Story. One of the earliest wores of Bramante; f : $14!5$.

TOWN, ITHIEL ; architect ; b. 1784; J. June 13, 1844.

In 1×29 he formed a partuership witlı A. J. Davis and designed the State Capitol, the Episcopal church, and several residences in New Haven. He built also residences in Northampton, Massachusetts, the city liall in Hartford, Counceticut, churches in New York, the State Capitols of Indiana and of North Carolina, and several othicial buildings in Washington.

Dunlap, Arts of Design ; Arch. Pub. Soc. Dictionctry.

TOWNHOUSE. A. The same as Town Hall (which see under Hall); hence, by extension ant] often jocosely, the Jail, or the Poorhouse.
B. A mansion in town as distinguished from a country resilence.

TRABEATED. Constructel witl lhorizontal beams or lintels. (Compare Arcuate; Post and Lintel Construction.)

TRABEATION. Lintel construction as 843
in pierced patterus, in which the openings show dark on light from without and light on dark from within (see Bar Tracery, below). The term when used without unalification has come to mean Gothie winlow tracery exdusively; hut precisely similar tracery was usel contemporaneously in stone relief, in wool carring, as on doors and pieces of furniture, ant in pierred, cast, and wrought metal. Tracery of totally different character is fouml in scrollwork of the simpler kinds, as in Roman so-called Arabesques, Strapwork, amd Interlaced Ornament, and in Northern sculpture of the early Middle Ages (see Scandinaria, Architecture of).

It was customary in antiquity to fill a large window with screenwork or grating, often of bronze, sometimes of pierced marble slabs. These were not intended to bold glass, which was rare in the windows even of the later Roman Imperial epoch. In the earlier Middle Ages glass was also uncommon; and windows

Tracery, Fig. 1; S. Martiv des Champs, Paris;
Tracery, Fig. 1; S. Martiv des Champs, Paris;

Tracery, Fig 4: Rouen Cathedral; Upper Sacristy; Interior Elevation.

Tracelix, Fig. 2; Chartres Cathedral; c. 1220.

Tracery, Fig. 3: Rouex Cithridrit. Upper SACRINTY; EXEMPLIFYING i TRANSITIOX FIROM Plate to Bar Tracery, though of a late Еросн.
filled with admirable tracery exist, in which there is no reference whaterer to glass, but

Tracery, Fig. a: S. Andrea, Mantua. Example of Plate Tracery worked in Brick.

Where the tracery itself helps to keep from the interior too great a mass of rain or snow. In the simpler buildings of the Fomanesque epoch the openings were small, and were left plain. With the earliest years of Gothic architecture, decorative glass, which was already in use, became more accessible as well as richer, and at the same time the introduction of cusping, within pointed arches and round and oral windows, made the pattern, the lights and darks, interesting. Here, then, was the commencement of window tracery. An upright mallion would carry a tympanum of plain cut stone walling, through which a circle was cut, and this circle, and the two prointed arches carried by the mullion and supporting the tympanum, would be filled with cusps. This earliest tracery was then plate tracery; and that of even the royal domain of France contimued to be of this character as late as 1220 (see Figs. 1 and 2), or thereabout, although signs of a change were not unknown (see Fig. 3). In Italy plate tracery remained in use much later (see Fig. 5), and was in fact the prevailing manner of filling large windows until vers late in the Gothic eporh, the middle of the fourteenth century or thereabout, when an attempt at bar tracery was seen.

Although glass was now the rule for win-
dows, and tracery was usnally arranged for glass, some of the finest examples fill the openings of cloisters and the like, where no glass Was intenderl to be used (see Fig. 6). There are eren cases where tracery acts as a part of the construction elsewhere than in windows, as in Fig. 7 ; but these are generally late, and may be considered as fancifnl rariants of the Gothic structure. The possible structnral value of tracery was, however, studied in Venice, and the celebrated second story arcade of the Dncal Palace (see Fig. 8) is an instance of perfectly balanced arcuated construction combined with perfectly harmonized decorative efiect, carrying as it does a lofty wall of great thickness, and floors and roof of unusual weight, because of the great size of the halls enclosed. This system was copied in the fourteenth century Gothic palazzi, but none of the private buildings equalled the Ducal Palace in the perfect carrying ont of the idea.

In England, window tracery was a favourite study of the Gothic architects. What is called Flowing Tracery begins with the fourteenth century (sec Fig. 9), Net Tracery see (Fig. 10)

Tracery, fig. 7: Tomb ix the Aebey of Lafch, Rhenish Phessla.
is a variety of it. These rarieties lasted in England until the adrent of Perpendicular 818

'Thacery, Fig. 8; Aiclide of the Ducal Palace, Venice.

TRACERY

Tracery late in the fourteenth century, Fig. 11 showing what is in a way transitional. Figures

 C. 1300 , A.D.

12 and 13 show the perfected Perpendicular style, which lasted longer than any other, and is more characteristically English.

Besides window tracery, that of the fourteenth century parapets, especially in France, is of great beanty (see Figs. 14 and 15).

Late Perpendicular work is sometimes enriched by floral sculpture, as in the church of Rushden (see Figs. 16 and 17). These specimens are not piercerl ; they are merely panels carred in low relief ; but Fig. 18 shows similar decoration in window tracery.

Tracerf, Fig. 16; Rushden Cherih, NorthampTONSHIRE; C. 1450.

Figure 19 is given to show the effectiveness of window tracery when the shape of the mullion and of the curved bars which spring from the mullions is what it should be, namely, thin on the face of the wall and very cleep in the thickness of the wall. In this respect the earlier English work is less successful than the great mass of Continental work, but the example before us of late fourtcenth century work is

TRACERY

worthy of study. Here also is an admirable instance of solid or panel tracery with which the stone ceiling is entirely filled.
-R. S.
Bar Tracery. That form of window tracery which, in Gothic architecture, succeeded the earliest Gothie tracery. At first the mullions consisted of one or more slemer shafts with bases and capitals. In later bar traeery the mullions are merdy vertical moulded hars of stone, the mouldings splitting and dividing to start the various branching elements which fill the window head.

Branch Tracery. A form of Gothic tracery occasionally seen in German churches of the end of the fifteenth century and begiming of the sixteenth, in whirl the tracery is marle to imitate rustic work of boughs with the bark and knots, perhaps in imitation of the tancies of the German stained glass workers of the time. The portal of a church at Chemnitz is a noted example.
Fan Tracery. The peculiar decoration of fan-raulted roofs, in which ribs are suggested, though the construction is no longer rib raulting, but is solid in a single Shell of cut stone. (See uurler Vaulting.)

Flowing Tracery. Tracery in windows, gables, and surface panelling, which abounds in waving lines into which the mullions pass tangentially, as distinguished from Geometrical Tracery with its circles and foils or featherings, and "Perforated" Tracery. (See Flamboyant.)

Geometrical Tracery. That in which famil-

Tracery, Fig. 17 ; Rushdex Church, NurthampTUNSHIRE; C. 1450.
iar geometrical forms prevail, such as circles and triangles with eurved sides, as distinguished from flowing or flamboyant tracery.

Net Tracery. Gothic tracery, as of windows, in which the openings are of nearly the same size and of approximately the same form.

Perforated Tracery. Same as Plate Tracery, below.

Plate Tracery. That which is composed of 852

Tracery, Fig. 10; Cherch of Friaty, Resding, Evgland, a.d. 1306.

Tracery, Fig. 11 ; Kingethurfe, NurthamptonSHIRE, C. 13SO.

Tracery, Fig. 14 : Parifet of S. Gervais, Falaise, in Normavidy.

Tracery. Fig. 1s; Parifet of s. Gervais, Fhlalse, in Formaxidy.

TRACHELIUM

openings pierced usually in thin slabs of stone, the design heing in the shape and disposition of the prenings, not, as was the case with bar Tracery, in the solisl pats or moulded mullions dividing the openings. It was common in the late round-arched and early pointed styles, and originated in the circular opening which was piered through the tympanmm hetween the heads of coupled windows and under the label Which covered and united them with a single arch. These openings were afterwards multiplied with beautiful effect, as in the famons rose window of Chartres and of the transept of Lincoln. Plate Tracery was characteristic of Italian arehitecture throughout the whole medieval perionl.

Tracfry, Fig. 18: Winduw Trivery, Richly ADOKNED, ENGLINH; ABOUT 1400 .

Reticulated Tracery. Same as Net Tracery.

Stump Tracery. A kind of tracery characteristic of the decline of medieval art in Germany in the sixteenth century, ronsisting of a sort of fiamboyant tracery with frequent interpenetrations and truneated ends.

TRACHELIUM. In a Grecian Dorie column that part of the necking which cumes between the hypotrachelimen and the capital proper. What it is exactly depends uron what the hypotrachelium is ; thus, in Vol. JI., cols. 295 , 296 (Grecian Architecture), the horizontal lines at hottom indicate the groove or chanmel ; if this be the hypotrachelium. then the trachelium is the whole space above this to the spreading out of the bell of the rapital.

TRACING CLOTH. A smooth linen fabric coated with size to make it transparent and fit for tracing ; used by dranghtsmen for drawings becanse less destructible than traeing paper, aul beeause it makes possible an indefinite mumber of repetitions of drawings made upon it by sun print and other processes.

TRAMMEL. An instmment for drawing ares of large ratii and ellipses. (See Beam Compass, under Compass ; Ellipsograph.)
transenna. In early Christion archi-

TRANSPORTATION

tecture, a carved open lattice work, or screen of marble, or uf fine metal work, used to enclose shrines.

TRANSEPT. Any large division of a buililing lying aeross, or in a direction contrary to, the main axis. In a Christian basilica the large and high structure immediately next the apse, on the side nearer the main entrance; usually so high that the nave and aisles stopped against its wall ; and also more upen and large within than any other part of the elumeh. In a eruciform chureh the transept is commonly of the same section as the nave; it may have two aisles, like the nave, or one, or none. That part which is to the north when the sanctuary is at the east is the north arm of the transept, often called simply north transept, and that to the south, similarly, the south transept, the bay of the nave lying between being known as the Crossing. Occasionally, in England, there are two complete transepts, and the nomenclature then is, Northeast Transept, Southwest Transept, etc.

TRANSFORMER. (See Electrical Appliances.)

TRANSITION. In architectural style, the passing from one style to another. This process is always slow, aml is marked by the designing of buildings, or parts of buldings, in which the new style is not yet fully in control. This will he more risible in buildings of secondary importance, though occasionally a monument of great size and cost will show the changing style.

The transition from Romanesque to Gothic is marked by the architectural style of domestic buidings throughout Enrope, and that from Gothie to Renaissance includes the whole interesting florid Gothic of France and Germany ; while in England the same changes go on at a still sluwer pace, that of the sixteenth century extenling imlefinitely into the time of the Stuart monarchs. (See Elizabethan; Gothic Architecture in England: Tudor.)

TRANSOM. A horizontal har of stone, metal, or wood, as distinguished from a Iullion : especially one across a door or window opening near the top. (Compare Mullion.)

TRANSOM BAR. A comparatively slight and subortinate transom ; especially, in modern usage, a bar separating a fanlight from the opening below.

TRANSOM LIGHT; WINDOW. The opening above a transom when fitted as a winlow, rery commonly small, as in the doors of chambers in hotels and the like: more rarely large and architectural (compare Fimlight).

TRANSPORTATION. In architecture, the moring of buililing material, especially in large quantities or in single pieces of great size and weight. In modern building this has no diftieulty, nor is it other than a question of appropriation of more or less money for the

TRACERY, FIG. 14; CARLISLE CATHEDRAL, THE SO-CALLED CONFESSIONAL.

TRANSVERSE STRENGTH

purpose. The old necessity commonly felt by builders of liniting their efforts to the material of the neighbouring equarry or the like, can hardly be said to exist. (Sce under Stone the eonstant mention of materials usen in building, though drawn from a very distant source.)

Unler the combitions prevalent in ancient times, without stran or other mechanical power of the sort, the moving of large masses must have involved the lahour of many men and animals, and much time. The processes emphoyed have been must carefully and ingeniously discussed by Auguste Choisy in the opening chapters of his Mistoire del Architecture.

TRANSVERSE STRENGTH. (See Strength of Jaterials.)
trap (1.). Same as Trap Door (which see under Durt).

TRAP (TI.). Igneous rocks like diorite and diabase. - (I, P. M.

TRAP (III.). In plumbing, a derice attached to a phmbing fixture, and consisting essentially of a bent or U-shaped part of a pipe (with or without enlargement), which, while it permits the discharge of water when the fixture is used, is intended turetain a sufficient (fnantity to form a water seal against the passage of air or gases from soil, sewer, or waste pipes. There are many kints of traps, such as drain and sewer traps, waste-pipe traps, nonsiphoning traps, and traps with anti-siphon vent attachments. (See House Drainage.)

$$
-\mathrm{II.P.G}
$$

Bell Trap. A trap consisting of a bell or cup inverted over the mouth of the pipe, which rises moler it from the bottom of a hasin or cistern. It is so atjusted that the eige of the bell is submerged by the liquid which drains into the hasin. Thus, the liquil cam pass uncler the bell to the pipe, while the gas is prevented from rising by the bell.

D Trap. A trap having the general shape of the letter D, or, at least, one nearly semicircular bend and no more, as a boxlike receptacle into which a soil pipe empties and another leads out. This form is not used in good modern work.

Grease Trap. A fixture or device for preventing the accumulation of kitchen grease in waste pipes, wherely they become stopped up. Grease traps retain the grease and permit it to solidify. Some forms made in iron or brass are attached directly under the kitchen or pantry sink. Sometimes grease traps of iron or stoneware are placed outside of the buiding, on the line of the kitchen dram.

- W. P. G.

S Trap. Any trap formed by a double or S curve in a pipe.

Stench Trap. (See Stench.)
TRAP DOOR. (See under Door.)
TRASCORO. In Spanish chureln archi-

TREAD

tecture, a part of the choir, or enclosed space for the elergy or choristers, which part is separated from the main choir, as by the open passage at the crossing of the nave and transept. This separation is marle in Seville and Santiagocathedrals, where the names given are coro (choir) for the western halt, and copilla moyor (greater chapel) for the eastern part ; but sometimes the eastern part is called the coro and the westem part the truscoro.

TRASS. A volcanic substance found in the valley of the Rhine and in Holland, which closely resembles the pozzolamas of Italy, aud, like them, is usel to give hydraulic properties to common lime for building. It occurs generally in pulverulent lumps which require to be pulverized and mixed with lime. A good proportion to form lyylraulic mortar is one part by volune each of lime, of trass, and of saml. (Also written Terrass.) - IV. R. H.

TRAVE. A. A cross beam.
B. One of the divisions or hays, as in a ceiling, mate by cross beams. In this sense also called thavis, traviss, or trevis.

TRAVELLER. Same as Travelling Crane (which see unker Crane). Properly, that part which travels only.

TRAVERSE. Any member, or structure, set or built across an interior or an upening ; especially
A. A screen, railing, or other barrier, used to keep away intruders, to allow of passage from one place to amother by an ofticial or dignitary, or to conceal anything.
B. A Trausom, wr the horizontal member of a Chambranle. (Compare Ascendant.)

TRAVERTINE. A building stone, consisting of carbonate of lime dejusited from solution in the waters of springs and streams. One of the most celehrated is the so-called lapis Tiburtinus of Tiroli, Italy, which was so largely nsed in the buildings of ancient Rome. The so-called onyx marbles are also trarertines.

—G. P. M.

TRAVIATED. Having a series of transrease divisions or bays, referring to ceilings.
trazzo. Same as Terrazzo Veneziano, as a trazzo floor.

TREAD. A. That part of a step in a stairway, of a doorsill, or the like, upon which the foot rests, as listinguished from the riser. The tern applies equally to the upper surface alone, and to the plank, slab of marble or slate, or thin casting of iron, in those staireases where each step is not a solid mass. (Sce Stair.)
3. The horizontal distance from one riser to the next. Thus, a stair is said to have $12 \frac{1}{2}$ inch treat, that being the whole distance which a person moves horizontally in ascending one step. This distance is measured without regard to the mosing, which, where it exists, projects beyond the riser in each case. (See also Flier ; Going ; Winder.) - D. N. B. S.

TRANSITION ; HOUSE FRONT OF THE ROMAS゙ESQUE STYLE IASSING INTO GOTHIC, COLOGNE, GERNANY.

TREASURY OF ATREUS
TREASURY OF ATREUS. A building of unknown date at Mycente in Greece, now known to have becn a grave chamber. (See the cuts under Stone Cutting.)

TRECENTISTI. In Italian art, the people of the fourteenth century, used especially of literary men, scholars, and artists. (Sce Tre Cento.)

TRE CENTO. In Italian art, the fourteenth ceutury. (Compure Cinque Cento; Quattro Ceuto: Sei Cento.)

TREENAIL. - f. A large pin of hard wood used in medieval woolwork and in modern use, for fastening together timbers, as especially in shipbuilding. It is now little nsed in arehitecture, at least in the United States.
B. Same as Gutta, in Greck architecture, because of the theory that the guttie represent the heads of nails, or pins.

TREE OF JESSE. (See muder Jesse.)
TREFOIL. A panel, an opening, or a division of tracery, having three foliations, or lobes, separated by cusps. (See Foil.)

TRELLIS (n.). A. Screenwork made of strips crossing one another, either at right angles or in a more eliborate pattern. The most usnal form is that made of thin laths of wood. By extension, -
B. An arbour, or framework, for the support of rines.

TRENAIL; TRENNEL. Same as Treenail.

TRENCHED. Inserted or let in, as the edge of a boarl or plank into the surface of another one, as described under Dado (v.) and House (r.). The term is mainly British in its use. A trenched joint may he either simply where the whole width of one board is let into a groove in the other; or tongued, where the groove is marrower, and the inserted board has to be ent with a tongue ; or dovetailed trenched, where the groove is cut spreading as it enters, so that the tongue has to be shaped like a dovetail.

TRESGUERRAS, FRANCISCO ED. UARDO; architect, sculptor, painter, musjcian, and poet; b. Marel I3, 1745 (at Celaya, Mexico) ; d. Aug. 3, 1833.
"The Michelangelo of Mexico." Tresguerras was a pupil of the painter Niguel Cabrera for a short time at the Academy of S. Carlos, in the city of Mexico. He did not have the advantage of European travel and stuly. His activity was confined to a group of cities in the ricinity of Celaya. He began as a painter and afterward took up wood carving, and acquired extraordinary skill in that art. He probably learned the elements of architecture from the Jesuits, who supplied him with a Vignola and other architectural works. Tresguerras's work as an architect is eharacterized by great originality and beauty of proportion, especially in

TRIBOLO

domes and towers. His interiors are extremely rich. His best building is the chureh of Nuestra Senora del Carmen, at Celaya. Other important works are the convent churches of S. Rosa and S. Clara in Querétaro, the Alarson Theatre in San Luis Potosi, the brivge of La Laja, the beautitul church of La Conception in San Miguel de Allenda, and other works. His most importint picture is the altarpiece of the chureh of S. Rosa in Querétaro. At the age of serenty he became an enthusiastic supporter of the Mexican revolution.

Sylvester Baxter, A Great Mexiran Architect in Americen Architect, Vol. LV., $18: \%$.

TRESHAM (TRESSAM), SIR THOMAS ; amateur architect; b. abont 1543 ; d. 1605.

In $3573-1574$ he was sheriff of Northamptonshire. From 1581 to 1588 and again in 1597 and 1599 he was imprisoned as a Catholic. He built the market house at Rothwell, the "triangular lodge " at Rushton, and the new building at Lyveden.

Goteh, A Complete Account of Buildings Dy Sir Thomas Tiresham; Gotch and Brown, Renaissance in England.

TRESTLE. A frame eonsisting usually of uprights with a crosspiece (eommonly ealled a "horse") ; the urights set at an angle, so as to suread at the bottom ; the whole used as a support, as for a table or for a scaftolding. Trestle work is a series of trestles braced in every direction, and often carried to a great height, or to a great length, unsupported, as in bridges; used in extensive seatfolding, and in railroad work. It is sometimes of iron or steel, bat generally of timber.

TRIANGLE. A drawing instrument in the form of a mathematical right-angled triangle cut from a flat thin piece of wood, hard rubber, celluloid, or metal, or framed of three strips; used for drawing parallel lines at any giren angle by sliding it along the fixed blade of a T-square, straight edge, or the like. The rightangled side serves for lines perpendicular to the blade, the oblique side for inclined lines. The commonest forms of triangle have acute angles both of 45° or one of 30° and one of 60°; but speeial forms are made with other angles for lettering and other speeial purposes. Called also Set Square. - A. D. F. H.

TRIAPSIDAL. Having three apses. The two more usual dispositions of a triapsidal church are, that with three apses at the eastern end, as one at the end of the choir and two terminating the side aisles; and that with three ipses on the east, north, and sonth sides of a central tower, or central square, into which the nave and its aisles open on the western side. (See Latin Architecture ; Romanesque Architecture.)

TRIBOLO (NICOLO DEI BRACCINI DEI PERICOLI) ; architect, landseape arehitect, 864

TRIBUNAL

seulptor, aul painter; b. 1500 ; 1. Sept. 5, 1550.

The mickname Tribolo (tronble) was given to him on accomnt of his timidity. He entered the atelier of Nimmi Unghero :mm later that of Jacopo Sansovinn, then working in Florenee. In 1525 he was invited to Bologna to eontime the sculpture of the smaller jortals of the facate of the church of S. Petronio. (Sce Giacomo della Quercia.) Two Sibyls on one of these portals and two statues in the Capella Zambeccari at S. Petronio, are by him. After the death of Andrea Sansovino, in 1529, Triboh assistel Musea, Montelnpo, and others in completing the sculpture of the Casa Santa at Loreto. After the election of Cosimo 1. de' Medici, Duke of Tuscany, in 1537, Tribolo was empluyed in laying ont and embellishing the gardens of his villits and patices. At the villa of Castello he made two fomtains, to the larger of which Ammanati audded the group of Hercules and Antieus (see Ammanati); at the villa of Petraio he constructed a fountain, and was engagen in laying ont the Boboli Cardens, Florence, when he died.

Vasari, Milanesi ed.; Mïntz, Lienctissumer; Perkins, Tusenn S'culptors: Anguilesi, I'eluzzi e
 Guizzardi, Le sentpture delle parte di sion letronio in Bulognt.

TRIGLYPH

January, I899, applies it to the central apse of the same chureh, the one which is set on the axis of the prineipal nave, as distinguished from the two others of precisely similar phan; and, indect, tribuna is the local (Italian) name.

$$
-\mathrm{H} . \mathrm{S} .
$$

TRICLINIUM. I. A eouch upon which persons redine while at meals; the name implying the division of it into three parts, nearly separate, enclosing the table on three sides, the fourth side being left opun for service.
13. By extension, a dining room in a Ruman house, furnished with a tow tahle, surrounded on three sides ly eonches. In general, each couch accommolated three guests reclining, the total mumber of guests being thus limited to nine.
triclinium funebre. In Roman archatogy, an arrangement of three couches and a table in connection with a tomb, for the purpose of occasimal banquets in honour of the deal. One such near Pompeii is in open-air structure of masonry, enclosed by a low wall, the interior of which is decorated as if in a private house.

TRIFORIUM. In mediaral chureh ardiitecture, the space between the vaulting and the roof of an alisle, when opened into the nave aver the nave arches and moler the cleanstory windows by an arch, or two arches, in eath bay, or,
tribunal. A. In liman arehieology, that part of a basilica used to receive the seat of the magistrater, and also, by extension, the raised seat or post of any person of anthority.
B. A platform firom which speeches are delivered, or where a presiding otticer sits. In this sense usel very loosely and applied also to the court or magistracy itself, or to any body or individual to which important matters are referrect.
tribune. A. Same as Tribunal, in either souse.
B. Auy place from which one speak:, a stage, or pulpit; especially in the French Chamber of Deputies, and generally in French legislatures of the past, sinee 1789, the raised ilesk or pulpit from which members addressed the honse.
C. Auy part of a chureh or public building, esprecially listinguishel as if for the recejtion of a tribunal platform or ilesk, as an apse; in this sense nsed very loosely. By extension, any apsidal structure, even one mot containing a platform for speakers, a pulpit, or a throne, or magistrate's ehair. C. E. Norton, in rhurch Breilding in the Midrlle Alges, applies the term to all three of the great apses of the catherral of Florence, east, north, and south. Beresford Pite, in the (London) Architectural Review for

Trfforium; Lincoln Cathedral, c. 1260.
more characteristically, ly three arches (hence the name), the whole forming a gallery.

TRIGLYPH. In Greck architecture, one of the vertical blocks in a Doric frieze, suggesting, in stone, the outer ends of the ceiling beams of the primitive wooden construction; it has two vertical grooves or triangular channels with a correspondiug chamfer on each side, behind which is a gronee ur rebate, into which are fitted thin slabs which fill the metopes, and often

TRILITH

called hy that name. One triglyph is set over and on the axis of can colmm, except those of the comers, which, howerer, are set nearer to the atjoining columns than the wilth of the regular intercolumniation : one over each intercolumniation on its axis, and one at each comer of the frieze, showing two fares. The arrangement in lioman Dorice is nearly the same, but the last triglyph of eath range is sometimes placed, like the rest, wer the centre of the column and not un the comer. - H. V. l3.

TRILITH: TRILITHON. A strueture compused of three stones, especially, in prehis-

Trifith at st, Nizuike (Lulhe-Inferielre), France.

TRIUMPHAL ARCH

trinqueau. (Sce Nepren, Pierre.)
TRIPLET. A gToup of three; especially, in mediewal architecture, such a group of windows; also in combination, as a triplet window.

TRIPOD. Any objcet standing on three legs, specifically a table, a seat, or a stand for a vase or caldron, such as were common in classical anticuity, when it was sometimes used as a sort of jurtable altar. It was used extensively as a decorative symbol.

TRIPOLI, ARCHITECTURE OF. (See North Afriea, Architecture of.)

TRIUMPHAL. Having to do with trimmph, victory, or remarkable achievement. The term is apmied loosely to many momments of the jast, merely ber:use of their size and grandeur.

TRIUMPHAL ARCH. A. A monumental structure: one variety of the Memorial Arch. Modern monumental buildings, taking the form of the Foman memorial arch, or simply of the arehed gateway, are commonly spoken of as triumphal arches, and this in consequence of the general feeling that their purpose is the commemoration of military achievement, or the like. Ancient arches have been fully treated in the artirle, Memorial Arch ; modern ones are of the last three centuries, for, although gateway: leading into fortresses and fortified cities were sometimes made decorative,
toric architecture, a monument or part of a larger structure so built up.

TRIM (n.). A. The risible wooden fimish of a honse (see Insile Finish, under Finish).
B. In the Linited States, sometimes the hardware of a house (see Buhler's Harlware).

Cabinet Trim Same as Cabinet Finish (which see umler Finish).

TRIM ($\mathrm{r} . \mathrm{t}$.). A. To fit 1 l , and finish (see Trim (n.) in buth senses).
B. To anljust elosely, prejare for, and put into, a given place; said of a piece of material. Often with in or out, as a board may be trimmed in between juists, and a well-hole may be trimmed out with faseias or string boards.
C. To frume an opening, in a fioor or roof especially.

TRIMMER. That timber, in framing around an opening in a floo for a staircase, a lift, a ehimmes, or the like, into which one of the ends of the Heater is enteret, the timbers whieh are framed into it being called Tailpieces. Except When the opening eomes in a conner between two walls, there are two trimmers, between which the liealer is helil in place.

TRIMMING; TRIMMINGS. Same as Trim.

TRINGLE. - I. A bar, or rod, on which rings may rm for eurtains. Hence, by extension, -
B. A narrow straight moudling of any section.
and that with delileerate memorial purpose, in the Middle Ages and in the earlier years of the Renaisnance, those structures were hardly triumphal arches in the proper semse of the mord (see Gateway). The Arch of Alfonso of Aragon (1470), and the I'orta Capuana ($1+85$), each in Naples, and the Gate of S. Maria at Burgos, are admirable instances of the decorative gateway : but they are in no respect to be considered in comection with the memorial arehes of the Romans. Even when, in $167 \pm$, the Porte S . Denis was built, and when, in $16 \mathrm{I}^{-}$, the Porte S. Martin was built, each by Louis XIV. at the height of his power, and with deliherate intention to commemorate the military triumphs of his reign, the true form of the Roman structure was so little understood that it was thought mough to louild up a wall 14 or 15 feet thick, from 60 to 80 feet high, and piereed with one or three archways, exactly as if it had heen one section of a city wall of defence which was under consideration. The true Roman monmment, rather a great pedestal for statuary than a gateway, reappears first during the same century. Perhajs the most perfect early example is the Porte du Peyron at Montpellier, which was built at the elose of the seventeenth century, in memory of the Revocation of the Eliet of Nantes by Lonis NIV. This is in some resjects a careful study from

TRIUMPHAL AVENUE

the antigue, even in its placing reminding the student strongly of the placiug of the arches in the Forum. The Brandenhurger Thor, at Berlin, built at the close of the cighteenth century ; the Sieges Thor (Gate of Vietory), at Munich, built between 1843 and 1850 ; the "Marble Areh" in London, moved at a later time to the northeast corner of Hyde Park; the interesting arch, Della Pace, at Milan (callen) also The Gate of the Simpton (tel Sempione), becanse intended by Niapoleon to form the termination of the carriage road over the Simplon Pass) : the Are du Carronssel, in what was once the courtyarl of the Tuileries in Paris, -are all trium, hal arches in the proper sense of the worl, that is to say, buiblings stanting free, ustally in large open parks or promenades, intenlel to receire and display commemorative sendpture, and to be eronnell with scolptured groups of great importance. Wuch the largest trimphal arch, molern or ancicnt, is the Are de l'Étoile in Paris, undertaken ly Napoken in commenoration of his rictories, and ammoncing itself as dedieated by him to his soldiers and sailors. This building is of the dimensions of a very large molem apartment house or business building, such as are rising in Americum cities. It is 160 feet high, nearly 150 feet wile, 72 feet thick or teep, aml pierced by a single archway 47 feet wide, and rising $6 \bar{i}$ feet frour the parement to the crown. Similar arches pierce the ends or narrow sides: these are $\stackrel{2}{-7}$ feet wide and 60 feet high. No aucient Roman monument of the kind approached these dimensions.
B. The great archway leading from the boty of an early Christian church, stuch as a hasilica, into the preshytery or sanctuary. The term is a translation of the ecrlesiastical and Latin term, areus trimmpatis or choralis. - R. S.
triUmphal avenue. One of the great central streets of some of the cities of the Roman Empire, as notaldy Palmyra, where the donble colomate of Corinthism colums is still partly in place, and Gerasa, where the somewhat similar colonnade is of the Ionic style. (See Syria.) -R. S.

TROCHILUS. Same as Scotia.
trompe. In French, a piece of raulting of conical or partly spherical shape, or resembling one corner of a Cloistered Yault, the essential thing being that it supprors a weight imposed upon it on one sile or irregularly. Thus, if a projecting angle of a building is cut off below, the overhanging piere, triangular in plan, may be carried on corbelling ; but if rarried on an arched structure, that structure is a trompe. A turret-like building in a reëntrant angle may be carried in a similar way. A Pendentive is of the mature of a trompe.

TROPHY. Usually a group of arms and armour of the enemy, erectel as a memorial of

TROPHY

victory. (See Monument, Historical Sketch.) In Greek and Latin lands it consisted primitively of the actual arms hung on the trunk and branches of an oak, ent to resemble the human frame, and either consectated in a temple (es!. Fomulus, "Spolia opima") or other public structure erectel conspicuously on a mond, athl ustally acempanied by an inseription. It was rescentially a Dorian and not an Ionian custom, and most cally examples were

trompe arrying proabeting Angles; Huuse at Périguedx (Durdugne), Frinee.
in the Pelopomesus, such as the trophies of Zeus Tropaios and Polytenkes at Sparta, of Herakles, near Sellasia, and those orer the Coriuthians, and over Laphines at Argos. In course of time the idea prevailed of making such trophies permanent monuments of architecture and sculpture. Rising from a circular or quadrangular steppet basement, of a tower or column, was the group of trophies carved in marlle or cast in bronze, in imitation of the original arms, and accompanied - even at times replaced - by figures of the same material, in relief or in the round, of historic, emblematic, or religious import. Part of the sculptures

TROPHY

were on the basement. Sometimes the central crowning piece of sculpture was a "Victory," either iumed (Aitolian trophy at Delphi), or marmed (Paionios' "Nike" at Olymia). This type was also a creation of Durian artists. The carliest helong to the sixth to filth ecntury : e.f\% the bronze trophy of the Sikyonians, and that for the Pelopomesiau War at Olympia, that of Thrasyllos, and that of the Messenians of Nimpactos at Delphi. It is true that in commemuration of the victories over the I'ersians, tro trophies were erected in Attica, - at Salamis a naval, and at Marathon a land, trophy, - but these were the offerings of all Greece, and probably by Dorian artists. Perlapis the most intercsting for sculpture were the two nearly identical trophies designed by the great Paionios for Olympia and Delphi - the latter famous for its statue of Nike, now recorered. These and other monmments of the fifth and fourth centuries B.c. were not colossal. The round tower of the trophy of Epaminondas at Leuktra (37] B.c.) was only 11 feet in diameter. But some Hellenistic (third-second centuries B.c.) trophies appear to bare been larger and more architectural, such as that of Artemisia at Rhodes, of Pyrrhos at Argos (marble, with relicfs), of Aratus at Mantineia, and of the Aitolians at Delphi. Now, also, came in the custom of introducing trophies of arms and armonr in relief in the decoration of large monuments, such as the altar at Pergamon. The hest sonce of information for all Greek trophies is Pansanias (Frazer's ed.).

The Romans give to the trophy a truly monumental character, making it the greatest record of their wars. As an emblem the trophy of arms was userl everywhere lyy a custom current since the foundation of Fome. At the close of the repuhlic the entire city had become an arsenal of conquered arms, either conseerated in publie strmctures or kept in private honses as family prizes, and trophies were set up on memorial arches (see Memorial Arch), carred on memorial columns (see Nemorial Column), on temples, sarcophagi, and altars, and stamped on coins. But the trophy erected in a conquered laud, both as a recosd and as a fear-compeller, became an apotropion. Tacitus says that when, after a great victory, the soldiers of Germanicus erected a trophy, the Germans felt its lisgrace more keenly than the defeat itself, and whenerer possible the Germanic and other northern enemies of Pome would destroy these hated srmbols.

Transitional hetween Greek and Foman was the recently discorered trophy of Paulus Emilins, erected by the Roman general at Delphi for bis victory orer Perseus at Padna (Liry, xlr., 27). Its quarlrangnlar hase (2.15 by 1.05 m.), approached by a comple of steps, was decorated by a continuous frieze of Hellenistic

TROPHY

seulpture representing details of the Macedonian defeat with a Foman regard for exactitude. The earliest purely Roman camples recorled are those erected in lㅛㅣ B.c. by Domitius Ahenobarbus and Fabius Maximus, after victorics over the Allobroges and Arrerni. They consisted mainly of marble towers sustaining the grouped arms. After Marius had saved Rome from the Cimbri and Teutones, in 101 B.c., he crected famous trophies in Rome, which were rast down by Sulla, but defiantly restored by Julius Ciesar, in 68 b.c. during the dictatorship of Sulla himself. Sulla, after his victory at Chseroneia (86 в.с.) in the Mithridatic War, erected two trophies with Greek inseriptions on the battlefield, one on the plain, the other on the heights, and Pausanias saw them more than two centuries after. He erected another after the battle of Orehomenos (85 b.c.). But it was Pompey who built, after the elose of the Sertorian War (71 b.c.), the trophy most famous for the beauty of its execution and site. The inscription stated that he had subjected to Rome 876 cities from the Alps to the farther end of Spain. It stood in a commanding position along the great Roman military road at the. west end of the Pyrences. To Ciesar only a single trophy is attributed, after victory over Pharnakes at Ziela (47 в.c.). The exquisite marble trophies, still preserved and popularly called "Trolei di Nario," at Rome, are probahly of the time of Ciesar or Augustus. A rival to Pompcy's monument was set up by Augnstus in $\overline{-}-6$ b.c. on the heights abore Monaco, facing the Alps and the sea, on the Foman road connecting Italy and Ganl. it commemorated the submission of all the Alpine tribes from the Metiterranean to the Adriatic, and its remains are sufficient to show that it consisted of (() a square platform, 130 feet each side, (b) a massive square basement of 110 feet, with tlights of steps on the north and south ends, and (c) a cireular tower, 100 feet in diameter and of considerable height, decorated with elcren pilasters, and surrounded by a two-storied marble peristyle of Doric and Lonie (or Corinthian) arders. On the tower stood the trophy, Is fect high, at whose base on either side was a seated lamenting figure (man and woman) representing the subject peoples, very much as the group is often given on late Republican and Imperial coins reproducing such trophies. The inseription on the basement enumeratel the subjected tribes. Ruins of nther trophics of a similar type, and dating from the times of Casar aud Angustus, remain in the south of France (e.g. Aix and Nimes), and on the Rhine (e.g. Niederwald). Under Augustus, Drusus erected a tumulus with trophies on the Elhe, from the spoils of the Marcomami, as did Germanicus on the Weser under Tiberius. But the best preserred of all

TROUGH

these memorials is that restored by or built for Trajan in 109 A.d. at Tropreum Traiani, near the Demube and the Black Sea (moden AclamK lissi). It appears to commemorate the conquest of Dacia after the two wars of $101-102$ and 105-107, and to have been designed by Apultulorus of Dimascus. It is in the form of a basement of steps, on which stands a great circular mound of masonry (diameter 30 m.) faced with marble, decorated with a frieze of triglyphs anil sculptured metopes, framed by carved battlements and surmounted by a conieal roof, from whose centre rises the pedestal of the central trophy (diameter 9.20 m .), with the group of prisoners at its feet. The total height was probably over 100 feet, with a diameter of about 150 feet. It will be seen that the oliler furm of the tower was often superseded by that of the mound, making the structure resemble somewhat such funerary tumuli as the imperial mausoleums of Augustus and Hartrian at Rome. Thus the trophy was not only a memorial of victory and a leterrer of revolts, but a glorious funeral mound for the fallen victors. That the custom continued to the close of the Empire is shown by the remains of a trophy of Constantine at the gate of Tomi, not far from that of Trajan.

- A. L. Frothingham, Jr.

TROUGH (11.). Any receptaele for Huids in the nature of an open channel or gutter with or withont an outlet.

TROWEL. A. A mason's tool made of a thin plate of metal, approximately lozengeshaped, always pointed at the end, and fitted with a handle; used for spreading and otherwise manipulating mortar in laying up masonry, and for breaking and trimming lrieks.
B. A plasterer's tool, generally a small parallelogran of thin wood, with a handle underneath ; usel either like a pallet to hold putty or mortar, or to spread or tloat the last coat upon walls or ceilings. Masons use a tool of the same sort for kneading and mixing putty in pointing joints.

TRUCK HOUSE. In the United States, a building for housing a book and latder truck, together with the horses and men for its operation. The buidling is equipped similarly to an engine house.

TRUE (v.). To test for correctness in level, straightuess, or the like, either by the eye alone (see Bune), or ly means of instruments.

TRULLO. In Southern Italy, a rough stone builling not wnlike the Noraghe or truthen of Sardinia. It is generally of eylindrical form with cupola-shaperl roof. It appears that the poorer people, even at the present day, find then lry and not ineonrenient habitations.

TRUMEAU. In French, a stone mullion or pier supporting the tympanum of a witle doorway, as in medieval churches ; often character-

TRUTH IN ARCHITECTURE

istically bearing on its face a figure of Christ, of the Virgin and Child, or of a saint.

TRUNK. A. Same as shaft ; that is, of a column ; olsulete or obsoleseent.
B. A large and central or prineipal spout, eonductor, or hollow shalt, as in rentilation, the delivery of grain, and the like.

TRUSS. A combination of rigill pieces, as posts and struts, with ties, so as to make a frame for spaming an opening or the like. Under lioof, Figs. I and ? show a ling-post Truss and a Queen-1ost Truss ; Fig. 3 is also of a King-post Truss, but is not well shown, and Fig. 10 is a Hammer Bean Truss, thongh not arlefuately framed; but the other cuts are of roofs whose principals are not trusses, in a strict sense. A truss must be mate up of triangles, as no other mathematical figure is fixed and immorable. The ITowe, Pratt, and Warren trusses (sce subtitles) are used in building to carry large roofs where supporting uprights are to be avoided, as in a music hall or large morlern chureh.

Howe Truss. A bridge truss in whieh the struts are diagonal, crossing one another, and the chorls are held together ly vertical ties.

Pratt Truss. A bridge truss in which the struts are vertical and the ties diagonal.

Scissor Beam Truss. A roof truss in which the feet of the principal rafters are connected, each with a point on the upper half of the opposite rafter, by ties which cross at the middle like the two halves of a pair of scissors. It is a weak truss, fit for small spans only.

Warren Truss. One with parallel chords hetween which the braces and ties are set at the same angle, so as to form a series of isoseles triangles. - W. R. H.

TRUSS (r.). To fit with braces, struts, or ties, in such a way as to strengthen, as a beam or a stud partition. (See Trussed Partition, under Partition).

TRUSSEL. Same as Trestle.
TRUTH IN ARCHITECTURE. The expression, in design, of the essential facts of the plan and structure. The doctrine of Artistic Realism is of very ancient lineage ; so far as one can judge from collateral evidenee, the morlified form of it which Aristotle upheh was but a restatement of a doctrine current in lis day, and Which even then was not altogether acceptable, and required defence. To us it becomes selfevident that the doctrime of imitation, as it is usually interpreted, can only lee mhed by narrowing the fied of art in a thoroughly artifieial way, which no modern philosopher would defend for a moment.

That the doctrine does express a half truth we slaall see below; but that it dues not express a principle whieh is universally valid fur the whole field of art appears clear when we note that in some direetions it is inapplicable altogether,

TRUTH IN ARCHITECTURE

and, furthermore, that it must be molified in statement, or limited by definition, if it is to be made applicable to special ficlds.

The general doctrine of Artistic Realism may be stated thus: " line Art is the expression of the true csacuce, the real nature, of the smbect presented ly the artist." It is comparatively easy to apply this supposed principle to literature, to painting, and to sculpture, without arousing a natural demand for its palification or limitation ; but it is evident that it is impossible to interpret our modern music in accord with any sucl formula; and when we turn to architecture, we find it necessary to restate the principle altogether to give it any semblance of validity.

In order to make the supposititions principle applicable to the work of the artist-architect, it has been assumed by the defenders that the true essence of architectme lies in its practical and constructional worth, and that the architecture, therefore, consists in the expression in building of constructional values, aml in the suggestion uron the exterior of the uses which buildings as wholes, or in their special parts, are intended to subserve.

But it is easy to show that these assumptions are entirely unwarantes. There can he no doubt, of course, that there is great resthetic value in certain expressions of constructional flunction ; but to claim that the expression of constructional function is necessarily resthetic is certainly impossible, for, were this true, all scientific engineering would have architectural value, which manifestly is not the ease. Works of engineering must thrill us with their beauty if they are to lay claim to the possession of architectural value.

It is ture, also, that certain indications upon the exterior of a building of the purposes for which the interior is to he used give satisfaction to the beholder, a satisfaction which often adds much to the resthetic value of the whole mass; but to hold that the indication upon the exterior of the purposes for which the parts of a building are to be used is necessarily esthetic is manifestly absurd, for such a principle wond insolse, in an ideal building, the indication by appropriate forms, or decorations, of the existence of menial ottices which we wish to forget, and which we must necessarily lose sight of if we are to enjoy the beauty of a building as a whole. The uses of a building, or of its parts, may be expressed in the forms employed, but the expression must be beantiful if it is to add to the esthetic character of the building.

As a matter of fact we have in this principle of Truth, of Sincerity, of Veracity, as applied to architecture, but a half truth, as the doctrine of Artistic Realism in all its molifications teaches hut a half trutl. The truth which, half expresied, has led to so persistent a life for this

TRUTH IN ARCHITECTURE

discredited realistic theory is this: that untouth, insincerity, lack of reracity, and pretence, are in general disturling, mpleasant, aml ugly; if a work of art, therefore, is to have permanent value, it must aroid the expression of untruth and pretence ; and the easiest way to avoid this expression of untruth and pretence is to bear in mind, and to some extent to express, the truth. The mere expression of truth, however, will not make a work of man's hand sesthetic: the asthetic quality is something which must be superadiled.

The aim of every artist should be to produce an object of perfect beanty, in whatever material he expresses his thought ; this he cannot well do if he shocks the observer with umreality ; and, if he be an ardhitect, he cannot succeed in producing this effect of permanent beauty in his buidings if he persistently lies about the construction he alopts, and deceives us about the uses of the apartments he erects; and this is due, not to the fact that where he succeeds the truth is expressed, but to the fact that lying and deception are in themselves anti-asthetic. On the other hand, mere sincerity and lack of pretence in one's architectural work will not make it artistic ; to this lack of deceit must be added the quality of beauty which brings to the masses of cultivated beholders a permanent feeling of pleasure. The greatest sincerity, if unattractively presented, can have no permanent esthetic value.

If the position thus taken be correct, then the architect may well make certain practical applications of the principles incolved in the guidance of his artistic effiorts. In the first place, he is taught that he should aim to aroid the pretence of constructional eftects which evidently cannot exist ; but, having done this, he must equally avoid the expressions of constructional effects which are not beautiful. It may be true, to take an analogy from a kindred art by way of illustration, that the human frame is largely made up of bone and muscle, and the artist-seulptor will certainly not morlel his figure so that it will appear to be apparently unanatomical; nevertheless, the most perfect reproduction of anatomical detail will not make a statue beantiful, nor would we consider the sculptor to be in any sense an artist who mate it a principle to represeut his human subjects as exceptionally thin in orler to emphasize the position of bone and musele which make their attitudes possible. Similarly is it true that buiddings conld not stand dirl there not exist certain balancing of forces, certain strains on material parts, certain lines of thrust and pressure ; but evidently, to strip a building of all beauty in order to express this balancing of strains and thrusts and pressures, would be manifestly absurd from an artistic standpoint ; the critic who so emphasizes the delight he

TRUTH IN ARCHITECTURE

obtains in the architect's expression of these physical forces that he finds in such expression alone the true essence of arditecture, is as abnormally warped in his asthetic development as is the surgeon who fims betuty in a skeleton, or in a fine piece of dissection, 11 in a skilful preparation of cancermas tissme.

The architect should aim at the production of a beautifnl building; to this rmb he must avoid obvions constructional untruth, whieh for most intelligent men is ugly ; and so lar as in him lies he should aim to emphasize the construetional and practical values of the parts of his structure; and this for the simple reason that such emphasis tends to be attractive to the intelligent observer : but he shonh never emphasize these constructional and practioal values at the expense of a liss of beauty, nor need he strive for this emphasis mess it is possible to gain it in a maner which will actually add to the permanent esthetic value of the buidding as at whole.

But as the arehitect should avoid giving the observer the shock which constructional untruth entails, so also should he aroid shocks of all sorts and kinds which involve more or less of ugliness ; and not infrequently he finds that, by the adoption of some scheme which involves a minor inconsistency of construction, he may avoid other shocks of much greater importance. The ideal architect, to be sure, would of course be able to aroid all shocks of all kinds, but the poor human being all too often finds himselt called upon to make a chonce of the lesser eril ; and surely the architect who is merely human should not he condemned if he ask us to overlook some inconsiderable montruth for the sake of the better aesthetic results he thus obtains. He may well argue that at hest we can express but partial thoth in any art. The truths the realist is wont to emphasize are only some of many which he chooses to emmsider, while he leaves out of sight many others which, but for mere convention, might as well be considered as those which he aims to express. The seulptor, for instance, artually assmmes in general a conventional falsity of colourlesmess which he asks us to overlook in orter that he may the hetter express certain beanties that are independent of eolour. So in architecture there are many other truths than those of structural thrust and strain, or practical nse, which all artistic architects (and even those who labour to express constructional rahes) have come to overlook entirely, and this with perfoct propriety in consideration of the fact that the end in view is the proluction of heanty ; e.g. they overlook the nature of their foundations, of the filling in behind their finished protective and ornamental stone facings, of the masonry and furrings back of their plastered interior wall surfaces. If, then, it be permissible, in the

TRUTH IN ARCHITECTURE
eftort to build beautiful mildings, to forget smme of many realities, why shomhl not the architect occasionally ask us to pass orer some slight structural disingenuonsmess, proviled he is allie by such means to promber a nobler type of beanty than were possible if he diel not disregan this minor inconsistency?

We have inherited from a long line of artist ancestors many architectural forms which have arisen from constructional usage, all tow often very falty from it modern scientific stame point ; for instance, we should not be able to enjoy to-tay the beanty of the maze of flying buttresses in the Gothic cathedrals hatd the medieval architects mmlerstond how to caknlate thrusts as aecurately as we do, and hat they expressed these thrusts logically. Thus it happens that inherited armitertural forms, more or less lugical, have been refined and beantified mitil they have beeme in themselves sesthetic elements capable of employment for the purpose of adding artistic puality to buildings, as the artist in colour addes to the value of his painting by his technique ; and there seems to be no manifest reason why the modern architect should not use such elements, as in fact his ancestors always have done, to beautify his work, withont tow great regard to their constructional worth, only providen he does not use them for purposes of intentional deceit.

Architecture, more than all the other arts, is replete with forcel compromises. A symmetrical exterior, for instanere, may produce asthetic results which could not he gained were all the minor lack of symmetries in plan emphasized unon the exterior. The artist must trust to his genins to determine for him how far he can afford to sacrifice one element of leauty in his eftort to gain another, and that be is an artist is attested by the fact that the truths he overlouks are forgotten by the observer in the heanty of the results attainet.

It is thus that great architects have almost invariably used whe constructional forms as merely decorative teatures, and if the heauty of the result is sufticient to arouse our enthusiasm we do not hesitate to condone the incomsistency. It is thus that the Romans so often used the Greece-korn orlers, being content to accept and adapt forms perfecterl by long use in other relations than those which were appropriate to their civilization, and in this alaptation adding elements of grandeur and proportion which lead us to werlook the illogical usage. It is thus tiat the Venetians used old constructional forms purely decoratively to add elements of beaty ta their well-studied compositions, and we forget the inconsistency in the joy we gain from the entrincing groupings in their waterside palaces.

It is, of course, to be conceded, as has been

T SQUARE

suggested abore, that the ideal arelitect or race of architects would avoid such inconsisteneies, lont even in the work of the Greeks, which reatches the highest graule of consistency, we find, e.!f. in the triglyplis, the modillions, the dentils. of their masomry temples, the use of furms which had been perfected in wooden structures and whieh were used decoratively, but not as trnthfully, in stone constructions. In the development of the Ciothic cathedrals, which many think of as the only examples of an architerture of thoroughly logieal construction, we can easily trace the same practice, when, for instance, we note the blundering stepis by whiclo the columns of the basilica, used first as mere columms, were gradually transformed into buttresses when engaged in the walls, or into piers where standing isolated and free.

In conclusion, then, it appears that the expression of constructional truth in architecture is only one element amongst many which are at the command of the artist-architect for use in the production of beantiful buildings, - a most important element, indeed, and one which, if skilfully used, must ald great satisfaction to the trained observer, one, also, which cannot be disregarded withont great risk of ruining the beauty of the building in which the architect is expressing his thought. But for all that, we are compelled to agree that in many cases this constructional and practieal worth may quite properly be subordinated to otlyer elements which are incompatible with it, provided the latter, without it, are capable of producing resthetic results which with it would be impossible of aehicvement.

- Henry Rutgers Marshall.

T SQUARE. (See Tee Square, under Square.)

TUBULAR. Haring a section like a tube of any shape ; thus a tubular giver is a built-up plate beam which is a tube of rectangular section.

TUDELLA ; sculptor and architect.
Studied senfpture in Italy, and in I528 establishel himself in Zaragoza, Spain, and worked on the clooir of the cathedral in that city.

Bermulez, Diccionurio; Viñaza, Adeliciones.
TUDOR ARCH. (See muter Arch.)
TUDOR ARCHITECTURE. The aceession of Heury VII. to the throne of England marked the beginning of a period so distinct in the architectural history of England that it has heen customary to describe it by the name of Henry's Welsh family, Tudor. No one period of English listory is more interesting than this, eovering the reigns of Henry VII., Henry VIII., Edward VI., Mint, and Elizabeth, a long and eventful perind reaching from 1485 to 1600 . The later work is nften separately designated as Elizabethan, but there is hardly sutticient change in character to make a real division.

TUDOR ARCHITECTURE

With Tudor times an enormous impetus was given to house-building by the general tendency toward more comfort and luxury, and this was further accelerated by the dissolution of the monasterics, which put land and wealth in the hands of the layman.

The great lurd and landowner was not only the head of his family, but the head of a host of retainers of every deseription, from lesser nobles and knights down to the artificers in the various trades. The keeping up of such a retimue and establishment bred hospitality, and also led to a demand for private apartments for the family, where some retirement from the motley turnoil was possible.

The plan of the house had developed from two directions toward a similar end. The buildings grouped about the irregular castle court grew into the group which sumromded the regular quadrangle. The great hall of the manor or grange was extended laterally, and then at right angles on the two ends, until it also enclosed a quadrangle, or at least bounded it on three sides. Modifications of this plan gave the \mathbf{E} and the H plans. These then, the quadrangle, the \mathbf{E}, and the H, are the general types of Tudor honse plans.

The elimate called for substantial material, light on the soutli, shelter on the north, steep roofs, many fireplaces, and abundant admission of sim. Thus the English characteristics of Tudor work have their natural explanation, buildings long and low, with steep roofs and gables, with many tall chimneys, and great glazed bays.

Of the rooms, the liall, although no longer so all-important as in early days, was still the most important feature, and the stairs, but recently mere squared logs going up between walls, were now an espeeial object of decoration. Oak was almost invariably the material. The stairs had close strings, and the balusters and panels forming the balustrade were often profusely carred in a manner whieh suggested the influence of the Italian Renaissance, and yet was distinctly English. ${ }^{1}$

Indeed, u_{1}, to the time of Grinling Gibbons, there was no carving in England whieh approached in skill and dexterity the work of Italy and France. It was coarse, often grotesque, but generally wefl-plaeed, effective, and well understoot in relation to the arehitecture (this latter an especially valuable quality, and one liable to be urerlooked when the technical skill of the earver attracts too much attention).

Althongh Gothic work was now a thing of the past, in nothing is its influence su clearly seen as in the windows, which, throughout the Tudor perion, remained subdivided by mullion and transom, and thas permitted the retention and development of the many-sided bay so char-
${ }^{1}$ For Italian influeuce under Henry VIII. see England, Architecture of.

TUDOR ARCHITECTURE

The intermor of the Chapel of Itenry Vil., Westminster Abbey, London. This is the typical hidding of those which can properly be called Tudur. for it was begun within fifteen years of the accession of the Tudor dynasty in the person of Ilemry VII. (I45\%), and it is the first important momment of the peaceful times succeeding the civil wars. The
pieture shows the soutl flank of the extrandinary brass screen whieh surrounts and almost hides the altar tomb of Henry V'II. and his wife, Elizabeth of York. Through the central door is seen the ambulatory of the Thes and the screen of Edward the Confessor's Chapel. The stalls are appropriated to the Order of the Bath.

TUDOR FLOWER

TURKISTAN

acteristic of the English country honse, both as an external feature and as a marked characteristic of the hall and dining room, in which it was most frequeutly fomel.

With the growth of the arts and the new larning more space was requiral for pictures
toric or unknown antiquity; the work of uncivilized people; especially a barrow or grave mound; but applied, as the origin of the word warrants, to artificial hills intended for sacrificial purposes, the ruins of fortifications, and the like. (See Mound.) and books, and this may have in part accounted fir the long galleries which were so striking a feature. These rooms, or curriclurs, were generally on an upper floor, often ruming the length of the house muler the roof, and of such size and importance that the English artist loved here to display finc panelling, marble mantles, and richly motelled reilings.

Tumlles in the Orkyey Isifyns, Section showivg Separate CHAMBERE FOR JCRIAL MADE of Flat StoNen.

In the reign of Elizabetl Italian influence was more clearly felt, and classic detail was pretty generally adopted, but the main lines were still Tudor. Under her successor, classic really began to rule, and a distinct style arose known from the Stuart family as Jacobean (which see).
(For ecclesiastical work in Tudor times see Gothic Arehitecture in England.)

> - R. C. Sfurgis.

TUDOR FLOWER. An ormanent of late English Gothic art ; a trefoil Hower developed from the upright points of the erossing or the cusps of the foliated arch.

TUDOR ROSE. (See unler Rose.)

TUILERIES, PALACE OF THE. In
Paris: huilt originally ontside the walls. It was admed to hy many sncceeding princes, but never served is the principal royal residence until the Revolution, when Lonis XVT., heing brought into Paris by the mob, took up his quarters there. Sapoleon, the kings of the Fiestoration, Louis Plilippe, and Napmleon III. lived there, except when brief visits were made to Compiègne, Saint-Cloul, or Fontaineblean. The building was entirely destroyed by fire in 187,

TUNISIA, ARCHITECTURE OF.
 (See

 North Africa, Architecture of.)TUNNEL. A passage or conduit excarated through solid rock or gromid, or below the surface of the earth, or built under water in crossing a river, or the like, for a highway, for a railroad, or merely as a culsert, or for sewer, gas, or water pipes, or electric wires.

TUPIK. (Written also tupiq, tupic, tupek, and tupeck.) From the Eskimo; a tent. In the milder Arctic weather the Ighand Iglugeak become uninhabitable, the former because of the dampness, and the latter becanse the dome melts and falls in. The Eskimo then resert to tents. Some of these resemble the ordinary Tipi, but have no smoke bole, the fire being built outside. while others are of a horseshoe shape, and still others are similar to our "A" teuts, but with rounded ends. These variations belong to difterent localities. Skins are the usual covering. Sumetimes two or more tents are placed together. (See also Karmang.)

Tuiner, 11 th An. Bu. Eth.; Murdoch, 9 th An. Bu. Eth.; Boas. 6th Au. Bu. Eth.: Peary, Jorthucerd; Nansen; link; Ross; Hall.
-F.S. D.
TURKEY, ARCHITECTURE OF. (See Moslem Architecture; Roman luperial: also Asia Minor, Architecture of ; Balkan Peninsula; Egypt; Syria.)

TURKISTAN, ARCHITECTURE OF. Tliat of the country lying immediately north of the modern kingtom of Persia and state of Afghanistan, extemling from the boundaries of and its mins cleared away in 1885. The original design of Sean Bullant is of incomparably more consequence than any of the later additions, and can be seen in Du Cercean's Bastiments de la Fronce. The garden of the Tuileries is one of the public parks of Paris, and contains some important pieres of seulpture. - I2. S.

TUMULUS. An artificial mound of prehis-

TURKISTAN

sixteenth century of our era and previous to that time. The term Turkistan is mure properly applied to this country than any other gengraphical expression, betause the tendency of modern etholugical and geographical writing is to speak of the ruling races which originated here as "Turks," using that term in a general sense. The conquering Khans of the eleventh, twelfth, and thirteenth centuries of our era are considered Turks as much as the Seljuks or the Ottomans.

The country has been little visited by any European who has had a sense of architectural art, but recent travellers bave at all events taken photographs which have been published in their volumes. One traveller in Turkistan hatl, howerer, a marked feeling for architectural fine art, Eugene Schusler (11. July, 1890), who travelled in the country in $1555-6$.

The fine arts of the country have been greatly influenced by Chinese example: but it is not in architectural art that the Chinese influence could be most weighty. ln the northeast, between Tashkand and Kuklja, there are the mins of cities in which Chinese building had eridently controlled the design, and in Kuldja itself the ancient buildings hare been ruined and this city; though close to the Chinese frontier, is almost wholly a Turki town. (See China, Architecture of.) It is a Persian inthence which is the most risible in all the architectural art known to us; but this not exclusively the influence of the Persian art of the fifteenth century and following rears with its strong tendency toward decoration, both external and internal, by means of glazed tiles in brilliant colour. It is rather a more ancient Persian art dating from the early years of the Moslem control, or ronghly speaking, from the eighth to the twelfth century inclusive. As has heen pointed out in the articles on Persia that land has always been a centre of decorative art, its intuence felt orer the whole of Western Asia and thence by the whole Byzantine empire and indirectly Eurone itself in the earlier Middle Ages. This exceptional mastery of artistic design was dereloped in a more strictly architectural sense after the beginning of the elerenth century of our era, and the buidings of the cities named in the first paragraph abore, though none hare been explored and studied of a certain date earlier than 1150 , are all of a Persian type, giving distinct evilence of a still earlier influence coming from Persia and developing in the comparativels uncivilized northern conntry in a slightly different way from that of the Persian cities.

The four-centred pointed arch characterizes these buildings from the twelfth century to the latest epoch; simple anl umbroken masses of wall decorated with patterns in colored brickwork or in slight reliet of bricks set horizontally,
verticalls, and at rarious slopes in the ontermost shell or face of the wall are common methods of decoration. The round minaret at Fokhara is a simple truncated cone with very stee], sides, crowned by a eylindrical chamber like a belfy carried in slight projection by a system of corbelling: and this structure from base to the springing of the corbel course is absolutely unbroken by window or risible door (the entry being from a small building adjoining) and is adorned merely by horizontal bands of colour sparingly and most judicionsly applied. The mosiques on the great square at Samarcand, called by Schuyler, The Medressels, Shir-Dar, Tilla-Kari, and Clug-Bek, hare each a superb porch with a rery lofty arch dividing the whole mass of the central parilion into two heary piers: wings with much lower walls are Hanked by conical minarets. The Nedresseh Shir-Dar has lost the crowning chamber or gallery of its minaret, but has preserved the corbelling which once carried it, and a cupola with the lofty and circular drum concealed from the front br the lofty porch is attractive from the rear and side. A similar cupola crowns the celebrated Guramir, the supposed tomb of the conqueror Timur (d. 1405) in the neighborhood of Samareand. The much later palace at Khokaud retains some of the features of these oller buildings, but is very inferior in dignity of mass or in grace of proportion. It is, moreorer, covered by diaper patterns rery ill-imagined, accorling to the too common tendency of modern Persian art, which seems to assume that there cannot he too much of such covering patterns. (See Decoration: Diaper ; Polychromy.) At the city of Turkistan, in the far north, is the rery ancient tomb said to hare been begnm by Timur, and there is also the mosque called Hazret, or the Divine Presence, which was certainl! built by that conqueror. These buildings, dating from the last few sears of the fourteenth century, still retain some part of their admirable tile sheathing.

Samarcand, in the fourteenth century, was certainly one of the most magnificent cities on eartl, and carefully managed exploration in this town should result in a great enlargement of our knowledge of the principles of Asiatic architecture.

The simple buildings of the people and the relics of ancient architecture before the time of Ioslem intluence coming from Persia are alike unstudied and unknown except for the occasional eridence of photographs taken for another purpose. Tine opportunity for enlarged archreological research in the one case, and of social study in the second, with the architectural interest inherent in both would seem to lie unsurpassed by that of any region in the world.

Bigham. A Ride Through Western Asia. 1807; Schuyter. Turkiston. Votes ni a Journey in Russian Turkistan, Thokand: Bukhara, and Fuldja,

TURKISII ARCHITECTURE

Interior of the great Mosque of Sultan Suleiman \mathbf{I}. (Sulemanioh). 'This is the most important piece of 'Turkish arehitweture, and was built in imitation of the charch of s. sophiat, at least in so far as the eupola and pendentives are concerned. stained glass is remarkable as the most important display
of non-European work of the sort. The legend is that two pieces (not shown in this I'late) were taken in war with the Persians, and that the others were copied or studied from them. 'T'he building dates from the middle of the sixteenth century.

TURN

2 vols, 1877 ; Vambéry, Bohhera, 1873 ; Central Asia, 1864.
-R. S.
TURN (r.). To lay up, as an urch, in brick or stone on a temporary centring.

TURNBOUT Same as Tumbuckle.
TURNBUCKLE. A right and left screw coupling in the form of a link, both ends of which screw on the separated ends of a roul or bar, so that by turning the buckle the tension of the rod or har may be increased or diminished at will. It is often used in setting up a truss.

TURNING PIECE. A picce of buard cut to a eurve to guide the mason in turning any small areh for which no centring is required.

Turret: Tower witu Staircase Turret; Goring, Oxfurdimite: c. 1120.

TURPIN, JEAN : architect and sculptor.
With Antome Avernier, Arnoul Bonlin, ann] Alexandre Huet he mate the stalls of the cathedral of Amiens (Somme, France), finished in 1522.

Gilbert, Cathérlrale d'Amiens.
TURRET. A small tower; especially one attached to a larger tower, as where an échanguette or stair turret rises above the platform of a fortified tower, or where a circular stair is built at an angle of a church tower to lead to the belfry.

Pepper Box Turret. A turret circular in plan, and with some form of conical or domical roof.

TUSCAN ARCHITECTURE. A. That of the ancient Etruscms (see Etrisean Arehitecture).
B. That of modern Tuseany at any epoch, especially any style taking shape in this region

TUSCAN ORDER

and not extending much heyond it. The most important of such styles is the round-arebed

Turret; Glastonbury Abbey, c. 1200; It covers the Head of a Winding Stalk and gives Access to the Roufs.

Gothic, exemplified by the Loggia dei Lanzi and the Bargello, or palace of the Porlesta, both in Florence, and the cathedral of Luerit, and other buildings, a style which was mainly Gothic in

Turret; S. Mlary's, Beverly; c. 1450.
structure with its system of hailding received from the North, but protested against the worthem style as a decorative system.

TUSCAN ORDER. One of the three Roman orders of architecture according to Vitruvius; one of the five recognized by sixteenth century

TURRET; TOWN HALL OF SAUMUR, WITH TWO ANGLE TURRETS OR ELHAUGLETTES.

TUSCAN AROHITE'TURE: CATIEIPRAL OF LICCA, GOTHIC IN STRUCTURE HUT ITALIAN IN DESIGN:

TUSK

writers. It resembles the Roman Doric, but has fewer and bobler mondlings, no triglyphs, and no decorated details. In neoclassie work the shafts are sometimes. built with rustieated hands, aml, in a superimposition of orders, its place is in the hasement.

TUSK. A berelled shouliler on a temon to give it arhlitimal strength, the mortise being cut to correspond.

TWO - PAIR (aljectival term). In a Lomdon lorging house, helonging to the thirl story, aeeessible by two tlights of stails. The two-pair front is the front rom of the third story, counting from the street, or the secoml story in English usage.

TYMPAN. Same as Tympamum.

Tympanca of a Window in Eq-Babah, Syria; Јтн TU ©́th C'E天tuky
TYMPANUM. The triangular recessed space heneath the coping of a perliment and between the raking connce of the roof and the horizontal geison below. Also the slab or piece of walling which is used to fill up the space between an arch and the square head of a door or winduw helow. This may be a single stone, or, if of small parts, it may rest upon a lintel. It is often usenl for rich decoration, and in large Gothic churches it maty receive the richest relief sculpture, as seen in Vol. II., I'lates I. and IV., and cut col. 203. The term having merely the general signifiance of a smooth, thin plate or membraue is applied also to a panel by writers who take the worl in this seuse lirect from Vitruvins, IV. 6. (Comprare Limette.)

TYROL, ARCHITECTURE OF. (See Austrian Stater.)

TZAPOTECO ARCHITECTURE. That of the American Imlians of the Tzajniteco stock, whose country was sonth of the Aztee, and who rivalled the latter in their architectural works, still exhibited in the ruins of Mitla. (See Mexico, Arehitecture of, I.)

TZOMPANTLI. All Aztec building erected for the purpose of receiving and executing prisoners of war, and for dividing their flesh among the proper recipients. (See Mexico, Architeeture of, s. I.) -F. S. D.

U

UCCELLO, PAOLO DI DONO; painter; b. 1397 ; d. 1475.

UNDERPINNING

A mural painter at Pisa aud Florence. (In the Ceneral Biography, (rowe and Cavaleaselle ; Vasari: Nagler: alsu Miintz, Renaissance.)

UDINE, GIOVANNI DA. (See Ricamatori, (fiovami le'.)

UPFIZI. (hn Italian, Gli Uttizi, "the offices.") A building in Florence of which the "मpermost story is used for a museum, one of the most important in Enrope.

ULPIAN BASILICA. (See Busiliea of Trajan.)

ULRICH VON ENSINGEN ; arehitect ; (3. 1429 .

Ulrich from Ensingen, a village in Switzerland near Fribourg, was chief architect of the eathedral of Ulm (begun 1375) from 1390 , when the must important part of the construction was actually undertaken, until his death in 1429. From 1410 to 1429 he was also employed in some caparity at the cathedral of Strashurg. In 1:387 he was called to Milan to adrise concerning the construction of the eathedral. He was succeeded hy his sons, Gaspard amd Mathias.

Hassler. L'mas hunstgrshlirhte im Mittelalter; Gérarth, Luss Artistres de ì Alsure; Schneegans, Les

UNBURNT. Not baked, or fired, in a kiln; said ot articles of chay such is in most cases are su completel by exposure to heat. Unburnt bricks are very common in Egyptian aud Syrian builking.

UNCOURSED. Masonry not laid up in eourses or layers with eontinuous horizontal joints, but irreguarly. (See Ashlar ; Course; Masnnry.)

UNCTORIUM. In the Roman baths, an apartment used by the bathers for amointing the borlies with oid or some unguent, which was then serajeel off with a strigil. (Called also Elieothesium.)

UNDERCROFT. Any vault or secret passage undergromud.

UNDERCUT. In carving, as in high reliefs, cut away beluind ; said of the background or of the whole earving, the figures stamding elear, or nearly clear, from the backgromal.

UNDERDRAWN. Closed beneath, as by lath imcl plaster, or by botarding, as when a Heror previonsly of exposed timber is elosed for greater warmoth or prevention of sound. By extension, having the whole structure of a ceiling put in, as leneath the roof of a cottage, leaving a garret above.

UNDERPINNING. 1 . The rongh walls or piers supporting the first Hoor timbers of a building without a cellar. The upper part of a foundation wall showing ahore the grade and under the water table, or groumd sill. In N゙ew England often nsed for the masonry fomdations, as in a house otherwise built of wood.
B. The material and labour used in replacing,

TYMHANUM OF DUOR; CHURCH OF S. JEAN゙-BAYTISTE DE BELLEVHLLE, PARES.

UNDERTHROATING

in whole or in part，an old or infirm foundation wall with a new wall，or in exteming with new material a wall already built to a lower and more stable hottom．The terms also applied to labour and material employed in the reconstruction of an old wall，so as to furnish a new and perma－ uent bed for it stone or beariug for a beam．（See Shoring．）

UNDERTHROATING．The cove of in outside cornice when so treated as to serve as a drip．

UNDERWRITERS＇DOOR ；FLOOR ；ete． An applianee，or fitting，of the form and stme－ ture approved by the insurance companies as not calculated to burn readily or to help the spreat of fire

UNDULATED．Arranged with a wavelike form or movement，as in a guilloche，or in any other decorative feature．

UNGEWITTER，GEORG GOTTLOB； architect；b． 1 パこ0：d． 1864.

In 18.37 he entered the academy in Munich． In 1842 he settled in Hamburg，and afterwand mactised in Liibeek amd Leipzig．Ungewitter publishel Lehbuch der Gothischen Fonstruc－ tionen（Leipzig，1890－J89．，：－vols．4to）； Gothische Stalt whd Laullaïser（Berlin， 1889－1890）；Gothische Motzuthitektur（Ber lin，1889－1890，folio）．（See Statz．）

Reichensperger，firorg Gotlloh Ungewitter．
UNITED STATES，ARCHITECTURE OF．That of the whole teritory of the republic， as it was after the Gadsden Purelase in 1853.
§ I．Pre－Columbian Eia．The arehitee－ tural constructions of the aborigines of America

［Titen States：House at Pigeun Cove，Mas＇，］lit3．
branehes of trees to stone；even to snow and the bones of whales．And the structures were given almost every possible shape；square， round，semicireular，oval，triangular，rectangu－ lar，conical，and domed．The methods of erect－ ing embracel framing，wattling，masonry，pisé， jacal，and others．Many structures were only of one story，but some were of four or five． From the rude bongh wickyup of the Arizona Pai Ute，lightly abandonel on every change of camp，to the massive and claborately oma－ mented stone buildings of the Maya of Yucatan， is an immense range，greater than can be cise－ where studied within our historie period．It is possible，therefore，in Anerica to take up the study of house building where the thread is lost in Emrope，and with both follow the line of development from the wickyup to the larthenon．Examples of almost every form of dwelling possible for mankind to devise exist still in America，occupied or in ruins．Appar－ ently the very beginning is in the sun shelter， of which there may yet be observed specimens in temporary use among American Inlians． Passing into the wickyup，type，then into the more substantial and permanent wigwam，the adobe house and the durable stone house were finally arrived at，all forms being determined by culture stage and hy environment．Forest regions developed bark honses ；polar regions， snow houses；treeless plains with large game， portable tents；arid regions，where disinterrat－ ing elittis offer aimmdance of ready－made building material，stone houses ；broud，dry valley＇s with little timber ur stone，and no large game，mud or atobe houses，with a growth from isolated one－family structures to linge commmal atfairs，half fortress in charac－ ter．No better exhibition can be fomm of the manner in which man in all stages of bulture adapts himself to varying combitions，than in this wide range of Americall aboriginal arehitecture．Ma－ terials are moukded to his needs acrord－ ing to his degree of progress．With nothing better in the way of an axe than a broken stone，trees were folled for frames，or lintels，or rafters．Logs were split into planks by means of Wroden or hone welges，and dressed with adzes of jade，serpentine，obsidiam， or similar stone．Elaborate carvings in woul and stone were cxechted with stone
were，and are，exceedingly varied in form，loca－ tion，materia？，and method．Almost every kind of position where a house or village might be established，according to expedience or necessity， was adopterl，fiom the immediate shores of the sea to almost inaccessible ledges in mighty elift＇s of the far interior．Almost every ma－ terial available for buidding purposes，except－ ing metais，was utilized，from mere twigs and
and sheil chisels，and knives．Roofs were mate of bark，of skins，of snow，of woven hark mats，or of timbers，reeds，earth，or stone．Within the limit of the United States are fomm examples of most of the methods of construction employel，eulminating in such sul）－ stantial buillings as may still he seen in the vari－ ous oceupied villages of the Pueblos，like Tas， Zuni，and the towns of the Mokis，and in the

UNITED STATES

numerons ruins seattered over the Sonthwest, like C'asa Graude, the Clift Dwellings (which see), aml thuse of the Peros aml the (hatco, the latter representing the highest ituality of masoury to be fomm merth of Mexico. Metal tools were not used north of the Aztec comntry, and nowhere, priur to the Emopean advent, was metal in any way a part of the construction. (See Mexiee). Architecture of, S I; Assembly Ifonse ; Cajon ; Communal Dwelling ; Jaecil: Kiva; Loudge: Mouml; Pisé; Tipi; etc.) - F. S. Dellexbaugh.

SU. Morlern Era. As a rule, the architecture of the territory comprised within the present limits of the United States was English in its wigin, and the prevailing influence continued to be English down to the third quarter of the nineteenth century. The exceptions to this rule may be briefly noted. The Atlantic seaboarl, which inclucted all that there was of the United States when their independence was ileclared, incluted lands uriginally set tled or claimed by Spain, Holland, Sweden, and France, as well at hy Great Britain. The oldest settlement on the coast was the Spanish Simint Augustine ; but Florilat did not become al part of the United States until 1821. The prineipal relics of the Spanish domination are the cathedral of S . Angustine (1993), and the fort now called Marion (1756). In California, Arizuna, and New Mexieo, which were not aepuired by the Unital States until 1848, there are no Spanish huildings comparable in extent or costli ness with the chur hes of Ond Mexico. The Spulish manner of building appears to hatre extemided northward from Flurida to South Carolina, in at least one noteworthy instanee, that of S. James's Chureb, at Goowe Creek, on the Cooper River, built about 1 ilb. In this edifice the indications of Spanish workmanship are ummistakable. In its present condition, it shows that preparations had been made for surmounting its front with the eurrilinear serecu, or sham gable, which is a characteristie feature of Spanish ecclesiastical architerture : although it does not appear that this frontispiece was ever, in fact, addel. The tetall elsewhere is equally Spanish. Apart from a few detached chur hes, the principal remains of the Spanish domination, of what is now the Pacifie slope of the United States, are the buiblings of the Catholie missions, each group of which inchutes a church. (See California Mission, under Mission.)

The only relics of French colonization within

UNITED STATES
the limits of the Lhited States are in Lonisiana, where there are traces of the successive ocerpations of France and siain. Fommed by Bienville, in 1718 , New Orheans contimed to be hell hy the French mutil IT69, when Spain took formal possession under a cession granted in 176\%. In Is00, the French retook gossusion umler the treaty of san Helephonso, and, in 1803, Loulisiana was acquited by the United States. Perhajs the only relic of the original French orpuration is the Trauline consent, now known as the Arrhbishopis Palace, which was erected under bienville's atministration, in $17 \bullet 7$. It is a plain bulding of two stories, in stncened brick, with a central pavilion erownel with a low peliment ; but in spite of its planmess, it hats enough of architectural character to indicate the nationality of its huiders. The most conspienoms monument of the Spanish dommation is the cathe-

dral, built in 1794, but named after the patron saint of France. Fronting an open square, and with the flanking municipal buildings of sturcoed brick, it makes a smmewhat pretentions architectural compusition for a colunial capital. of no more importance than New Orleans was when it was built. The mansard roofs of the Hanking buildings are later additions; the original scheme having been that of the UTsuline convent, a nearly cqual triple division into two wings, aud a central parilion crowned with a low pediment. These buildings also are of two stories only. They are very massively built of brick, and derive some importance from their size aml solility, if not from their rlesign. The cathedral seenis to have been originally designed in the Spanish, or Spanisin-American manner, with a frontispicce, consisting of a free stauding gable, and a lower roof behind. But the existing flanking and central towers, which are no

UNITED STATES

more congrunts with the front than admirable in themselves, were adilal in 185l, together with other alterations that obscure the original design. The domestic building of the New Orleans of the eighteenth century, so far as can be julged by its dilapidated remains, was much more Spanish than French, showing the leary spanish tilel roofs, and the deeply re-

UNITED STATES

stone, sparingly garnishet with brick, or, more commonly, rectangles of stonework one story high, with roof gables of timber, and the eaves projecting beyond the walls, a protective ilevice, which gave the buikling its only touch of picturesqueness. Specimens of these are still mmmerous in that part of New Jersey behind the Palisades. The Van Cortlandt

United States: Farmhoese sear Hlngham, Mass.
cessed upper galleries, suitable to a tropical climate, and also the massiveness of constmetion which has preserved dwellings originally humble, where they hare not been demolished by fire or by design.

The Dutch settlers on the Hudson. as well as the Swedish settlers on the Delaware, followed their natire modes of building so far as possible.
manor honse, on the east bank of the Hudson River, was built in 1681, and the Slip house, on Bergen Heights, in Jerser City, in 1666. The older part of the Philipse manor house, now the City Hall of Vonkers, was built in 1682, by Fraleric Philipise, the richest merchant of his time: and the rudeness of its interior workmanship attests the absence from the colony of skillerl earrers in mood. The brickwork of the period is rery good, but both bricks and bricklayers were imported. But, non the whole, the buililing of the Dutch settlers was so simple and humble, and so exclusively for the satisfaction of the borlily wants, that it caunot he callerl archi tecture. How simple it was may be judged from the fact that what was really a "specimen " of Dutch architecture, the sorcalled "Yimulerheyden Palace" in Albany. built in 17-5. was a building of two stories, measuring 50 feet ly 20 , and with but two rooms on
U'ited Stites: Roger Willlans House, Siley, Mass., 16335.

It was not, howerer, until toward the close of the serenteenth century that ther were able to build of substantial materials. It is not probable that there are a dozen buildings left standing in the region settled by the Dutch, which antedate the final British occupation of Now Fork in 167t. The firmbouses built in the Dutch manner after that time were of rough
the ground floor. The clumehes were as plain as the dwellings, mere " meetinghonses," as may be seen in the only one that remains. that huilt at Sleepy Hollow, in 1699, br Philipse. This is a room of moderate size, enclosed in walls of rough stone, with window arches of yellow Holland brick, its ecelesiastical claracter being denoted by the tall undivided windows, anl the apsidal end.

United States: Church at Hingham, Mass., 1681.

United States: The Royall Mansion, Medford, Mass.

UNITED STATES

Perlatis the only remaining lmildings of the Swedish settlement upon the I Claware are two ehurches, almost exactly contemporary with the last mentionen, and with each other. The "Ohd Swelles" chureh, at Wilmington, was begun in 1698, and was consmated on Trinity Sunday,]699. It is a rectangle of rongh stone, 66 feet long, 36 broad, and 20 high, with walls

Usited States: Old State Holse, Bostox, 1748.

UNITED STATES

English workmanship. The original building was plain to absolute haldness, for the few details that show a decorative intention are evidently of later application, and in wood.

The oldest church still stauding upon the Atlantic seaboard is, undoubtelly, S. Luke's, near Smithfied, Virginia. To this local tradition assigns the date of 1632 . It seems incredible that an erection, showing so high a degree of mechamical skill, and so considerable an expenditure, should have been made within twenty-five years after the settlement at Jamestown ; and it is likely that tradition confuses the existing builling with an earlies one upon the same site. However that may be, the church was rloubtless built before the last quarter of the serenteenth century. It is a room ot 50 feet by -0 , with a tower I8 feet square by ahout 50 high, all in very substantial hrickwork. Its evclesiastical character is demoted not maly by the rulely pointed arches, but hy buttresses which seem to be withont any architectural significance. The tower is hearily groined in brickwork, howerer, ant the keystone of the roundarched duorway projects. Upon the whole, it is such a buililing as an English bricklayer, working with English bricks, from a recollection of current English church building, might have been expected to produce, charing the reign either of Charles I. of of Charles 1I. That it is the oldest church in the Lnited States
varying in thickness from 2 to 3 feet, with openings arched and groinel in brickwork. The existing porch, built mainly as a buttress for the walls, which had shown a langerous weakness, wats not added until 1762 , nor the existing tower until 1802. Although the pastor of the church was a Swerle, the workmen employed upon it were Englishmen from Philaitelphia, and what of architectural character the building can be said to possess is English also. The "Old Swetes" church in Philadelphin was built in 1700. This is in brickwork, and very good brickwork: but is also an example of
is wery probable, even if we deduct half a century from the duration assigned to it hy tradition.

It was not until the eighteenth century was well advanced that any churches of architectural fretensions began to be erected in the European settlements in America, aml these were all based upon English models. The earliest of them, S. Philip's, at Charleston, was bnilt before 1733: ant it is to this, doubtless, that Burke refers in the "European Settlements in Amerim" ($15 \overline{5}$), as "a church executed in rery handsome taste, exceeding any-

UNITED STATES

UNITED STATES

thing of that kind that we have in America." This church was burned in 1835; but its successior is an execution of virtnally the same design, exempt that the spire has been elongated. The name of the architect is not known. Of the other parish church of Charleston, S . Michaul's, it has been compectured that the "Mr. (iibsm," from whose designs it was said in the newspapers of the time to have lneen erectell, was, in frect, James Gibbs, then the

United States: House on Long Island.
most fashionable chureh architect in Lomlon. S. Michael's was begun in 1752, and Gihbs died in 1754. There were no churehes of as much architectural pretensions, nor in as pure and scholarly a style, as these two in the more northerly settlements for many years after they were built. The Old South in Boston (1729), and Christ church in Philatedphia (1727), were practically contemperary with s. Philip's in Charleston. The former, as an arehitectural work, is entitled to no consideration. The designer of the latter, a loeal amateur, Dr. John Kearsley, hatl evilently studied the classie orders. The gallery is recognized and emphasized in the design, to the extent of dividing the lonilding into two distinct stories at the siles. The end is madivided ; and is converten into a grandiose and very fairly successful feature, it Palladian triple wimlow, with the central arch siprong from the cntablature that envers the lower openings of the sides, with their order of pilasters, and, above a heary cornice, a blimi attic and a peliment. All are accurately proportioned and detailed. The lark of available stonecutters compelled the construction of the more elaborate parts in woul, or, as in the entablature of the front, in brick, the boly of the chuch being very grod brickwork. The steeple was not added motil twenty years after the completion of the church. It has nothing admirable, exeppting the stage of transition from the sifuare brick shaft to the netagonal spire, whiel is a very well considered picce of design. The interior, as "restored" hy Thomas U. Walter, in 1836, is a grammatical design in Ronan Doric.

At this time, and for long atterward, there was mot a church in New York, nor in New Englanl, that showed any architectural training on the part of its designer. Peter Harrison, a
pupil of Vimbrugh, was importen in 1747, to design and superintend the buikding of King's Chand in Boston, which was exernted acerding to his design, and is fairly represcutative of the English arechitecture of the time; althongh the spire has never been added, and the prortico, which is its most important leature, was built in wool. The first picce of architecture incorporated in, or rather adjoincel to, a church in New York, was the portier, fronting Broadway, of S. Paul's church. The lowly of the church was completed in 1766 ; but this purtico seems to have been arded firm the designs of Major Charles LEufant, about 1789, when he was enployed to colarge, embellish, and convert into "Feteral Hall," for the rereption of Congress, the old City Hall, built in 1700 . The spire of S. Piul's was added in the nineteenth century.

The secular puhbic buildings erectal during the colonial perion, were, for the most part, cheaply and hastily built for their immectiate requirements, and it was only towart the close of the perion, politically colomial, that they twok on any arehitectural pretensions. The New York City Hall, occupied in 1700, and afterward extended :und embelishen by L'Eufant, as ahready explained, for a Federal Hall, stood until it was demolished to make rom for the customhouse, now the sulbtreasury, in 1834. It consisted of two wings and a recessed centre, twn stories high ; and without other ornament than the woolen brackets of the roof, and the coats of arms of the governor and lientenantgovernor. The State House of Pemnsylvania,

United Stites: Van Riwssflater House, (ikemencish, N. Y'.
letter known as Independence Ilall, a generation later in late (1731-1735), like the contemporaneons Christ Church, harl an amateur architect, Andrew Hamilton, well known as a lawyer. It is a sober, discreet, aud still respectable edifice, especially notable for an employment of eut stome in the groins, pancls, string courses, and keystones, which was then profuse. The State House of Virginia, at Williamshorg, built hefore 1723, is now known

UNITED STATES

only from Jellerson's description, which represents its only architectural feature as a portico of two orders, which Jefterson eriticises. This was doubtless of wood. The still standing capitol at lichmond was built from the design obtained by Jetlerson in France of " M. Clarissault" (?), and its Ilesign was compounded of those of the Erechthemm, of the temple of Bialbee, and of the Maison Carrée at Nimes; but the mordel most closely followed was the last named huilding, though the order, "on aceonnt of the expeuse," was changed from Corinthian to Doric, and Dorie of the ltalian Renaissance. The State House of Marylanl is one of the civic buthlings, the other being S. John's C'ullege, which combine with many private honses, which have been earefnlly preserved, to make Amapolis the most interesting muselm of Georgian architecture in the United States. The college was built in 17 ± 4, by a Scotch architect, specially imported for the purpose. That is of slight architectural im-

United States: Vassald Maxsion (since 1837 Longfellow's Hutise), Cambridee, Mass., 1759

UNITED STATES

Jefferson, belong also to colonial architecture, though they form an exception to the rule that colonial building was Euglish building. Jefferson's studies and travels had put him in architectural, as well as political, sympathy with France. As we hare seen, he employed a French architect to design the Virginia State Honse ; and his own work, though he intended it to be an accurate reproduction of the antique, is in a somewhat French rersion of classical. His plan fir the university was really grandiose in scheme and seale, and, althongh want of means impaired the complete execution of it, what was done elicited general and angry jrotests upon the seore of extravagance, 8300,000 leing spent upon it in Jefferson's lifetime.

The Capitol of the United States, excepting the wings aud the dome, afterward added, is not only a typical, but the most considerable, example of colonial architecture. The ariginal designer, Dr. Thornton, was a West Indian, and an amateur, and the main dispositions of the existing central building are his. His successors, Hallett, Hoban, Harlfield, Latrobe, aud Bulfinch, carried the central building to the condition in which, excepting the eupola, it nuw appears ; lut the real designers were Thornton, Latrobe, and Bulfinch. The contributions of the latter two are important and distinguishable, though each respected the work of his predecessors.

Colonial domestic architecture did
portance. The State House was begun in 1752 , under the direction of a natire, or at least of a resident, architect. The chief feature of the exterior is a cupola, unduly and disproportionately elongaten ; hut the central rotunda of the interior, though executed in wood, from want of mones, or of artisans capable of executing it in stone, is one of the most elaborate, and mommental, as well as one of the most " elegant" examples" of colonial arehitecture. It is really an admirable design competently carried out. The architecturally colonial period lasted nearly half a ceutury after the political indepemlence of the United States. Indeed, as has been said, Anerican architecture contiment for nearly a century to be a retlection of current Englisi modes. The State Honse of Massachusetts (1795) is a typically colonial butding, bearing, in some peculiarities of treatment, the marks of an American ditferentiation from the Eritish Georgian, peculiarities which reappear in the work doue in the Capitol of the United States by its author, Charles Bulfinch, apparently the first American who regularly studied the profession of architecture. The buildings of the Unirersity of Virginia (1819-1826), designed by Thomas not become of much importance until the middle of the eighteenth century. The rermaeular dwelling of all the colomies was the "frame house," the structure of beams corered with clapboarts, which remains the remacular dwelling of the States. The reranda, which is now thought an almost indispensable arljunet of every country house above the pretensions of a cabin, does not seem to have been introduced during the whole of the arehitecturally colonial period. The houses of the great tobaceo planters of Virginia and Maryland were large aul substantial mansions of brick: but the bricklayers, if not the bricks, were specially imported, and such decorative features as they present, eren in wool, appear to have been constructed in Eugland. "Brandon," on the lower Janes, was built about 1710 , "the Grove," $17+6$, "Westover," 1749 , "Whitehall," the seat of the governor of Maryland, between 1740 and 1750. They were rectangles of briek, without much architectural pretension, excepting the last named, which is a regular and effective composition of a centre and wings, the centre signalized by a wooten portico. A brick house of the same general character, and of great massiveness and solidity,

United States: Apthorpe House, New York, N. Y.

Úsited States: Church at Richmund, Va., 1811.

UNITED STATES

was built at I'ortsmonth, New Hampshire, as early ats 1718 , at a cost of $£ 6000$; but this remained for nearly a quarter of a ceutury mique, not only in Portsucuth, hat in New England. Town mansions of suceesfful pretensions, and in durahle material, did not hegin to he ererted in the cerast towns until after 1i30. The Fraukland, Hlancock, and

Ǔited States: Cviversity of Virginia, Charlottesville, Va., 1811°.
the Shirley honses, in Boston, date respectively from 1735, 1737, and 1748. The Walton Honse in New York, the so-called Arnold House in Phila lelphia, and the Pringle Honse in Charleston are of later date, while the principal colunial bonse of Amnapolis was built between 1 ito and 1 iio. Almest without exception, these honses were designed and built br mechanies, without the supervision of an architect. They owe their undeniable charm, not only to the fact that the detail was for the most part accurately copiel from the best examples of contemporary English architecture, of which Sir William Chambers was then the leading practitioner, but also to the fact that the stulying and copring of this detail hald inculcatel a refiuement and discretion which are equally seeu in its scale and adjustment. It is not unnsual to find in remote villages unpretentious houses, huilt about the begiuning of the present century by local carpenters, which exhibit these attractive qualities iu as much perfection as the better known and costlier examples of colomial architecture.

The effects upou American bnilding of the publication of Stuart and Revett's work upon Athens, founded upon actual investigations and measurements of the architectural remains of Atheus, were long delared. Greek architecture had in the first place been monlified and sophisticated, in Roman example and in Roman precept, and the Roman remains and the writings of Vitrusius were the source of the Italian Renaissance, which had spread orer Europe, and held undisputed sway for three centuries. The architecture, thus extended aud elaborated, was not easy to he suppressed by the exhibition of the simpler and more primitive trpes from which
it had been derived. It was searcely before the beginuing of the present century that the - Atheman monments began to influence European architecture, and nearly a quarter of a century later before their influence upon this side of the Atlantic. It mas perhaps be detected in some of Latrobe's molificatious of Thurnton's design for the portico of the Capitol (abont 1815). Other buildings by Latrobe are more distinetly products of the Greek rerival, notably the United States, now the Girard, Burk, in Philadelphia. This was the first (rrecian portico erectel) in the United States, with details correctly reproduced from the Athenian examples. The building was umiversally admired, and its influence was immediate and lasting. Strickland, a pupil of Latrobe, followed with others in the same style in Philadelphia, the Second Bank of the United States, aud the United States Mint; and in the Merchants' Exchange, gave the first example in Amerita of a Coriuthian portico executel in carvel stone. The brilding to which this portico is attached is treated with absolute plainness, excepting that the mullions of the

United States: Old North Cherch, New Harex, Cosx.
openings are pilasters, the opremings themselres being unmoulded. The semicireular portico is, howerer. an ingenions adaptation of the order of the choracic momment of Lysicrates, a reproduction of the momument itself, with openings between the columns surmounting the composition as a lantern. The Grecian became the official style of the country, and so remaiued,

UNITED STATES

at least until 1860. The Truasury Department, and the Patent Ottive, and the (iemeral lost Office, were built in one wr the other of its orders, as well as the custmonnuse and the buildings required by the government in tifferent citics. The customhonse of New York, now the subtreasury, amed at reproducing the Parthenon; althongh it is amphiprostyle instend of peripteral, and the frieze is withont sculpture. The present customhonse, built for the Merchants' Exchange, and completed in 18:13, from the desigus of lisaila Rogers, shows, perhaps, the most eftective Ionic colomate in the [trited States. States aml cities followed the Jeal of the Feleral government, aurl for mere than a generation, scareely a public huidring was ereeted which was mot at least supposed by its builders to be in the Creccian style. Donbtless, nothing conld have been pactically more inconvenient than the requirenent that one or more parts of a miaiking livided into oftices should be darkencel ly the projecting portico. In many cases this difticulty was songht to be obviated by placing the main reliance for light in an opening at the centre of the roof, and converting the central space into a rotmula ; a wasteful arrangement, which wats not, however, withont some compensation in a grandiose effect. This is the disposition arlopted in the former and in the present customhouse in New York. The style imposed itself also for private dwellings, both in town and comitry, the former leing for the most part "rows," fronted with colomales, aml the latter temples, with a portico at one end consisting of a Grecian order, generally the Duric, for the most part accurately proprorioned, but executed

United States: Libidhy, Buston, Mass.
in wool. This type estaldished itself in all parts of the country, anl was often employed, even for churches. Highly monsutalle as it was either for these or for dwellinge, it served the purpose of familiarizing the public with an orderly and harmonious issemblage of studied

UNITED STATES

architectural furms, and it wals the only agency hy which this could then have been accomplished. For at ahout the time when the Greek revival set in, the tralition of the coImial or Georgian building had begun to die out among the mechanice, to whom the build-

United States: Fust Church, New Haven, Conn.
ing of looth town and conutry honses was almost universally confided. This tralition had issued in New York in a type of honse of moderate size, two or, at the most, three stories high, with a haff-smk basement, a "high stoop," and a roof containing an attic lightel by dormer windows. These domers and the doorway, which was commonly arched, thougle often lintellet, were the only parts treated with any elaboration, excepting the posts, if they may be called su, of open ironwork, against which the railing of the stoop ended. The houses were of brick, the doorway and the dormers commonly of wookl, though, in the more pretentious honses, the former was of stone. Many examples of these honses may be seen, not only in New York, but in the towns of the IIudson River, and in the villages which arose along the "stage route" from Allany to Buffialo. They were not only carefully and successfully planed, and entirely suitalle to their purpose, but the sparing ornament they bore was copied from examples so well chosen, and was so well adjusted in assomblage and in seate, as to give them an air of positive elegance. The typical dwellings of the other coast towns were ly no

UNITED STATES

means equally attractive, those of Philadelphia having almost absolutely plain fronts of very red and very smooth hrick, with equally plain sills aud lintels of white marlle. Before 1860, the New York house desmribed hal given way to the "brown stome front," also a "high stoop" dwelling; but with no risible ronf, with windows often framed in mouldings, the

UNITED STATES

of his cupola, which is so exaggerated as to overpower the building beneath it, and to deprive itself of an architectural base, besides being executed in cast iron, a material to which the design thoes not at any point defer. Nevertheless, the Capitol is withont dispute the most impressive public building in the United States.

During this periol, commercial building shared the fate of domestic building. In the seaport towns, there were rows of solid warehonses of brick, or granite, with visible roof, with perfectly plain openings where they were practically needen, and most convenient for the builder, but without any attempt at grouping or diversificatiou with reference to their architectnral effect. Many of these buildings remain upon or near the water fronts of these towns. They can searcely be classified as belonging to architecture; but their massive construction and the very absence of pretension make them inoffensive and respectable, and negatively attractive. On the other hand, the "shopping streets" of these towns came to be lined with buildings which were meant to be attractire, and which, being designed by builders, or even so-called architects, without architectural skill or training, were positively repulsive. The art of architecture has seldom sunk so low in any civilized country, as in the United

Usiten States: Pulpit נn S. Pactis Chapel, New Yokに; ChURe日 built 176t-17tit.

States at the midlle of this century. The "commercial Renaissance" of the show streets of the principal cities was a series of stories of stone, or brick, or cast iron, apparently standing upon a wall of plate glass at the ground floor, surmonnted by an exaggerated cornice in sheet metal, and usually offensive in direct proportion to its elaboration and pretcutiousuess. are entirely successful, so much cannot be said

UNITED STATES

These edifices were imitated with cheaper material in the smaller towns.

The United States hat thus nothing to show in its current building but copies of a pure and refined architecture, of which the features were iuextricably implicated with disfusitions entirely unsuitable to almost all practical requirements, and the attempt to sati-fty those requirements by means of buibtines of which the dispositions were not studied with any view to their eapabilities of expression, and of which the features and details intended for ornament were impure and eoarse. It wats upon this condition that the Guthic revival depended. It began rery brilliantly with the erection of Trinity chureh in Sew Sork, completed and eonsecrated in

UNITED STATES

pioneer, of the Gothic reviral in the United States. It may be questioned whether any subsequent work of that revival was more successtul. The church differs from contemporary churches in Englane, in showing less of archeological serupulusity. Details of differeut periods are employed together, but without compromising the artistic untry of the rork. The success of Trinity was immediate and complete, and led to an effective demanl, especially from the Protestant Episcopal chureh, for Gothic buildings, which were supplied by its designer, and by other architerts of European birth and training, for the most part English, but in some cases Gemman: and these architects and their American pugils did much to diffuse a knowl-

1846. For half a century before, pointed arehes had been introduced in churehes as an eeclesiastieal form, especially suitable to the Protestant Episcopal church, and distinguishing it from other denominations. We have seen that, two centuries betore Trinity church was built, the buillers of s. Luke's at Newport, in Virginia, working by tradition, and in a purely unschoolet and rernacular fashion, had employed both pointed windows and useless buttresses to designate the purpose of their building. But Trinity was the first church on any considerable scale which was built in North Auerica by an architect who was really schonled in Gothic architecture. The church is thus entitled to be regarded as the starting-point, and its architect, Richard Cpjohn, as the
edge, or at least a recognition, of Gothic work. It caunot be said that they did much to raise the degraded standard of the common building of the country. The "mansard roof" had come in as a cheap and convenient derice for securing an additional story, and the expressiveness which a sisible roof had imparted, eren to a wooleu building of which the frame was concealed by clapboards, had melted away. In the Gothic work, too, there were apt to be survivals of forms which hat lost their struetural significance. But in almost every considerable town there came to be a ehureh which was designed in tolerably eorrect Gothie, and which was recognized as more admirable than what it displaced. For some rears the Gothic reviral was confined to chureh building, and for the

UNITED STATES

most part to monochromatic masonry. But the time had becone ripe for the importation of what is specifically known as Victorian Gothic. This was very largely the result of Mr. linskin's admiration for the mediaval milding of north Italy and of the clopurnee with which he gave it expression. The secen Lamps of Arehitecture appeared in 1849 , three years atter the completion of Trinity chured in New York, and was followed ten years later by The Stomes of $\mathrm{V}^{\text {'encice. }}$ The effeet of these works upon buikling in Great Britain, alrealy tumel by "Anglican" (cmsiderations in the direction of the insular Gothic, was almost inmediate. The adopition of an unquestionably Euglish style for the Hulses of Parliament, begrn in 1840, hat

UNITED STATES

can revivalists possesseld the tact and discretion to employ different colours appropmately and harmonimsly, or to retrain altugether from employing them, the result was some of the most interesting and successful architecture that had leem prohnced in the United States, especially as the men who did it followed another precept of Euskin, anl betook themselves for ornament to the careful conventionalization of natural forms. The inexhatiblile source of decoration thus npened, in emmparison with the repetition of the very limited repertory of anthorized classie detail, gave interest even to buiklings that were not interesting in their general design. But where tact and diseretion were wanting, the result was even wilder work than had been done before. As Yietorian

given an impulse to the use of Cothic in secular buiklings. But it is a very long stride from the Honse of Parliament to the Oxturd Museum (1855), which was the first fruit of Mr. Ruskin's teachings. The young arehitects of England took to studying and reprolucing the modiseval movements of France and north Italy as well as of Eugland. About 1860 the revival had made its way across the Athantic. By lagis almost every American city had at least one example of "Victorian Gothic" to show in civie work, and for the next decade the most serims work that was done in architerture in the United States was done in this style. The external use of colour was one of the points in the architecture of north Italy upon which the revivalists had most insisted; but it is that in which most tart and discretion are inperatively renuired, and there is comparative safety in monochrome. Where the Ameri-

Gothic was appliol to every kint of builling, eommercial and domestic as well as ecelesiastieal, even controlling fir a short perion the govemment architecture; as it npened the whole fich of medieval architecture in Europe to the eclecticism of icsigners; as the studions and cultivated designers were everywhere in the minnrity; and as the louk of the luilding continued to be done by men who were not arelitects at all, - the total result was discouraging.

Even the most thoughtful and artistic ot the revivalists were apt to take mediaval arehitecture as a more or less literal molel, rather than as a starting point for moxem work, and failed to divest their seenlar lmildings, at least to the popular appreciation, of an ecelesiastical expression. Many architects began to revert with regret to the early part of the century and the decmey of colonial huidding, and the time was ripe for the importation of the next

UNITED STATES

British fashion, that of "Cuecn Ame," eomprising the Jacobean and Georgian perionls, as well as that after mhich it was named, watimately including even the Flemish lienaissance.

The rogne of "Queen Ame," specitically so-callet, was very brief, lint it assisted in a general reaction toward elassic arehitecture. luring the period of the Gothie revival, what was ealled the lienaissance lat continued to be the prevailing monte fur public and eommereial huidings and for town homses, and it had heen done with increasing knowledge under the inftuence of graduates of the Continental sehools of architecture. The reaction was for a time interrupted by the appearance, in the person of Henry H. Richardson, of a very strong artistie individuality. A dassic hy training, he was a romantie by temperament, but he was prevented from joining in the Gothie reviral by his dissatisfaction with the finical elaborateness which is apt to be its characteristic in unskilful hands, and by the adilitional restlessness which was imparted to the American phase of Vietorian Gothic by the misapplication of colour. He reverten in his earliest characteristic work to the simpler, more massive, and more rudimentary Romanestue which preceded the derelopment of vaulterl architecture, and of which the Prorençal rariety especially appealed to him. His first work was Trinity church in Boston, eompleted in 187\%, of which the central tower is very skilfully and successtully adapted from that of Salamanca cathedral, but of which the detail is for the most part in the style of the Iomanesque of the sumtl of France. The power of the design is, however, not in this detail, but in the snceess with which the body of the ehurch was subordinated into a system of harmonious appendages to the central tower, which thus hecame the essential huilding. The effect of these dispositions was much enhanced by the singularly successful combination of colour, the fields of the wall being of rough, light granite, while the wrought work was of dark brown sandstone, the stress of colour heing everywhere logically employed to ald emphasis to the structural dispositions. The popular success of this work was immediate and great. The arehitect followed it up, during the decade that passed before his death, with a series of work which displayed the same striking power of simplification, and in which he aimed to show the adaptability of the sttyle he hal chosen to all descriptions of buildings. He resigned Romanesfue town halls, courthouses, exchanges, libraries, schools, warehouses, and dwellings, all characterized by simplicity and by a Crelopean massiveness, and all of an interest which had a more rational basis than their mere novelty. The popular suecess of these works at once imposed upon a great number of the younger architects the style in which they were com-

UNITED STATES

posed. It commended itself by the absence of the finieal elaboration into which most of the Victorian Crothic had degenerated. On the other hand, the drawback of the style for modern purposes was its inherent rudeness. Richardson himself not only made no effort to mitigate this, but delighted in it, and added to it an exaggeration, commonly beyond reason, and sometines riolent, of the seale of the parts. In almost all his works he had a distinet motive, which was detached and made conspicuous by his treatment, and which was striking enough to carry off his extravagance of detail. But these extraragances were much easier of imitation than the essential merits of his work, and most of the jmitators whom his success raised up comfined themselves to the reprombetion of them. There were others who really analyzed his work, who penetrated the sources of its power and availed themselves of them, and some of the buildings thus produced are among the most ereditable achievements of American architecture. A rery few of these practitioners even essayed, and with an encouraging measure of success, to mitigate the rndeness of the style as originally developed and as even exaggerated by the revivalist, and to demonstrate that it enmprised elements which might be made tiexible to all uses, and might become the basis of a true expression in architecture of monlern life. It was eridently more eligible in this respect than the pointed Gothic, of whieh many eren of the decorative forms and details were dereloped from a system of vaulted building, and lose their significance when separated from it. The Romanesque revival was thus the most promising legimning that had been made in the U'nited States, if not in any country, toward the evolution of a living architecture. But this promise was destined to he broken, and the Romanesque reviral did not long surrive the revivalist. It camot be sail to have beeu dereloped, except in a very few instances, beyond the point to which he earried it, and in the hands of most of its practitioners it eane far slort of that point. But besides its iutrinsic interest, it is noteworthy as having been the first architectural movement in the United States which was not a more or less belated importation of the current English mode. With the Romanestue reviral American architeeture ceased to be colonial.

During the perion of the Pomanesque reviral the profession of arehitecture had come to appeal to a greatly increased number of educated Amerieans, as offering the probability of a livelihood, and the possibility of a career. Hany of them arailed themselves of the apparatus for techmical education prorided by the sehools of arehitecture that had sprung up in the United States, and of which the curriculum was generally adapted from that of the School of Fine

UNITED STATES

UNITED STATES

Arts in Paris. Many others resorted to that institution itself, and upon their return to their uwn comery devotel themselves to the reproduction of the contemponary Frach architecture which they had heen tanght to produce. They even extablished a concerted prepragatula of the architecture of the school. Ahmost since the midhle of the century there had twell oratsionald Americiu students at Paris, lout these hat nsell its curriculum only as a training in design, and hat employed their discipline to entirely different results from thase of the French arrhitects. Richarlson himself was one of these. But the later and more numerons graduates devoted themselves, not to developing, by means of their training, an architecture out of American conditions, hat to domesticating current Freneh work in the United States; to substituting, in fact, the French fashions tor the English fiashions which had prevaited from the begiming of the eighteenth century to the third quarter of the nincteenth. By far the nost signal triumph which had been won in this enteavour was the architecture of the Worm's Fair in Chicago in 1893. A singularly judicious :und fortumate landscape treatment of the strip, of low shore subected for the exhihition, together with is largeness of seate almost without precedent, gave scope for a prompous architectural display, to which no approach hat before heen mate in the United States, and to which, indeed, there is no parallel in real and durable building anywhere. The Greco-Roman architecture was imitated in facaudes of lath and phaster which had, in the chief and most admired buildings, no relation in their design, either to their own material and actual construction, or to the buildings which they masked and which were in fact motern engineering constructions in metal. Only in one of the great buildings was an attempt made at an architectural develnpment of the faets of material and construction, and this buildiug was the least admired of any. In only one other of the prineipal buildings was there any departure from Greco-Roman architecture, either in produetion of the antique forms or in the Frenels version of them, and this was an essay in a Romanesque much lighter and more graceful in intention than that which had hecome known as Richardsonian, in a building which owell its success, however, chiefly to the skilful introduction of marine forms in its profuse decoratim. The most admired building of all was the execution of an ideal project prepared some years before for a competition of the Paris school. The grandiose effect of the architectural display was naturally attributed by the public to the style employed, although there were other elements in it of even more importance. For the first time, a mumber of architects had heen able to coöperate in the execution of a 1 rearranged architectural scheme of great extent
and importance. For the first time sculpture and painting hand been intronduced upon a great scale, as integral parts of an architectural whole. But the popular suceess of the disphay was accented without much analysis by architerts as well as by the public as proof of the eligivility of the style, or styles, in which the fatgales fronting the st--aillel "Court of Honor" had been composed, and "classic," in one or another of its mudes, was ahmost at once reëstahlished as the most eligible styde for public huiddings. A more serious and thrable work than of the theatrical and illusory buildings of the World's Fair was already muder construction when those buihdings were begun, but reeceived, in its completim and embellishments, the henefit of the lesson inculcaterl by them. This was the Library of Congress, of which the style, the Italian Remaissance, was in effect dictatel by its jusition confronting the Ciapitol, to which it virtually conforms in the sale of the order. Its large ant simp te phan enforced an exterior treatment which, if not wholly free from monotony, at leist escapes frivolity, and by the sobriety and phamess of the design makes the most of unusually ample dimensions. The same simplieity of dispusition secures in the interior spacious fiedse for juictorial decoration, while the domed octagon of the rentral reading room affords an opportunity for sculptural embellishment, by means hoth of symbolic figures and of portrait statues. Each of these opportunities was taken adrantage of by the emphyment of those Anerican artists who hall most indicated their capablity. The choice was, upon the whole, very skiltully made, ami the result was surprising as well as gratifying. The library was the first govermment buikting to be adequately decorated, while the central reading room is without doubt the most iurpressive apartment, in rirtue both of its architecture and its decoration, belonging to the United States.

The popular recognition of the merits of the library, which was not less immetiate and of course much more lasting than that of the buildings of the Word's Fair, tended to confirm the reeistablishment of the classic. The Parisian propaganda has been crowned with entire success, and no architect wouk now think of submitting in competition a design for a public buifding in any other style than that officially sanctioned in France. The admiration of the young arehitects for French architecture has in many cases taken the form of direct and specific imitation. Foreign buildings have been freely reproduced, and published designs not executed abroul have been executed in the United States, without any alteration that amounted to a disguise, not merely for temporary exigencies, as in the case of the Art Building at the World's Fair, but for durable and important buildings.

UNITED STATES

There is no longer any pretence, as there was in the Gothic ant liomanesulue reviral, of using the selected style as a hasis or a point of departure to be motlified and theretoped in accordance with American needs and wats of thinking, and with the introhnetion of new material and new modes of construction. Architectural lesign is frankly imported even when it is not directly imitatel. The new town hall of an American city is apt to be, arehitecturally, precisely what its architent wonll have designed for a similar edifice in France, and in its strange surroundings it neressitrily apreat's incongruous and incapable of domestieation. Gothic and Romanesque continue to be employed for Protestant churches, the style here being imposed by the emplogers, not as the most artistic, but as the most "churchly." But even in churches there are not wanting examples of the reversion to classic models. In civie buildings it may be said, as a rule, that there are no longer evidenees even of an aspiration toward a national arehitecture.

In dwellings the elassic reaction has by no means so exchasive possession of the fied. It cannot even be said that there is any longer a typieal American town house. The witest and freest eclecticism prevails, insomnch that the newest resilential 'fluarters of even the olldest American towns constitute an architectural museun, in which nearly every historieal style is represented. The "specimens" are reprodnced sometimes with crudity and recklessness, but often with scholarly aceuraey and sometimes with successful originality of composition. The French Renaissance is a farourite style, anl several American architects have wrought in it with success, in town houses as well as in the even more pretentious dwellings of watering places and summer resorts. There is searcely such a thing in the United States as a comitry seat, in the Enropean sense, an extensice and costly mansion detached by a spacions park and formang the central feature of an estate. "Biitmore," in North Carolina, is almost unique in this respect. There is, in fact, no country life in the European seuse in the United States. Rich Americans are more gregarious in their social habits than rich Europeans, and buikd themselves eountry houses in proximity to those of their acquaintances. Hence, at such seaside resorts as Nerpourt and Bar Harbor, and at sueh mountain resorts as Leuos and Tuxedo,-thongh this latter is rather an exblusive suburb than a resort, - rery prufise expenditures have been male upon honses to which justice is not done by grounds ample enough to secure them proper detachment, and which can scarcely be seen by themselves. At Newport, where in extent and costliness many of the houses are on a really palatial seale, this is notahly the case; and Newport for this reason has, perhaps, more the air

UNITED STATES

of an architectural musemm than any other American town. Some of the less pretentions summer resorts, and some of the suburbs of the chicf cities, are really more representative and typical. In these the efforts of the architects of country houses hare not been to present examples of historical styles, but to develop, out of given dispositions, materials, and methods of construction, their own appropriate architectural expression. The best of these houses have a faniliar and vernacular and even autochthonous air. As the dispositions, materials, and modes of construction are the supply of real demands, when the arehitecture is simply the expression of the given facts, the result, in the ease of an artistic designer, is a building which, being of no style, yet has style. Such works are the most creditable, and are among the most characteristic products thus far of architecture in the United States.

The most characteristic of these prochucts cannot as yet be ealled the most creditable. This is the "tall building" whieh furms so conspicuous a feature of every large American eity. This may be an aparment house or a warehouse, but it has reachel its greatest development in the "otfice buillings," which are erected in the quarters in which land is the most valuabie, ann upon the altitude of whieh it is ditheult to foresee any limit that may be set by self-interest, or otherwise than by legal regulation in the interest of the public. Such a regulation has been invoked in some cities, but none thas far in the most populous of all : and it is accorlingly in New York that the excesses of altitude are most marked. There are several office buildings in that city of more than twenty stories, and one whieh attains a beight in general of twentrseven, and, in the added towers, of thirty. The effect upon light and air and traftic of these huge and populous houses, in many cases fronting only upon streets which were latid out in contemplation of buildings not more than three stories high, has been so injurious as to induce an organized mosement for limiting their altitude, as has already been done in Chicago, where the limit has been set at abmut ten stories. There have gone to the evolution if the tall buiding two principal factors of almost equal importance. The first was the passenger elerator, or lift, which came into use about 1870 , and was at first introluced into existing builelings in order to make their upher stories more attractive to tenants. Within two or three years two buildings, expressly designed with reference to the elevator, and thence ealled "elevator buiddings," were concurrently under construction in New York. These attained a leight of ten stories. Before the end of the defade some scores of buidlings of an equal heiglit hal heen added, many of them ottice buildings, like the two pioneers, but many of

UNITED STATES

them also apartment houses in the residential quarters. These ponderous edifices made, by reason of the enormons luad imposed upon their foundations, a much greater demand mpon the scientific capacity of their constructors than their predecessors, and this demand was, with a few exeeptions, satisfactorily met, often by the employment of an engineer. They equally enlarged, by their novelty and by the lack of available precedents in historical arehitecture for their treatment, the demand made upon the artistic capacity of their constructors, and this camot be said to have been so filly supplied. The analogy of the preceding buildings of half as many stories was for the most part followed, exrepting that for a single story a group of stories were substituted as an integral part of the composition. This device, however, was so evidently arbitrary and factitions that the efleet of it conld not be completely snecessfin. The suceess of it was still further obstructed by the practice of nearly all of the designers to aim at variety, to the prejudice of mity and homoreneousness, and to use a more ornate style than befitted a building so strietly utifitarian. In this respect the elevator buildings of Chicago, in which the elevator building made its appearance some years after it had become rife in New York, marked a deciled advance. The commercial buildings were much phainer and more commereial of aspect than those of New York. They were also much taller. The design of getting the utmost out of a given area of very costly ground evidently defeats itself, when the altitude is carried beyond a certain point, and when real walls which carry themselves are employed, by the necessity of increasing the area of the supports in proportion to their beight. In New York the limit was fixed by generaf consent at ten or twelve stories. In C'hicago it was found commercially fracticable to raise this limit to eighteen, which is the height of the su-called Masonic Temple. The Monadnock, also in Chicago, is of sixteen. The model of this building is an Egyptian pylou. Althongh great ancl successfill pains have been taken to give it an effective outline, and although the blankness of the walls is relieved by a succession of shallow oriels, it is absolutely devoid of ornament, and for fourteen stories the treatment of the openings is iclentical. Architecturally, it is perhaps the most successfut and impressive of all the tall buillings which are built with real walls.

But, as has been said, there has been another factor at work in the evolution of the tall building searcely less important than the elevator itself, and this is the " steel frame," "skeleton," or so-ealled "Chicago," eonstruction, although it seems to have been introduced independently and almost simultaneously in more than one dity, about 1889. The diminisher cost of the production of steel, and the consequently in-

UNITED STATES

ereased employment of it in interior and subordinate construction, uaturally led to the use of it as the chief structure of the buifding. Cast iron had been extensively used twenty years before as the material of commereial buildings, which arehitecturally were for the most part mere imitation of stonework, although in a few instances attempts had been made to give the metal a characteristic treatment. But two great fires, those of Chieago and Joston, had entirely diseredited the use of unnotected metal for the essential supports of a lmilding, and it ceased to he emphoyed except with a protective envelope of fire-resisting material. A demand for terra cotta arose for this purpose, which gave a great impulse to the manufacture, and within a few years this has been so extended and improved as to be equal to any demand made upon it by the architects for decorative as well as for purely construetional work. When it was sepn to be feasible to make the essential structure of a buikling a steel skeleton, to dispense with structural walls altogether, and thus to evalle the necessity of thickening them in proportion to their leight, the limit upon the practicable altitude of buildings was removed, and edifices hegan to be erected which bore the same relation to their predecessors, in which the elevator was the only new factor, that these had borne to the commercial buitdings in which stairways had provided the only means of ascent. The modern American tall building is thus a steel skeleton, with its floors and partitions also framel in steel, enclosed for protection against fire in baked elay, and with exterior walls of stonework, brick, or terra cotta, which are mere screens, hung to the structure, and which may be built from the top down, as well as from the bottom up, or hegin at any intermediate stage, being earriet] upon the steel beams. In fact, it is not uneommon to see a tall bilding in course of erection, bearing a helt of its architectural envelope, with the steel eage showing above and helow.

A new arehitectural treatment has been enforced by this vertical extension. It is scarcely practicable, and it is evidently not desirable, to distinguish amb individualize each story, or even successive and nearly equal groups of stories. Reconrse was made to an emphatic triple division, in which two or three stories at the bottom are set off and distinguished as a hase, and two or three more at the top as a rapital, the intermediate stories, no matter how mmerons, being virtual or actual repetitions of each other, treated with plainness and severity, and together constituting the shaft of the tower. The analogy thus suggested of the elassic column has been as closely followed as the comlitions will allow, and may be said to have imposed itself upon most clesigners of tall buidlings as a model upon which it is permissinle to exeeute variations

UNIVERSITY

only in lectail. It is allowable to speak of it as in some measure a new architectural type.

It is evilent, however, that it camot be regardel as fintal or satisfactory, or accepted as a true architectural type. It is the substitution of an arhitrary form for an expression of the facts. The actual structure is masked and obscured by the apparent structure. It is left to be inferred that the tall lmihding is not an actual structure of masoury only hecanse the piers are evidently inatequate to the work they appear to do, and the shallow reveals of the openings disclose that the wall is but a screen, except in those cases in which the designer has given it the factitions appearance of greater depth, in order to carry out the suggestion of other than the actual construction. Even if it were desirable, it woulh not be practicable, to make this elaborate imitation of another than the actual construction successful to the point of complete illusion.

Nevertheless, the elements of these buildings are all necessary, all the results of real requirements. The steel frame so economizes space that, after it had once been introduced, scarcely any architect would now propose to employ any other construction for commercial buildings where land is so costly and trattic so great as to make it worth while to donble the number of stories that was practicable hefore the elevator was introluced. The fire-resisting envelope which corers this construction is also necessary to protect it from fire, and this envelope must, in some degree, mask the construction it cosers. The correlation of structure and function must be expressed in the tall building under this condition. The arbitrary division ahnost universally adopted is irrelevant to the accumulation of tiers of similar cells, of which only the lowest anl the uppermost can be saill to be so far distinguished in function as to call for or almit of a distinguisling treatment. The protective envelope must be a clinging drapery, revealing the structure behind it, and indicating the anatomy of the structure. A few very interesting essays have been male upon these lines, and it may be hopel that they will be taken up and carried farther by architects who are too serious to be satisfied with that conventional solution of the problem of the tall lurilding which contents the majority of practitioners. If this is done, the American commercial buikding may become as truthful an expression of one phase of American life as the country house already is, in many instances, of another : and out of the satisfaction of commonlace and general requirements may arise the begimnings of a national architecture. - Montgomery Schuyler.

UNIVERSITY. An institution for the advancement of the higher learning, undertaking all branches of stuly, as its name implies, or at least aiming at such completeuess. In Eng-
land, especially, a collection of separate colleges, as at Oxforl and Cambridge, each college having its own organization and its own buildings, though the University of London is not so composed. The great universities of the Contineut of Europe have but few important buildings, the students lodging anywhere abont the town, and the lecture rooms, halls for examinations, libraries, and the like, having no especial collegiate treatment (see College). Some of the buildings are ancient palaces or the like, modifiel to meet their new requirements ; thus, the University of Berlin is honsed in the palace of Prince Henry, built in the eighteenth century.

UPHERS. Fir poles, 4 to 7 inches in diameter and 20 to 40 feet long, sometimes roughly hewn, nsed in England for scaffolthings, and occasionally, when split, for slight and common roofs.

UPJOHN, RICHARD ; architect ; b. Jan. 22,1802 , in Shaltesbury, England ; d. Aug. 16, 1878.

He was apprenticed to a builder and cabinetmaker in 1829, came to the United States, and settled in New Belford, Massachusetts. He went to Boston in 1833 and assisted in the construction of the city Court House. In 1839 he went to New York to take charge of proposed alterations in the old Trinity church. This scheme was abantoned, and Upjohn designed and constructed the preseat Trinity church, which was finished in 1846 . He built also S. Thomas's church, Trinity Building, the Curn Exchange Bank, and other buildings in New York, several churches in Brooklyn, and other buildings. He was president of the Americon Institute of Architects from 1857 to 1876 .

Appleton, Cyrloperdia of American Biography.
UPPER CROFT. The triforium gallery or other upper gallery of a church, a term, perhaps, obsolete.

UPSTART. A stone set otherwise than on the quarry bed ; local or obsolete.

URINAL A toilet rom consenience or phombing fixture intended for men's use, and consisting of a trapped bowl, trough, or gutter, connected with a waste or drain pipe, and arranged with a flushing device sinilar to that for water-closets. By extension, the apartment in which this fixture is placed or fitted up. (See Plumbing.) - W. P. G.

URN. A receptacle for the ashes of the dead; ustrally a large vase with a rounded buty and a foot. When of this special shape, it is employed as a symbolic decoration or finial in modern work, especially in mortuary momuments.

\[

\]

VALDELVIRA

VALDELVIRA, PEDRO DE; architect and sculptor.

A contemporary and rival of Berruguete (see Berrugnete). He studied Michelangelo's works in Italy. In the town of Ubeda, Spain, he built the castle of Francisco de los Cobos, secretary of Charles Y., and the chmich of S. Salvador.

Stirling-Maxwell, Amnals of the Artists of Spain: Bermulez, Diccionurio.

VALENCE, PIERRE DE; architect, engineer, and sculptor.

The chiet member of a large family of French architects. In 1500 he was employed on the church of S. Gatien at Tours (Indre-et-Loire). Jamary 11, 1503, Valence was called by the Cardinal Georges 1. d'Amboise to inspect the works at the chatean of Gaillon, near Ronen, and in 1506 undertook the construction of the water works and fomntains of that chateau. In 1507 he directed the construction of the fomtain of Beaune in Tours. Jamuary 22, I5Il, he made a contract for the fomtains at Blois. His sons, Germain and Michel, succeeded him.

Deville, Chôteau de Gaillou: Grandmaison, Tours Archeolonique; Bauchal, Dictionnaire.
valfenibre. (See Royer de la Valfenière.)

VALLEE. SIMON DE LA: architect.
He was called to Sweden by Queen Christina. At Storkholm he built the palace of the nobility (begun 1648), the church of S. Narie, S. Catherine, etc.

Dussienx, Les Artistes français à l'étranger; Bauchal, Dictionnaire.

Valley. The internal angle formed by the meeting of two roof slopes, the external angle formed by such a meeting being called a Hip or Ridge. The rafter under the valley is called the valley rafter, and the board fixed in the angle to receive the flashing or gutter is called the valley board.

VALUATION. Estimate; appraisement. As applied to the cost of a structure erected or to be erected, the raluation is approximated either by comparing it, according to its relative cubical area, with the known cost of another similar building, or, more accurately, by estimating it in detail, according to the quantity, character, and cost of material and labour inrolved in its erection.

Valve. A. In a donble door, French window, or the like, one of the two folds, or leaves.
B. A device for regulating the flow of water gas or other tluil (see Plumbing; Honse Drainage).

VALVE HOUSE. A building to coser the valves and valve chamber of the mains from a reservoir.

VANBRUGH, SIR JOHN : dramatist and arehitect ; b. 1666; d. March $2 G, I 726$.

VANUCCI

Vanbrugh devoted the early part of his life to literature and distingnished hinself as a dramatist. In ITO2 he succeeded Talman (see Talman) as comptroller of the royal works. His first completed building was a theatre (1703-1705) in London, afterward destroyed. In 1701 lie begin for the Earl of Carlisle the palace called Castle Howard in Yorkstire, England. As a reward for the distinguished services of John Churchill, Duke of Narlborough, the royal manor of Woodstock (England) was granted to him and to his heirs by act of Parliament of March It, I705, with half a million pounds to build the great palace called Blenhein, which is Vanbrugh's most important and characteristic work. In ITI6 he succeeded Sir Christopher Wren as surveyor of Greenwich Hospital (London). Among the residences built by Vanbrugh are Eastbury in Dorsetshire (1716-1718), Seaton Delaral (1720), fortions of Audley End (17:21), Grimsthorpe ($1722-1724$), etc.

Blomfiel, Rentissance in England; Mavor, A Jeir Description of Blenhrim; Neale, Sents of रेollemen and fientlemen; Camplell, Vitrucius Britamicus.

VAN CAMPEN. (See Campen.)

VAN DER NULL.
Null, Edward ran der.)
VANE. A contrirance br which a bannerlike flate, as of thin metal, is moved by the wind around a pivot, so that a point on the opposite side of the pivot points always toward the quarter whence the wind comes. Called also Weathercock.

Banner Vane. A rane in the form of a banuer or flag.

VANISHING POINT. In Perspective, a point toward

Vane from Sterkholm, Streder. which any series of parallel lines seems to converge.
van riel. (See Riel.)
VANUCCI, PIETRO (PERUGINO) ;
painter: b. I446; d. 1524.
For Sixtus IV. (Pope 1471-1484) he painted a series of frescoes in the Sistine Chapel, some of which were destroyed to make room for Nichelangelo's Last .Juldment. In I499 and I500 Perngino painter the decorations of the Sala del Cambio (Exchange) of Perugia, Italy, one of the most perfect examples of the decorative work of the fifteentl century. (See Santi, R.)

Müntz, Rennissonfe: Crowe and Cavalcaselie, History of Painting in Itrly; Vasari, Milanesi ed.;

VANVITEL工I

Vasari, Blashfield-Hopkins ed.; Morelli, Italian Painters.

VANVITELLI (VAN WITEL), LUIGI;

 painter and arehitect; b. $1700 ; \mathrm{d} .1773$.Vanvitelli was the sou of one Kaspar ran Witel, a Dutch painter, and spent his entire life in Italy. He was a pupil of Philippo Juvara (see Jurara). At the age of twenty-six he was made supervising architect of S. Peter's in liome. He conducted the works at the harbour of Ancona and built the campanile of the church of La Casa Sinta at Loretto. He bnilt the convent of S. Agostino at Rome, and designed a chapel for the church of the Jesuits at Lishon. About 1749 he remodelled Nichelaugelo's church of S. Maria degli Angeli (the great hall of the Baths of Diocletian in Rome). Tanvitelli's chief monument is the immense Palazzo di Caserta in Naples. This building is deseribed in a monograph by Vanvitelli, Dichiurazione del reale Pulazzo di Caserta (l rol. folio, Naples, 1756).

Gurlitt, (reschichee des Burockstiles in Italien; Ebe, Spät-Renaissance; Milizia, Nemorie.

VAN WITEL. (See Vanvitelli.)
VAPOR-TIGHT GLOBE. (See Electrical Appliances.)

VARDY, JOHN ; architect.
A pupil of \mathbb{W}. Kent (see Kent). He succeederl H. Joynes as clerk of the works at Kensington Palace, London, between 1748 and 1754. February 13, 1746 , he was appointed clerk of the works at Chelsea Hospital.

Arch. Pub. Soc. Dictionary.
VARELLA. A pagoda; apparently the Italian term in the sixteenth century, used in English by Purchas.

Hart. Picturesque Brerma.
VARNISH. A sulution of amber, copal, rosin, mastic, shellac, or other resinous substance mixed with a solvent, generally of linseed oil, turpentine, or alcohol, so as to form a transparent tluid capable of hardening and of a certain resistance to the influence of air and moistnre. Some kind of rarnish is used by painters to form a permanent decorative and protective glazing coat over the work.

VASALETO. (See Vassallectus.)
VASARI, GIORGIO: painter and architect ; b. 151l : U. July $2 \bar{i}, 15 \overline{4}$.

Giorgio Vasari was born at Arezzo (Italy), a kinsman of Luca Siguorelli (see Signorelli). His first teacher in painting appears to have been Guillaume te Marcillat (see Guillaume de Marcillat). His literary training was superiutended by the Arctine poet Gioranni Pollastra. About 1523 he went to Florence, and entered the serrice of Ottariano de' Medici and the Duke Alessandro de' Medici. He went to Rome afterwards with the Cardinal Ippolito de ${ }^{2}$ Medici. From 1555 to the end of his life he was court painter to Cosimo I. de' Dedici. duke

VASSALLECTUS

of Florence. The most important of his undertakings are the frescoes of the Cancelleria in Rome and those of the Palazzo Tecchio in Florence. As architect he prepared in 1536 the decorations of the triumphal entry of the Emperor Charles 1. into Florence. He made the original plans of the Vigna di Papa Ginlio (Julius 1II., Pope 1550-1555) in Rome (see Barozzio, G.). He remodelled the Palazzo Vecchio and built the Palazzo degli C'thzi in Florence. At Pistoia he built the cupola of the church of the Dadonna tlell' Umiltà (see Vitoni), and at Pisa the Palazzo lei Cavalieri da S. Stefano. He built the Badia and the "Logrie Vasari" at Arezzo.

Vasari's most important work is his series of biographies of artists ; Le Tite de più eccellenti -1rchitetti. Pittori e Scultori. The first edition appeared in 1550 . The second, in 1568 , was more complete. The staudard edition of Visari is that of Gaetano Milanese, which was published in Florence between 1878 and 1885. A new comprehensire Italian edition is now in progress under the supervision of A. Venturi. The Vite were translated into English by Mrs. Foster in 188s. A selection of seventy of the Lives from Mrs. Foster's translation, with introduction, annotation, and hibliography by E. H. and E. W. Blashfield and A. A. Hopkins was published in New York in 1896.

Vasari, Blashfeld-Hopkins ed.; Vasari, Milanesi ed. ; Redtenbacher trchitektur der Italienischen Renaissance: Muntz. Renaissance; H. Mosler, Sansorino u. s.r., Ruggieri, Studio d'Architettura cirile.

VASE. A hollow ressel of decorative character and rarious form, with or withont ears or handles; hence the resemblance of such a vessel, in solid material, as marble, much used in the art of the Reuaissance to decorate balustrarles, pedestals, gate posts, and monuments of all sorts.

VASIstas. (A corruption of the German words Was ist das; a common term in French for that which the Germans call rather Guckfenster or Schiebefenster.) A small opening in, or by the side of, a door of entrance; usually fitted with a wicket to sbut and a fixed grating or the like through which to look or to speak. Its purpose is to ascertain, before the door is opened, the character of the person asking for admission.

VASSALLECTUS (VASALETO) ; architect, sculptor, and mosaicist.

The name Vassallectus, rarionsly spelled, appears in inscriptions on sereral monuments of the thirteenth century in the ricinity of Rome. The most important of these, the cloister of S. Gioranni in Laterano. which was probably built ahout 1230 , bears this inscription, liscosered by Count Tespiguani in lesi (De Rossi, op, cit., p. 128) : Nobilis et doc-
ヘIXXX ヨLV7d

VASSALLETO

tus hac Vassallettus in arte, cum patre ceprit opus quod solus perfecit in'se. The inscription indicates that the sculptor belonged to a family of marmorarii (marble workers). A throne with lions, which was made about $1: 63$ for the Abbot Lando, and is now in the musenm of the eathedral of Anagni, Italy, is signed I'cusaleto de Roma me fecit. The name appears also on an wdirutu for holy oil in the murch of S . Francesco at Viterho. It is supposed by Frothingham (op. cit.) that the fine monmment of the Pope Adrian V. in this churel was made by the same person. Less important works are a lion before the church of SS. Apostoli (Rome), and a eandelabrum in the church of S. Paolo fuori le Mura (Fome). There is also an inseription which belonged to a monmment which stood in the ohl basilica of S. Peter's (Rome). These works may be by one person or several. De Fiossi supposes that there were four. A sereen in the eathedral of Segni, dated 1185 , and a eanopy in the chureh of SS. Cosmo e Damiano (Rome) appear to be by an carlier member of the family.

Frothingham, Roman Artists fif the Midale Alles; G. 13. de Rossi, Delle altre famiglie di marmorurii Romuni, etc.; Lanciani, I'agan and Christian Rome: I'erkins, Italian Sculptors; Rohault de Fleury, Le Latran.

VASSALLETO. (See Vassallectus.)
VAST. (See Wast.)
9.7

VAUDOYER

VAUDOYER, ANTOINE LAURENT THOMAS ; architect; 1. Dec. 20, 1756 (at latis) ; d. May !? $7,1846$.

Vase, Makble; Ancient Roman Work in the Museum of the Vatican, Rome.

Ite stmdied with A. F. Peyre (see Peyre, A. F.) and at the Ecole royule d'Architecture, and won the Grand Prix de Rome in architecture in 1783 . In 1793 he established with David Leroy an atelier of architecture at the Louvre. August 25, 1795, when the Institute was ereated, Vandoyer became voluntary secretary of the Commission d'Architecture. In 1800 he was appointed architect of the College de France and the Sorbome (T'aris), and male extensive additions to those monmments. In I804 he had charge of the installation of the Institute at the Palais des Quatre Nations (see Levann). He was associated with Destommelles (see Destournelles) and L. P. Baltard (see Baltard, L. P.) in publishing Grands Prix drachitecture, 1804-183I (F'aris, I8I8-1834, '2 vols. folio).
Banchal, Dictiomnaire.
VAUDOYER, LEON ; architect; b. June 7, 1803 (at l'aris) ; 1l. Fel. 9, 1872.

A son of A. L. T. Vaudoyer (sce Vandoyer, A. L. T.). He stmbied architecture with his father and Lebas (see Lebns) and at the Eicole des Bermx Arts (Paris). In 1826 he won the Premier Gromt Prix do Rome. While in Rome

VAULT

he made the monument to lonssin at the church of S. Lorenzo-in-Lucina. In 1853 he was appointal inspectew géméral des éllifices diocésains, imd in 1850. architect of the catherlal of Marscilles, which had been begun in 185:. He won a mealal of the first class at the Salon of 1855.

Lance, Dictionnaire.
VAULT. A. An arch or a combination of arches used to corer a space. It is primarily a

Fig. 1.
ceiling, but may be also a roof; or it may carry a roof, or a floor, or stairs.
3. A room or enclosed space of any kind which is covered by a vault; in this sense,

Fig. 2.
popular and applying to cellars and underground places of safety.
C. By extension, any strong place or place of safety, as a Safe Deposit Vault.

D. The sembrance in some light material of a true rault. In this sense, the beautiful ceilings of rooms in certain rivic buitlings of Belgiun are notable: they are wholly decorative, without attempt to rleceive the spectator, as the boarding is distinctly marked and the construction is obviously inadequate to a masonry vault. The famous Octagou of the cathedral of Ely is, on the contrary, a wooden imitation apparently inteuded to be taken for stone raulting. In
modern churches and in some civic and semipublic and private buldings vaulting of a classic sort is produced in plaster with a support of lathing or the like.

Fig. 4.
Vaults may be classified thus : -
As to form, Simple and Componnd or Intersecting ;
As to construction, Solid and Ribbed.

Fig. 5.
Solid Vaulting - Simple. The most ancient form of vault is that known as the barrel, tunnel, wagon, or cradle vault. Its cross section

Fig. 6 (Plan).
may be semicircular (Fig. 1), semielliptical, segmental, or pointel (Fig. -). The semicircular form is known also as the cylimdrical. When it is of stone or brick the leading, or

Fig. 7 (Plan).

Fig. 14.

Fig. 15.

Fig.

Fig. 17.

Fig. 10.

Fig. 11.

Fig. 9.

Fig. 19 (Plan).

Fig. 13.

Fig. 12.

VAULT

coursing, joints are usually parallel to the axis, and the cross joints in planes perpendicular to

Fig. 20 (Plan and View).
it. The oldest well-authenticated example of a barrel rault is one at Nimroud (see Mesopota-

Fig. 21 (Plan and Section).
mia, Architecture of), of pointerl section, covering a drain, and carrying a load of earth. In

Fig. 22.

Fig. 23.
the pyramids at Meroë, not later than 800 b.c., cylindrical and pointed forms orcur. There is a very perfect example, covering the chamber

VAULT

of a tomb, at Gizeh, dating about 600 в.c. (Fig. 3). It is of stone, in four rings, that is to say, four concentric arches. The angular structure beneath it, which is the ceiling of the

Fle. 24 (Plan).
tomb, the vault being the roof, may be termed a vault with plane surfaces. The Cloaca Maxima at Rome is a well-known example, of stone, in three rings, probably of the fourth century

FIG. 25.

Fig. 27.

FIG. 26.
b.c. In the above cases the vanlt was merely a mechanical device for covering spaces with materials of small size instead of slabs of stone. It was used in places where it could not be seen,

Fig. 27 A.

Fig. 28.
and therefore had no architectural character. The Romans seem to have been the first to adopt it as a visible structure, worthy of ornamentation, and of recognition for its resthetic value.

Fig. 29 (Plan)

Ftri. 31.

Fig. 33.

Fig. 34 (Plax).

Fig. 36 (Plan).

Fig. 32.
945

Fig. 37 (Plan). 946

VAULT

A barrel rault usually covers a rectangular space, but sometimes at triangular, or trapezoidal. Its axis and ridge are commonly horizontal, hut sometimes inclined, as when it covers or carries a stair. Figure 4 shows the use of half barrel raults, uver aisles, or triforia, of churches, carrying solid stone roofs, and serving

Fig. 36 (Plan).
also as coutinuous flying buttresses resisting the outward thrust of the uave raults. They are common in southeastern France, in the eleventh and twelfh centuries.

Figure $\overline{5}$ shows a rampant vault.
Figure 6 is a softit plan of what is known as a skew arch, often used for bridges but rare in architectural work. Its ends are in planes

Fig. 39 (Play).
oblique to the axis. The cross section is semicircular or semielliptical. The joints are warped surfaces, usually, and run spirally.

An aunular vault (Fig. i) is a barrel rault with a curvel axis. lts intrados is a portion of the surface of a cylindrical ring. An annular rault may also be used with its axis in a rertical plane (Fig. 8).

A spiral rault may be described as an annular rault with a spiral axis. It is used for supporting the steps of a spiral stair.

VAULT
Expanding Toults. These are larger at one end than at the other, and usually have inclined ridges. The common forms are :-

A. Conical (Fig. 9), used in pendentives for reducing a square to an octagon. Frustra of cones also corer trapezoidal spaces.

Fig. 41.
B. Conoidal, the smaller base semicircular, the larger semielliptical (Fig. 10); r is the ridge line.

Fig. 42.
C. In the form shown in Fig. 11, the bases are as in Fig. 10, and the elements of the surface at the springing are straight lines parallel to the axis, but the ridge is curred, the expansion being in a vertical direction only. The

VAULT
surface, not being generated by the movement of any line, camot be mathematically defined;

Fig. 43.
but such vaults may be termed convex-conoidal. They rarely occur except as parts of a compound vault.

Fig. it (Plan).
Solid Faulting - Compound. Componnd vaults are formed by the intersection of two or

VAULT

ties, which may properly be classified as follows:-
A. Quadripartite, formed by the intersection of two barrel vaults, or by expanding vaults instead.
I. For covering a square compurtment.
(a) The common groined vault, fonned by the intersection, at right angles, of two equal barrel vaults, of any cross section. The angle

Fig. fis (Plan).
of the groin is 90° at the springing, widens as it groes up, and disappears in a straight line at the ridges. The horizontal projection of the groin elge is straight, and the elge itself lies in a vertical plane, and is elliptical. Figure 12 is an cxternal view, and Fig. 13 is a quarter plan. The compartments to he covered are shown in Fig. 13 as separated by cross bamls, which in Romanestue work are olten deepened

more simple ones, and are generally known as Groined Taults, the grom being the salient angle made by two intersecting surfaces; or as Cloistered Vaults. There are numerons varie949
so as to become distinct arches, as in Fig. 14.
(b) Domical vaults. In these the centre or apex is raised above the level of the crown of 0.0
the cross arch，so that the ridges rise toward it． They are formed，orer square spaces，by the intersection of four equal expanding vaults，coni－ cal or conoidal．The groin elge is straight on

Fig． 47.
the plan．Its curve is clliptical if the compos－ ing vaults are conical ；wtherwise it is indefin－ able（Figs．15，16，17）．
（c）The so－called cloistered arch，or square dome（Fig．18），is composel of four parts of

Fig． 48 （Plan and Section）．
equal barrel vaults，but is just the reverse of the groined，the internal angles being reëntrant．
（d）A square space at the corner of a cloister is often covered by two intersecting barrel

Fig． $4!$（PLAN）．
raults，the inner quarter being groined and the outer cloistered（Fig．19）．
（e）Figure 20 shows a method of covering a square space by a combination of groined and cloistered vaulting，occurring in a mosque at Ephesus．
（f）A square room may be sovered by four 951

VAULT

quadripartite vaults，each springing at one of its corners from a central pillar，as in Fig． 21．In a similar mauner，a square space may be covered by nine vaults on four pillars．

1I．For covering an oblong rectengular compartment．
（a）Welsh，or underpitch vaults，the compo－ nents of which are nsually cylindrical，of unequal widths，the transverse rault being narrower than

Fig． 50 （Plan and Section）．
the main rault，but both springing from the same level，so that the intersection is not com－ plete（Figs．22，23，24）．The horizontal pro－ jection of the groin line is a hyperbola．Welsh vaults are unknown in Roman work，but are common in Romanesque and the later neoclassic．
（b）Stilted vaults，in which the components are cylindrical，the transverse narrower than the main and springing from a higher level，so that the ridges are on the same level．The grom

Fig． 51 （Plan and Section）．
line is of donble curvature．The Romans used this form on a grand scale，and it is quite com－ mon in French Romanesque（Figs．2⿹勹巳，26）．
（c）In segmental vaulting（Fig．27），the components may be equal or unequal．
（d）Figure 28 A segmental main vault， intersected by a semicircular transverse vault．
（e）Figure 29．A rampant barrel vault inter－ sected by an inclined barrel vault．The radins of the upper part of the rampant is the same as that of the inclined vanlt，so that the upper part of the compound is an ordinary groined vault． The example is from S．Fidele，Como，Italy．

Fig. 52.

Fig. 53.

Fig. 54.
953

Fig. 55 (Plan).

Fig. 56 (1'lian).

Fig. 57 (Plans).

Fig. 58 (Plan). 954

VAULT
The form is used in the capitol at Albany, N゙. Y., for supporting stairs.

Fig. 59 (Plass).
(f) One component is semicircular and the other semielliptical, but of wider span, the heights being equal; or both may be semielliptical.

III. Oblique Taults.
(a) Figure 30. With straight axes and composed of equal barrel vaults, or of unequal, one being semicircular and the other semielliptical.

Fig. ${ }^{11}$.
(b) An annular rault intersected br a conical vault, the centre of the annulus being the apex of the cone (Fig. 31).

VAULT
(c) An annular rault intersected by an underpitch rault (Fig. 3:).

His. BIO.
(d) An annular rault intersected by a stilted cylindrical rault (Fig. 33).
IV. Tripcutite Fublts, covering triangular

Fig. 63 (PlaN).
spaces and formed by the intersection of three barrel or three expanding vaults (Fig. 34). They orcur in Romanesque buildings, alter-

Fig. $6 t$ (Plan).
nately with quadripartite raults, orer the aisles of polygonal apses, as in Fig. 35.
T. Pulygonal Toults. These are mostly
octagonal on the plan, and are of the nature of the eupola.

YI. Fancy Tracery Valting. This is a varicty of solid vaulting, althongh it was developed from the ribbed vaulting of the Gothie style, to the later perioul of which, in England, nearly all of the examples belong. There are two kinds.
(c) Pyramidoidal, the surface being that of a half of a pramid with concave sides. A

Fia. 65.
square space may he partly coverel by two halves of the pyramidoid inverted and set opposite to each other. The bases are octagonal. The halves may meet at points, Fig. 36 , leaving a star-shapel rilge space uncoverel; or by sides, Fig. 37, leaving a square. If the non-cardinal sides of the pyramidoid he contimed on to the centre, as in the right-hand end of Fig. 37, the square will he covered. The surfaces are carved into panels with mullions and tracery, but these are merely onnamental.
(b) Conoidal, made of halves, or less, of con-eave-siled cones.

Fig. 66 (Play).

Fig. 67 (Plan).

1. For covering a square space. The half conoids have their bases tangent to each other on the ridge levels, and leave a large part of the spare uncovered. They must, therefore, be supplemented by a flat, or slightly domical, ceiling eommecting them (Fig. 38).
‥ For eovering an oblong space (Fig. 39). The conoids intersect at the sides. In this kind of vaulting pendents often oecur: jartly occupying the central space, as in the righthand side of Fig. 38 and in Fig. 40 ; or placed at the silles, as in Fig. 41. They are supported by arches which are ustually concealed. The
great examples of fan tracery vaulting are in Henry the Seventh's Chapel, Westminster Abbey ; King's College, Cambridge; and St. George's Chapel, Wimlsor.

Rib Voulting. In rib vaulting the surfaces, ealled panels, are sustained by a skeleton strueture of ribs, which are usually of stone, while

Fig. 69.
the pauels may be of a lighter kind of stone, strels as tufa or pumice, or even of briek. The pieees that form the panels may run straight

from rib to rib, in which case the surfaces are cylinitrical, conical, or conoidal; or they may be archel from rib to rib, the surfaces then being spheroidal or convex-conoidal. The ribs
are of eireular or clliptical eurvature, forming semicireular, semicliptical, pointed, three-centrell, or four-eentrel arches. They lie, as a rule, in vertical planes.

Fig. -1 (Plas and Section).
The first step in the development of the rib system of vaulting is often sail to be the increase of the depth of the cross band in barrel raults, making it an indepenulent arch, with the raulting abore it. But such a rib, if it is properly so called, does not sustain the rault, which would stand just as well without it. It is true that there are several Roman raults which are apparently thin and rest by the ends of their pieees on cross ribs ; but there are no such in the Romanesque period. The begin-

Fig. -i.
ning of the rib system will donbtless be found in the substitution of a square-cornered arch for the groin stones of a solisl compound rault, as in Fig. 42, from S. Ambrogio, Milan. This
is a great adrance in ease of construction. The shaping of groin stones is quite a problem in stereotomy, no two pieces being alike, but the rib at the groiu is perfectly simple. ${ }^{1}$ By degrees it becomes larger and the rault itself thimer, until finally the latter depends upon the former for support, and the result is true rib vaulting. The next step was the conversion of the heary cross arch of the Romanesque vault into the light transverse rib of the Guthic. The proeess was slow on the Continent of Europe, as in France from 1130 to 1180 , hut apparently immediate in England (as at Canterbury, 1175), and there all ribs are of the same size and seetion. Then follows the wall rib, which shows a little more than half of the full section, and is built into the wall, or forms the head of a great window. It is really the transverse rib of the side vault. The next, existing only in complicated vants, is the intermediate rib, which lies obliquely between the groin rib and the transcerse, or the groin and wall. With it comes the ridge rib, which at first connects the apex of the intermeliate with the apex of the groin rib, being then a structural necessity, as without it the two halres of the intermelliate rib, not being in the same plane, would fall towarl the centre, unless the pauelling were inserted when they were taid. It is aftermard continued to the transverse rib and the wall. Liernes, or cross ribs, run from one rib to another, dividing the panels. They are commonly of no practical nse; but in some eases they are contimuations of groin ribs, and are then necessary to the completion of the structure. They occur in late and florid work. In France the term "lierne" was applied to the rillge rih. Figure 44 is a plan of a fully dereloped rib rault. The following table gives the names and positions of the rihs. (Ritlges without ribs are indicated by single lines.)

Position	$\begin{aligned} & \text { ExGmifh } \\ & \text { NiMEs } \end{aligned}$	$\begin{aligned} & \text { Frexrif } \\ & \text { Sames } \end{aligned}$	Maris
Diagonal . .	$\begin{gathered} \text { Groin Rib } \\ \text { Diagonal } \\ \text { Rib. } \end{gathered}$	Ogive .	G.
Across the main axis . .	$\begin{gathered} \text { Transrerse } \\ \text { Rib } \end{gathered}$	Are doubleau.	T.
Between the groin and transterse. or betreen the groin and wall ribs	Intermediate Rib	Tierceron	I.
A gainst the walls. parallel to the main axis	Wall Rib	Formeret	W.
At the ridges . .	Ridge Rib	Lierne	R.
From one rib to another, not at the ridges	Cross Rib. or Lierne		L.

${ }^{1}$ See Vol. II., cols. 97-99.
960

VAULT

At the points where the ribs meet there are usually keystones, called bosses, ornamented by carving. They reocive the ends of the ribs and thus aroid the mitring of the mouldings. Ribs

Fig. $7: 3$ (Plan).
are decorated by monlilings such as chamfers, eoves, and bowtells.

The methods of jointing panels are shown in Fig. 45.

In early examples only groin and transverse ribs are used, and each starts with its full section, but later on they are bunched tugether, each starting with only its sotfit roll risible, as in Fig. 46. As they rise the sertion develops until the ribs separate. The structure up to this point is known as the springer. It is a sulicl mass, often with horizontal joints, a great corbel really, bonded into the wall, and forming no part of the vault proper.

Fig. 74.
Analysis of Rib Vrenting. A. Simple.
Fig. 47. From Castle Campbell, Scotlanrl.
Fig. 48. The panel vaulting of the "After Gothic " in France.
D. Compound. It will be best to classify these according to the number of cells.

VAULT

1. Tripartite. These cover a triangular space, which usually oceu's in an apsidal aisle, as in Fig. 35. The ribs meeting at the centre are hatves of groin rilss, the others are either transverse or wall ribs.
2. Quadripartite.

Fig. 75 (Plan).
(a) With groin rils only (Fig. 49).
(b) With gooin ribs anl transverse arches (Fig. 50). From Gerland, France ; one of the earliest examples. Both ribs and arches are semicircular, and the vanltiug is therefore domical.
(c) Groin and wall ribs only (Fig. 51).
(d) Groin, transverse, and wall ribs, with level rilges (Fig. 5:). The same with curved ridges, the vault domical, and panels spheroidal (Fig. 53).
(e) Welsh vanlts (Fig. 54). The groin rils cross each other before reaching the main ridge, and are contiment as liemes; or they

Fig. 66 (Plan).
may stop at the crossing and be connected with the rentre by a single lierne (Fig. 55).
(f) Groin, transversc, intermediate, and rilge rilis (Fig. 44).
(g) Side vaults cblique (Fig. 56), whoir of Lineoln cathedral. The half groin ribs on

Fig. it (Plan).

Fig. is (Play).

Fig. 82.

Fig. 80 (Plan).

Fig. 83.
964

VAULT

each side are met at the centre, not by their other halves, hit by an intermediate rib.
3. Quinutpartite.
(a) For corcring a pentagonal space. Two forms are shown in Fig. 万T, and also one cover- $^{\text {a }}$ ing a semicirele, and one a trapezoid.

Fig. 84 (Plas).
(b) Covering a rectangle (Fig. 58). It is composed of three quarters of a quadripartite vault and one quarter of a sexpartite.
4. Sexpartite. Figure 59 shows plans of vanlts with six cells, and Figs. 60, 61, show the form known as sexpartite, or hexapartite, found in late Romanesque and early Gothic work. The side vanlts are double and oblique, separated by an intermediate transverse rib. Figure 62 gives a form known as bisected. It is a quadripartite vault with the transverse components cut in two by intermediate transverse ribs earrying spandrel walls. It looks as though it were the predecessor of the sexpar-

Fig. 85 (Plas).
tite rault, but it is not. There are four examples, all near Caen in Normandy.
5. Septempartite (Fig. 63). It is made up of half a quarlripartite and half a sexpartite.
6. Octopartitc.
(a) For covering a square space enclosed by

VAULT

walls, ats in towers (Fig. 61). There are eight oblique cells. The construction is on the prin-

Fig. ifg (Plan).
ciple of a sexpartite vault. Figure 65 is a unique example, from Lincoln eathedral, covering the

Fig. 87 (Plan).
intersection of nave and transepts. The ridges enclose a central square which is covered by

Fig. 88 (See Fig. 8i).
extending the groin and transverse ribs to the centre.

VAULT

(b) Figures 66, 67 , show how irregular spaces may be coverel hy vaults with cight cells.
(c) Covering an octagonal space. Figure 68 is al plan, and 69 a sertion, of an octagonal rault whose internal aughes are reëntrant.

Fig. 89 (Play).
(d) Figure 70 has the same ribs as (c), but they are groin ribs, and there are sixteen cells.
(e) Figure il, Welsh vaulting.
(f) Figure $i \cdot 2$, groin ribs not meeting at the centre, hut terminating at the angles of an octagon - York cathedral.
(g) Figures 73,74 , eight semicircular transverse, or rather groin ribs. The central octagon is not coverel.
7. Decapartite (Fig. 75).
8. Dolecapartite (Fig. 76). The central open circle is a common feature in some other rarieties, especially qualripartite.
9. Groin ribs interruptel, or diverted and brauched.

Fig. 90 (Plas).
(a) Star vaulting (Figs. 77, 78, 79).
(b) Panel raulting is the name giren to this form in England (Fig. 80).
10. Vaults whose ribs, except at ridges, are all arcs of the same circle, differing only in length, and all properly groin ribs. Such raults are necessarily domical. Figure 81 is a quarter plau.

VAULT

11. Diagonal ribs omitted (Figs. 82 to 86).
12. Vaulting of rooms with a central shaft (Figs. 87, 88, square ; 89, 90, vetagonal).
13. P'endant rib vaults (Figs. 91, 92) from

Fig. 91 (Plan).
the Lauly Chapel at C'aulebec, France. (See Taulting and subtitles: also France, Pt. I.; Gothic Architceture ; Peulant ; Ronan Imperial Architecture, cols. 341-343.)

> - Charles Babcock.

Barrel Vault. A vault having everywhere a uniform sectiou, semicircular, or nearly so, a form of Tuunel Vault (Fig. 1, Vault).

Cloistered Vault. Same as Cored Vault.
Coved Vault. A vault composel of four quarter-cylindrical surfaces or cores, mecting in vertical diagonal planes, the axial sections of the vault being arched, and the horizontal courses diminishing in length from spring to crown ; called also Cloistered Yault. (Sce Fig. 18, Vault.)

Fig. n2 (Section, see Fig. 91).
Cradle Vault. Same as Barrel Vault.
Fan Vault. (See Fan Yaulting under Vaulting.)

Green Vault: Vaults. (See (iriüc Gewolbe.)
Groin Vault: Groined Vault. A compouncl vault in which tumel vanlts intersect, forming arrises which are callecl groins. The Roman lmperial practice in this respect was to use muly tumel vaults of nearly semicircular section (harrel vaults) and of the same size and height. When the tumel raults are of

VAULTED

different heights, su that the groins to not meet at the crown of the vant, the structure is called a Welsh vault. It is not strictly acenrate to chass ribbed vaults as groined vaults.

- Lieme Vault. A ribbel ranlt in which there are many seemdary ribs. (See Lierne.)

Octopartite Vault. (See Vault.)
Rib Vault ; Ribbed Vault. One huilt with ribs as the pincipal structure. (Sice Ribbed Yaulting; also Rilb, Guthic Architecture, and the general article Vault.) Sexpartite Vault. (See V'ault.)
Six Part Vault. Same as Sexpartite Vault.

Tunnel Vault. A vanlt having everywhere a miform section; either nearly semicircular, as in cradle, or barrel vault, or pointed at the top, as in some Fiomanespute churches of the sonth of France, and very rarely in Byzantine emstraction.

Wagon Vault. same as Barrel Tault.
Welsh Vault. A ronstruction in which a central higher vanlt is crossed or intersected lyy vaults of lower pitch. The form usually so called is that shown in Fig. 2 ? of the artirle abore, aml in the riew of the church of S . Roch (which see under ('hurch). The Romans never nsed such vaulte, but attempts were made dur-
 neorlassic buiklers of the sixtenth tentury ranlted cloisters and the corridurs of palaces, cte., in this way. For the use of the term in conneetion with ribber vaulting see the article Vialt.

VaUlted. A. Constructed as a vault; said of a roof, the supporting member of a stone staircase, or the like.
13. Covered or closed by a vault, as in the phrase a "vaulted aisle."

Vallting of the $\mathbb{C i} h \mathrm{l} k \mathrm{hofer}$ Church, Pragite, linhemil: all silinging from the Angles of the outele Octalion, making what ľ caleed A Guthic Done.

VAULTING. The art and practice of billting vanlts and of closing or finishing rooms, passages, or entire huldings, by means of vaults.
(For the sultitles, Barrel Vaulting, etc., see generally, Barrel Vault, etc.)

VAULTING

Cross Vaulting. Vaulting in which two or more simple valts intersect one another as deseribed muler Groined Vault, Welsh Yinlt, and gemerally in the account of Ribbed Vaults in the article Viault.

Fan Vaulting. A species of stone raulting in whitl the intrados of the vanlt, made up of constimtly repeated surfares of revolution,

each generated by a curvell line, revolved horizontally ahont a fixes pint, the apex of the vanlt being in plan an are of a circle tangent to the opposing rault spmong from the opposite support, the horizuntal spaces left hetween the tangent circles being filles with flat slabs, or keys of very slight curvature. The convex surfaces are formed with radial ribs of miform curvature spaced elosely together. giving the appearance of at folding fan bent to a emve, and hatting at the crown against a horizontal cirenlar ring. This species of vaulting is peculiar to the late English Gothic, finding its highest development in the chapel of King's College, ('ambritge, aun in Henry the Seventh's Chapel, Westminster Abbey. There are ouly about twenty-five examples of this construction in England and none fully developed on the Continent. In the English examples the vaulting springs from engaged shafts on the sile walls, with one instance only of raliation from a central pillar. The lines of the curves are tangent to cach other at the apex of the rault, in the centre, ami between the engaged columns, lewing horizontal spantrels which are fillet in lyy flagging on that archings. A somewhat similar speries of construction eovers the small chape! of the monastery at Belem, near Lisbon ; hint in the Portugusese example the fans make complete rircuits ahout sleuder isolaten pillars, meeting half vaultings from the side walls, but
not touching euch other, ant at the apex the lines of the fans, which are separated by a con-

VAULTING

eealed areh which spans the whole chapel, a single roussuir being extended sereral feet be-

Vaulting, Neoclasic; Church of s. Peter, Rome; Interior.
siderable space, are comected by very flat, ribbed, domical raultings. The elaboration of the vault of Henry the Seventh's Chapel is greatly complicated by a series of drops from

Fav Vaulting: Consteletion of Choir Roof, s. George's Chafel, Wininsor Castle. The Minle Section is sut ribbed at all but villeten in sulid Blucks. The Haysches are kept is Place by filling of loutgh Masusty. Vault, VI., also Englanı, Architecture of.)
low the line of the arch to form the drop and serve is a support for the inverted fans. (See

- (. H. Blackall.

Ribbed Vault-

 ing. Aconstrnction in which arched ribs are built from point to point over the space to be ranlted, the smaller and usually triangular spaces between the ribs being filled with lighter masoury. (See the artiele Fault, and Guthie Architecture.)Stellar Vaulting. A late development of English fan vaulting as exhibited especially in the ehoir roof of Oxford eathedral, where the spaces between the intersections of the charaeteristic inverted which springs a secondary system of fan rault- polygonal pyramids of the vaulting are made by ing. These drops are really a part of a con- \mid tracery to assume star-shapeel forms. - H. V. B.

VAULTING CELL

VAULTING CELLL. One compartment of a vault which is so phanel that one part can be built at a time, as in rilhed vanlting.

VAULTING COURSE. A horizontal course made up of the abutments or springers of a vanled roof; generally mate of stones set in projection or corbelled out, with horizontal beds.

VAULTING RIB. (See łil.)
VAULTING SHAFT. In ribbed valulting, the vertical mpright, in one or several rounded members, which leads to the springer of a rib

Valfeting Sheft: Münstermafeld, Rhevish Prusisia. The shafts Proper spling frun Culs-de-lampe and are unly Two Feet Lonci.
or group of ribs. This shaft may rise from the ground, or from a corbel at a greater height in the face of the masonry.

VAULTING TILE. A light piece of haked elay, intended to serve as a part of the filling of a raulted cell, wr of a groined ramlt built on centres.

VAULT LIGHT. (See umer Light.)
VAUX, CALVERT; landscape architect; b. Dec. 20, 18.4 (in London) ; d. Norember, 1895.

He stulied architecture under Lewis N. Cottingham. He berame the assistant of A. J. Downing, and later formed a partnership with him. The firm of Downing and Vanx laid out the gromuls of the Capitol and of the Smithsomian Institution in Washington. In association with Frellerick Law Olmsted, Taux male the plans according to which Central Park in New York was laid ont, and retained his pusi-

VENTILATION

tion as consulting landseape arehiteet of the dppartuent of parks in New York until his drath. Olmsted amd Vanx designed Prospect Firk, Brooklyn, the parks of C'hieagu and Butfialo, the State Reservation at Niagara Falls, and the Riversile aml Jorningside parks in New York. Obituary in Americon Architert, Vol. L., p. 4.3.
VECELLI, TIZIANO (TITIAN) ; painter ; b. 1475 ; 1.1576.

A mural painter of great power.
Crowe and Cavalcaselle, Liff of Tition, also in general libliography, Berenson, f'enetuen Painters.

VELARIUM. In the roofless Roman theatre and amphitheatre, a great awning which was often spread to protect the spectators from the sun or rain.

Vellano. (See Bellano.)
VENEER. A thin facing of hard wood, which has desirable ormanental cqualities moler polish, glued upon a more common wool, usually pine, as in doors, wainscoting, calinet work, etc. An exteusion of this meaning, used in honse carpenters' traule, is described under Winol, Constrution in, Part II.

VENETIAN BLIND; DENTIL; DOOR ; PAVEMENT, etc. (See under sperial noms.)

VENT. Any opening provided for the eseape of smoke or foul air.

VENTIDUCT. A passage or luct for the conveyance of air, and to control and direct its movements in ventilation or heating.

VENTILATION. The process and art of supplying fresh air to the interiors of buildings, to mines, large vehicles of transportation, and the like, so as to maintain a constant acceptable standard of purity.

Anything short of the above can hardly be called rentilation, and it must be noted that movements of confined air, which simply produce a sense of evoling, must not he confoumed with ventilation.

The sarage made a hole in the roof of his house to let the smoke out. This was the first attempt at ventilation, and very little improvement was made on this primitive methorl until about six humlred years agn, when the fireplace and chimmey appeared; and this sufficed for dwellings until ahout Franklin's time, when he invented an aspirating stove, the waste heat of which drew a measure of air out of the room, which air was renewed the hest way possible, through window and door eracks and porous building materials. The early chimney was as a general thing so large that when the rloors and windows were closed the air to supply the fire came down one side of the chimney, while the smoke went up the other side; and

VENTILATION

this circulation went on even after the fire was out, though in a sulduch meature, thus securing incilental ventilation.

In the later part of the seventeenth century systenatio rentilan was umbertaken by sir Christupher Wren in the British Holses of

VENTILATION

Mr. Clarence B. Young appeared in the annual reports of the board of Regents of the Smithsonian Institute for the year 1873 and 187 t. He recommended as the amomnt of air to be changed every hour to preserve the healthful conlition of the room ans follows:-

Vauling Shaft; the Near Aygle, betwees Chuir and Thisiept, has a Shaft fur Each Great Grucp of Ries, Fife is All.

Parliament, London. It was little better than "some holes in the ceilings." About $1: 23$ Desaguliers improved the systen hy connecting the holes or tubes with heated chimneys. This is the first well-anthenticated account of rentilation by "heat aspiration." In ahout the year 1736 Desaguliers again improved the ventilation of the British Honse of Parlament liy the use of centrifugal fans, which were very similar to the honsed pressure fan of to-day. This is probably the first well-authenticated acrount of the use of "pressure" and "exhanst" fans to buildings.

It is only within the last forty years, however, that a great aud well-lefined stride has been made in the development of systematic ventilation for habitations. The little that had been done by persons previous to that was in special cases and only in notable buildings, such as the Capitol at Wishington and some hospitals and asylums; anul it is probable that General Arthur Morin, lirector of the Conserratory of Arts and Trades, Paris, was the first to disseminate and give a clear understanding in his mritings of the true principles of molern systematic rentilation. am a translation of his work on Warming and IFutikting Bocrpied Buildings is suggested for the consideration of all students. A tramslation of this work by
Hospitals: Cubic Feet.
For orlinary cases of sickness $2119-2+2$
During epidenics $3: 09$
Prisous 1766
Workilops:
Tnhealthtiul oecupations 2119
Barrack:
During the day 1059
At might 1413-1166
Theatres 1413-1760
Assembly rooms and halls for long receptions 2119
Halls for brief receptions; lecture rooms 10.59
Primary schools 4200-4530
Adult schools 833-1059
Stables 635i-7063
and it will be noticed that they do not fallso far below what is considered rery fair prac-tice of the present day. It is not quite appar-eut why he provides so high a proportion forstables. and does not say whether it is per manor per horse.

Morin is prohably the first to point ont the importance of keeping the quantity of air admittel to a builling constent while making its temperature curiuhe the rariations to snit the

VENTILATION

clanges in the outside temperature. The only method in rogne previons to about twenty years ago wals to close the register when the rom was sufticiently warm; which of course nut only cut off the heat supply, but the air supply as well, interrupting ventilation. This, however, is changel now in most luildings that are systematically ventilated, except, perhaps, private houses, where the change of air with indirect apparatus is generally sutticiont for the limited number of persons present. General Morin calleal attention to the necessity of the "mixing valve," in the following words:-
"During the periow of artificial heating, it is proper to reserve mems of mixing with the warm alir supplied by the heating apparatus, cool air, the ament of which may be regulaten hy consenient registers. For this purpose the warm air supplied by the heating alparatus

Vemtilation; Fig. 1.
shoud be received in a special register or mixing chamber, into which the cold air also cuters, before passing into the distributing pipes."

The usual methon of accomplishing the foregoing, now followed in the United States, is shown in the ent (Fig. 1). The danpers b, b are connected with a roul and operated from the room by band pulls, or automatically operated by pmeumatic [ressure controlled ly a thermostat. Many mollifications of this methoul of mixing are shown in Dr. John S. Billings's work, Tontilution ounl Henting. Mixing systems, howerer, have been carriel to a greater extent than this in some of the great modern buildings in the Unitel States. In the new College of Physicians and Surgeons, built by Mr. William H. Vandertilt, and which has since become a part of Columhia University, was first introduced the hot and cold air system in which parallel pipes conveyed both warm ami cold air to the registers in the roon, the parallel air ducts starting from a common cold air

VENTILATION

supply, one duct being warmel to 120° and eallecl the hot duct, and the other warmed to 60° and ealled the cold duct. This is shown by the diagram (Fig. 2), and the figure is typical of all the impertant puints of the most moulern warming and ventilating apparatus.

The colld air is taken in at l, whirh is callend the colla air inlet. At G is a strainer of comper wire to intereept leaves, birds, mire, etc., lat no cust, as the litter is practically impussible, unless with elahnate apparatus. The enils p are called primary heating woils, as they give the first inrrement wheat to the air - 60° or less. S' is a settling chamber, the flour of whirch is flowled with an iurh or so of water II, into which a very large percentage of the dust fills. F is a pressure fan capable of 1 oz . of pressure withut extraorlinary speed. C is the heating chamber, in which are located two sets of seemmary heating coils, each eapable of warming the air to 120° Filn? or higher. These roils are divided into sections, as well as the primary cuils, so that varions graduations of heat cam be mitainel. The secmulary coils upper silf are called "hot coils," while the coils lower sM are, for the sake of distinction, calles "the cold coils." They are lxith, however, equal in all respects, only that under numal nage a large percentage of the hot coils are in use, while a small percentage of the cold coils are in use. From the heating chamber both the hot and coll air durts start, and rum onte above the other (the warm one of prefercuce being on top) to the various 1 mints of distribution about the lnikding. The hot air duct, of comse, is connecterl with the housing of the " hot coil," while the cold duct cmmerts with the honsing of the "cold coil," lower SII. The air and pressure in the heating ehanber is common to both sets of clucts, so that, if one duct does not take it, the other dues, the same quantity of air always reaching the rooms of the separate builling, regardless of the temperature. From the horizontal ducts parallel vertical Hues are carrien to the register hearl, one "hot" and one "cold." In the register head, inside the face of the register, there is a simple slifle valve just large enongh to cover one entire pipe only. A simple meehanism attachell to this slide valve serves as a handle to move it across the head of the hot and cold air pipes. It also indicates its position, so that the occupant of the room is enalbed to mix the hot and cold air to any desired range of temperature between 60° and 120° Fillr.

A feature of this style of apparatus is that, should the main secomlary cuils upper SII get out of order, it is only necessary to shut them off and let on the lower SH, thus cunverting the cold air duct into a hot one, and vice cersu, and run the apparatus reverset,
securing equal results until the other is repaired. This is a featme of this style of apparatus that makes it jarticularly adapterl to hospital use, so that it was carried out in botly the old and new Sloane Daternity Mospitals, the Vanderhilt Clinie, and the Wm. J. Syms Operating Theatre of Roosevelt Hospital, all of New York ("ity.

In the Slowne Matemity Hospital, 8000 cubic feet of air per berl per hom is admitted in this manner, and every ward is treated in the simple manner shown in the illustration, there leeing nothing lout an air inlet and air outlet in each room. This is the minimum

VENTILATION

flues f, f, and thence it is passed ont throngh the rises of the steps, on which the scats are arranged (small arrows), and delivered through long slots under the feet of the occupants. The sluts are curered with iron flaps, as shown in the detail, so as to make the air impinge on the floor, and spread evenly and not strike on the backs of the legs. A quantity of air equal to 600,000 cubic feet per hour can he abmitted to this hall without inconvenience by the method shown. The ontgoing air of the room is entirely at the top, as shown by the large arrows, and all indication of smoking will disappear almost as quickly as the andience can retire, and the of possibilities fur a hospital Ward in a cold climate, doing away eutirely with coils and dust catches in the room, and securing results that are miform even in the collest weather. The lower edge of the heat register is pheed 7 to s leet from the floor, the lower rentilating register, which is only a face (easily remorable for cleaning the Hue), being only 4 inclues from the Hoor, so as to finish on the marble, coved comer of the room and be as near the floor as possible, so as to take off the air at the lowest stratum possible: while the upper rent is a full register placed as near the cuse of the ceiling as possible, to take off the upper stratum of air when it is found necessary. These registers, howerer, are in the power of the uurses or occupants to close. In the first part of the Sloane Maternity Hospital to be built the ceiling registers were omitted, and all the air drawn off at the floor, hut it was found that, when anæsthetics were used, it was necessury to have eeiling registers.

All the rooms of the College of Physicians and Surgeons, and the entire group of buildings incluting the Camberbilt Clinic and the Sloane Maternity Hospital, are treated as above shown. The auditoriums of these buildings and the dissecting roons of the college have differeut treatment, the details of which are given, as they also are typical of the most adranced practice in this regard. Figure 3 shows the amphitheatre of the College of Physicians and Surgeons, with the lecture room, aud fan and heating chambers mderneath. The centre heating chamber supplies heat and air to both the amphitheatre and the lecture room. In the case of the amphitheatre, the air is carried to a plemum underneath the raised steps, through

lecturer is not affected by it. This is a case of the direct passage of the air of a room in a single upward direction, no part of the air returning to the person again.

The lecture room (just below) has the same treatment so far as the inlet of air is concerned, but the method of drawing it out differs on account of the construction of the builing. The air is drawn ont at opposite ends in central walls at floor and ceiling. There are registers r, r at hoth floor and ceiling, and a pectliarity of the system is that both floor and ceiling registers have separate flues without means of closing them, si that about one half the air goes off at the flow line and the remainder at the ceiling. The results are found to be gool. In other rooms of the buikling, both the foor and ceiling registers are in the same flue. The dissecting room of this building, which contains about eighty tables, has a distinct treatment. The air is admitted through a perforated comice

VENTILATION

or air box ruming around the entire ceiling, and it is drawn ont at registers in the baschoarl; the object being to secure a downward current of air within the roon, and, if possible, make emanations fall to the flow. The general results are good, about 500,000 cubie fect of air being passed throngla the rom in an hour. The dissecting roon dian chamber is shown in Fig. 3 at 1 . It is a single the system, the

admitting 2,000,000 cutbic feet of air per hour is proviled, which allows 666 cubic feet per person per hour, aml, though low compared to hospital ventilation, is still a genemous allowance of fresh air. The fresh air suplly to this huilhing is taken from a colomarle or open gallery on the south side of the buikling at a distance of albout $\bar{T} 5$ feet above the ground. The air is then rarried down through a shatt to a fan ehamber, where it is warmed and lureed into the plenum through the fin F, shown in the drawing. The plemun is formed ly the entire basement momeath the man floor. The construction is entirely iron and masonry, and fireproot. Under cerery third seat hoth on the main flow and on the balcony foor air is admitted throngh a mushroom-like cap, shown in the detall. This ('al) is capable (of three adjustments, but it is so arrangel that it never can be closenl entirely. From the main plenum air is carried through a system of mets, which are shown, into the space formed between floor and ceiling of the first balcony. The gallery receives mo heat or ventilation, exrept that which comes through the house generally. The methoul of withutrawing the air from the honse is through a large central dome which comnects with the main aspirating shaft on the roof. This dome is coverel with a bell that is eapable of alljustment, the controlling mechanism sunning down to the engineer's department. The rentilation from underneath the balcony and gallery is by an entirely different system of Hines, that cannot be closed. A study of the drawing will show these thes ruming up separately in the rear wall, and comnecting into a separate rent pipe placed within the main aspirating shaft. The object of
temperature being regulated by the engineer in the heat chamber by the mixing valves a and a; the upper one for warm air and the lower one for coll air, the adjustment of each securing the temperature refuiced.

The American Theatre, New York (Fig. 4), is a good example of theatre ventilation and warming. The system is "forced ventilation," that is, a fan is usell. Flues, etc, are, however, sufficiently ample to allow of warming without the fin. The seating capacity of the building is about 3000 persons, and means of
the separate set of vent ducts is to provide for drawing away the accumulations of hot air that usually form nuderneath the stecp galleries. When the bell or valse in the centrill dome is partially closed the pressure of the outgoing air is increased underneath the batcony and gallery, so that the proportion of air forced to go that at these points can be increased or climinished by lessening or increasing the amome allowed to escape in the centre.

The stage is warmed entirely by direct radiation, large coils being hung on the rear wall

VERA DA POZZO

The upper figure shows that in the Court of the Palazzo Vendranin Calergi, on the grand Canal, and is of that peculiar Venetian Romanesque which shows a strong influence of Byzantine nodels. It is of the twelfth century. Tlat below is of the close of the fourteenth century, and designed, as many
were, in the semblance of a capital for a columm. The escutcheon on one side has very intelligible armorial bearings, which might reveal the name of the original owner and the original locality. The vera is now in an ancient cloister, that of the $A b$ baziu dellu Misericordia.

VENTILATION

and others suspented high so as to prevent a downfall of cold air, which is so often foum to How ont into the body of the louse upon the rise of the curtain. The temperature maintainel in the plerum is about 65° Fahr., and the switch valve is usel so that the engineer can keep the plemum at any desired temperature.

The usual school for from forty to fifty scholars, as now commonly designed, has a Hoor spate of about 24 feet by 32 leet, with light on at least two silles of the rom, the general endearour being to hive the sitting so arranged that the light will come in over the left shonliler of the scholar. Provision shonht be matie for the atmission of at least 100,000 cubic feet of fresh air to one such room in an hour. The admission of this air should be above the heal line, and one inlet register is suthicient. Experiments have demonstrated that the necessary the for such a ronm shonld have a cross section of not less than 3 feet in its smallest part, and that 4 feet is probably the limit requirel, the latter being the size now adopted by the engineers of the New York Board of Elucation. It is the custom in New Fork to reت̈nforce the warm air system by a direct system, the object being to maintain the heat of the room by direct raliation when the fans are not ruming, such as at night, etc. It has been fonnd, however, that when a quantity of air equal to 100,000 cubic feet is admitted to an ordinary sehoolroom in an hour, that this amount cin be arlmitted and withdrawn without appreciable dranghts, and at a temperature sutticiently low to prevent the room from being overheater. Under this conlition of quantity and low temperature it has been foume except in exceedingly cold parts of the United States, that direct raliation can be lispensed with, and still rive comfortable conditions at all parts of the room. It is not desirable, however, from a print of economy of maintenance to atmit surh large quantities of air when the sehool is not in session ; therefore, in the constrution of a heating and ventilating apparatus tor a school it is desirable either to provile a reasomable quantity of lirect radiation, or to design the thes and the indirect portion of the heating apparatus in such a minner that sufficient air will pass throngh the Hoes by natural draught to maintain the heat, but with a greatly reduced gnantity of air and with an increasel temperature from that necessary when the sohool is in session. A register of 50 per cent greater area than the the when placed above the lietul line, the lower edge being 7 or \& feet from the floor, will not cause inconrenience, although the velocity of the air may he 4 or 5 feet per second.

In the matter of withdrawing air from a schoolroom the air should be drawn from as

VERA DA POZZO

near the floor line as possible, aml preference should be given to a register that will be low and wide rather than the reverse. Building construetion, however, sometimes interferes with the proper shaped fhe to secure the hest results. The arehitect, however, shonh endeavour to make the thes wide so that the register caln be low, and no objection should be made to having the register cut through the baseboard, as appearance should be set aside to utility. The vent registers (an be in the same wall or group as the beat registers when the ontlet is at the floror. The question of ceiling ventilation in a schoolroom is very unsettled. In winter time it is probably umecessary, although this does not alwiys satisfy, and for this reason it is customary to place another ventilating register in the same flue near the ceiling. This brings the ceiling outlet too close to the inlet or heat register, resulting in robbing the room of its heat, and the short-cireniting of the pure air current. For this reason, perlaps, it would be well to have a double set of vent registers and vent thes to each room when prissille, the vent registers being placed near the foor in the gronp near the beat flues, and near the ceiling in the opposite group. This will permit of both flow and ceiling ventilation. It will also prevent the flow rent from leing interfered with when the rpper vent is opened, and it will still firther prevent a considerable loss of heat by short-circuiting. All sehools designed for forced ventilation shonh also be arranged so that, in case the forcing mechanism gets ont of order, air and heat enough will still enter the rooms by matural methods to keep them comfortably warm, so that it will not lue necessary to dismiss the school through temporary injury to the fan or motor.

- William J. Baldwin.

VENTILATOR. Auy device for replacing fonl by pure air ; as a hood or cap at the top of the vent shiaft or Hlne, cuntrivel to prevent down draughts and to create up iranghts ; or an open lantern at the top of a bulding, provided with louser boarling, and comected with the exhanst system of ventilation.

VENT PIPE. A pipe cirried from a house to the outer air, intented for the rentilation of a system of waste pipes, for the removal of foul gases, and also for the prevention of trap siphonage or back pressure; in general, an escape or reliel pipe for steam, sewer, air, etc. (See Honse Drainage.)

VERA DA POZZO. A cistern curl); nne of the parapets strongly resembling well curbs which abound in Venice, in public places and in the courts of large private houses. In the courtyard of the Ducal Palace two of these vere da pozzo exist, of bronze, and of very elaborate design. These rlate from 1556 and 1559. With these exreptions the cistern heads

VERANDA

in Venice are all of stonc: in most cases, Istrian stone. They vary in date from early Byzantine work, berhaps as early as the tenth century, to work of the Post-Renaissance time. The simplest are cylindrical or of reversed conical shape: hut a very large number are extremely rich and elegant in design, and these are often designed like capitals of columns, with four angle projections of leafige. A valuable work lats been deroted to them by the pmblisher, Ferdinamlo Ongania, of Venice, the title of which is Rurcoltu delle Tere du I'uzzo in Venetiu. - R. S.

VERGARA

With Viollet-le-Duc (see Viollet-le-Duc) he was architect of the diocesan buildings of Amiens and Beanvais (France). With Dr. Cattois he published L i-Lrchitecture cirite et domestique are Duyen áge et d̀ la Renaissunce (Paris, \geq vols. tto., I855).

Banchal, Dictionnaire.
VERGARA, FRANCISCO (I.) ; b. 1681 (at Valencia, Spain) ; d. 1753.

He studied sculpture under Rodulfo and Aliprandi, two Germans employed in the decoration of the cathedral of Talencia. Vergara made the statues of cardinal virtues and por-

Vera da Pozzo of Bronze, in Cuurt of Ducal Palace, Ventce.

VERANDA ; VERANDAH. An open gallery or portico covered by a roof supported by pillars, and attached to the exterior of a building. It is often extended across one or more fronts of the building, or entirely around it, and is occasionally enlarged or otherwise so planned as to form an outside room, more or less protected by screens of vine or lattice. The conditions of climate in the United States render the reranda a necessary feature of life in the country, and especially at places of summer resort in the cottages and hotels. This local necessity has been a rery important element in conferring distinctive character on structures of this kind in America.

VERDE ANTICO. (Same as Verdantique Marble, under Marble.)

VERDANTIQUE. (Same as Verdantique Marble, under Marble.)

VERDIER, PIERRE AYNARD ; b. Nor. 19, 1819 (at Tours, Indre-et-Loire, France).

Terdier was a pupil of Labrouste (see Labronste) and at the Ecole des Beaux Arts.
traits of Valencian popes orer the main portal of the cathedral, the bigh altar of the church of S. Augustine, the figures of S. Domingo and S. Catalina for the church of S. Domingo, etc., all at Yalencia.

Stirling-Maxwell, Annals of the Artists of Spain; [Sermndez, Diccionario.

VERGARA, FRANCISCO (II.) ; sculptor ; b. 1713 (in Spain) ; d. July 30, 1761 (in Rome).

A nepher and pupil of Francisco (I.) Vergara (see Vergara, Fr., I.) of Valencia. He went to Madrid and made statues of S. Francisco de Paolo and S. Antonio in the church of S. Ildefonso. Vergara went to Rome and entered the school of Filippo Valle. He exccuted statues and bas-reliefs for the altar of S. Julian in the cathedral of Cnenç (Spain), which was designed by the architect Tentura Rodrignez. For the church of S. Peter's in Rome be made a statue of S. Pedro Alcantara. Bermudez (op. cit.) praises his statues for their grand 988

VERGARA

character and for the breadth and freedom of their draperies.
stirling-Maxwell, Annuls of the - Irtists of Smin; Bermudez, Dircionurio.

VERGARA, IGNACIO; sculptor; b. 1715 (at Valencia, Spain) ; r. April 13, 1776. A son and pupil of Francisco (I.) Vergara (sce Pergara, Fr., I.). He enjoyed a high reputation in Valencia, and left many works there. Among the best of these is a group of angels in the façade of the cathedral. With his hrother, Josef Vergara, he established the Reul Academia de S. Carlos in Valencia, of which he became director in 1773.

Stirling-Maxwell, Annals of the Artists of Spain; Bermudez, Dircionario.

VERGARA, NICOLAS DE; sculptor, painter, and architect; (l. 1606.

A son and pupil of Nicolas de Vergara, a painter and sculptor. In 1573 he succeeded his father as sculptor and painter of the cathedral of Toledo (Spain). He made the fine bronze and iron lateral lecterns of the choir, and designed the new Sagrario, or chapel of the Host, which was finished by Monegro. In 1575 he designed the church of the Bernardine nums at Toledo, and in 1595 a chapel for the relics of the Jeronymites of Guatalupe (Spain).

Stirling-Maxwell, Annals of the frtists of Spain; Bermudez, Diccionario.

VERGAZ, ALFONSO GIRALDO ; sculptor ; b. Jan. 23, 17t4 (at Murcia, Spain) ; d. Nor. 19, 1812.

He studied sculpture under Felipe de Castro in Madrid, and April 15, 1797, was made director of the Acalemia de N. Fernumde in that city. Among his works are a statue of Don Carlos ILI. in the plaza puhlica of Burgos, a statue of Juan Sehastian Eleano at Guetaria, three angels in the cathedral of Jaen, and various works in Madrid.

Viñaza, Adiciones.
VERGE (I). A shaft, as of a column or colonmette ; the French general term, occasionally used in English in this especial sense; perhaps generally with the French prommeidtion, as in the case of Passage (H.).

VERGE (II.). That part of a sloping roof which projects beyond a gable or half-gable (as of a pent house). Verge and the terms compounded with it are used in contrast to eares and its compounds. This term is hardly technical ; hut the supposed connection between it and Barge in certain combinations has given it an arcidental importance.

VERGE BOARD. Same as Barge Boarl; there is, however, no etymological comection between the two phrases.

VERMICULATED WORK (also, but improperly, vermicular work). A sort of rusticated stonework so wrought as to appear thickly indented with worm tracks. (See lins989

VESTIBULE

tic Work.) This device is used to roughen a surface regularly so as to create a marked contrast with smouth surfaces.

VERMICULATION. The atet or art of producing vemiculated ormament ; the roughening so produced.

VERONESE (PAOLO CALIARI); painter ; b. 1528 ; cl. 1588.

A mural painter of great power.
Charles Yriarte, Peul fopromèse: Charles Blanc. Ferronèse au Chatton de Mosère; Berenson, tenetian l'ainters of the lienuissance.

VERROCCHIO (ANDREA DI MICHELE

DE' CIONE) ; sculptor, painter, and goldsmith ; b. 1435 ; d. 148 s .

Andrea was apprenticed to a goldsmith, Verroccho, by whose name he was known. Of his work as goldsmith nothing remains except a bas-relief in the silver retable at the baptistery in Florence ($1478-1480$). . 1111467 he assisted Luca della Robbia (see Rubbia, Luta della) in casting the bronze dowrs of the sacristy of the catliedral of Florence. About $1+71-1+72$ he made the monmment of liero and Giovanni de' Melici in the church of S. Lorenzo at Florence. He risited Fome during the pontificate of Sixtus 1 . (Fope 1471-1484), and made there the tomb of Francesca Tornabuoni, some bas-reliefs from which are now in the Museo Nazionale (Florence). The charming fomtain (boy with dolphin), now in the court of the Palazzo Vecrhio (Florence), was intemded for the Medici villa at Careggi. Verrocchio's greatest work is the equestrian statue of the general, Bartolomeo Colleone, at Venice (begun 1479). The work was left incomplete at the death of Verrocchio. It passed throngh the hands of Lorenzo di Credi to Alessandro Leopardi, who cast the statue in 1496 and signed his name on the saddle girth. (See Leoparli, A.)

Vasari, Milanesi ed. ; Vasari, Plashfield-Hopkins ed.; Müntz. Renaissanfe; Ierkins, Tusfan Sculptors; Bode, Itulienische Bildhutuer der lenaissance.

VERTE ISLAND STONE. A hard red samlstone from Terte Islant, Lake Superior.

VESICA PISCIS. A Glory of the long and sometimes pointed oval form supposed to be that of a fish bladder, whence the name. (See also Symbology.)

VESTIARY. A room or place for the keeping of restments, garments, or clothes; a wardrobe.

VESTIBULE. A lobby or passage intermediate between the entrance and the interior of a builing; a place of shelter or accommodation to those awaiting entrance to a building; and in northern climates the area between outer, storm, or front duors and inner, or restibule doors, by which the house is protected from the cold dranghts. (Compare Storm

VESTIBULUM

Door, J, aml Wind Porch.) Less properly, an antermm to a larger apartment or sule. (See Lobby.)

VESUVIAN DISTRICT

which have been overwhelmed hy eruptions of Mt. Vesurius, and which hare been bruught to light in recent times, or are in the way of being so explored. The considerable

Vestibule uf a House vear the Chureh S. M. della Paie. Fione. town of Pompeii has heen about half meurered; this labour haring beeu much less ditticult, beeause the original bed of ashes cannot hare exceeded seven or eight feet in depth, and the subsectuent deposits were still so slight that the upper stories of the houses were frequently left uncorereal. The town of Hereulaneum, howerer, is covered by a tuta formed of volcanic saml, which bas solidified under the eruptions and subsequent rains into a porous stone; and this is sixty feet deep in some places, and nearly everywhere thirty-five to forty feet deep. Here only a few hundred square feet have been opened to the sky, the digging having been clone in forty feet of sott rock; but two other important discoreries have been mate. These are, first, that of a theatre, which is kept open and can be

VESTIBULUM. In Roman archreology, the outer restihule, a recess or sheltered place outsile of the outer doors of a building, as distinguished from the Fances. It was sometimes large and adorned with colmmns, forming an important arehitectural member, and a place where many persons could find shelter; but this must have been imusual, as only one of any elaborateness has been found in Pompeii. The Tilla of the Papyri at Hereulaneum seems to have had a perfectly plain, sifuare restibule within an onter columnar portico; it is possible that some allusions in ancient writers may be explained in this way.

VESTRY. A sacristy. A room adjoining the chair of a church, and sometimes behind the main altar, where the sacred ressels and restments were kept, and where the priest put on his robes. In Protestaut ehurehes, a waiting rom, next the chancel or pulpit, for the accommodation of the elergy. A choir restry is a roling room for the choir. (See Lbiaconicon.)

VESTRY HALL. In England aud in some of the English colunies, a hall in which the inhabitants or ratepayers of a parish, or their representatives, meet for the despatch of the otfieial business of the parish. - (A. P. S.)

VESUVIAN DISTRICT, ARCHITECTURE OF, THE: That of a region of Italy lying southeast of Naples, and reaching from Naples to Castellamare, thus oeeupring the innermost coast of the Bay of Naples. The buildings which belong to this subject are those
risited by descenting through it well and passing along undergromd passages; and that of the celebrated Villa of the Papyri, called also the Villa Ercolanese, in which were foumd not only the great store of papyrus rolls which give it its common name, hut also a large number of bronze statues, statuettes, busts, and groups, by means of which the Musemm of Naples has been made richer in the matter of antique bronze sculpture than all the rest of Europe together. Other minor explorations have been made at different points south and southrest of Mt. Vesurius, and valuable objects have been found. The architectural interest of this region is, howeser, almost entirely centreal in the city of Pompeii, where, though the houses were risited by their owners and by phmilerers, who dug down through the soft ashes of the first eruption, and, although the woolen niper stories, roofs, etc., have disappeared, and the masoury and decorative work of the lower story hare disappeared altogether or suffered severely, there is still the material for a very valuable study of the Roman Imperial epoch.

The exeavations of Pompeii are continned steadily and with care : and a more strict archeologieal intluence has controlled these for the last twenty-five years. Nuthing is being done at Hereulaneum : and it will require elaborate preparations and a considerable expenditure of money to reveal the treasures that are below the surface in that neighbourhood. It is altogether probable that many such villas are

VIADUCT

buried under the soft rock, and that as many ancient works of art exist there, accessible to us, as are now contained in the musenms of Europe. (Sce Comparetti's book mentioned below for the extraorlinary art treasures discovered in the celebrated villa. The preface of Mau's book gives a number of titles.) - R. S.

Comparetti, La Villa Ereohenese dei Pisoni i suoi monumenti e la sua bibliotect, 1883; Mau, Pompeii, Its Life and Irt, 1819.

VICTORIAN ARCHITECTURE

B. The benefice and oftice or functions of a vicar.

VICAR'S Close. (See Close.)
VICTOR, LOUIS. (See Luwis, Louis Nicholas Victor.)

VICTORIAN ARCHITECTURE. That of the reign of Queen Victoria; the term may be applied, therefore, to any buikding commenced or planued since the accesssion of the queen, but is used more especially for buildings of any

Vestibule in Palazzo Macrarani, Rome.

VIADUCT. An elevated roadway supported by arches of masonry, or hy trestles of iron or wool, carried over a valley or any low-lying district where an embanknent would be inceperlient or impracticable. (Compare Aqueduct.)

VIART, CHARLES ; arclitect; 1. about 1537.

He completerl, in 1526, the Hôtel de Tille of Beangency (Loirct, France), and in that year was called to Orléans (Loiret) to buikl the Renaissauce portion of the Hôtel de Ville, now a museum. He was employed on the Hôtel te Ville of Montargis and on the château of Blois.

Herluison, Arlistes Orléanais; Lance, Dictionnaire.
vicarage. A. In England, the lome or resilence of a vicar.
characteristic style unknown previous to the year 1837 . During the reign the Gothic Revival began, culminated, and declined; and there were several other important morements, fashions, or attempts at ereating a new style, such as the revived style of Queen Ame, in which Mr. Norman Shaw was active and which had great success at one time; also of late years a new ultra-classie revival, to which it has been attempted to give a purely Palladian character. Buildings, such as those which, helonging to the later years of the Gothic Revival, enutain French and Italian elements freely userl in connection with English, together with a free use of party-coloured materials, are commonly callen Victorian Gothic. (See the articles, England, Architecture of; Gothic Revival; and

VICTORIA STONE

VILLA

a histury of the Cothie Revival hy Charles L. Latsthare, Lomelon, 18Tこ.) - IL. S.

VICTORIA STONE. A variety of artificial stonn introdured in 1 sis.

VIGARNY, FELIPE DE (FELIPE DE BORGONA) ; sculptor and arclitect.

For the Cardinal Ximenes ole Cisneros he mate the great rotable of the cathedral of Twherlo (Spain), with its seulpture (1502). He afterward went to Granatia to exerute the royal chapel in the eathealral, and the fine momuments of Ferdinamul and Isabella which it contains.

Stirling-Maxwell, Ammals of the Artists of Spain; Bermudez, Diccioncrio.

Vignola. (see Barozzio, Jacopo.)
and all the appurtenances which may be brought into direct connection with the design. Such is the Italian significance of the word, which, when adopted in Linglish, had the same meaning. In the United States it hass come to imply merely a suburban dwelling with small grounds, and there is left no tem so comprehensive in its scope as villa in its original meaning. Therefore, it is to be hopeed that, with the renewed interest in formal design of country places, the original use of the word may again come into use. Accorting to this, the house should be considered as merely a part of the whole scheme, and not is the villa itself.

The rilla is usually, though not necessarily, designed especially for occupancy during the

A. Great hall, with one or two stories over.
B, C. Lower buildings ; C is probably a kitchen.
D. Chief corridor of entrance
E. Portico, where was probably the principal staircase.
L. Purter's lodge.
P. Entrance to the rilla indirect, leading through three restibules which could be closed.

Villa, El-Barah, SyRia; Plas fartly festored.

VIGNON, BARTHÉLEMY; architect; b. 1762 at Lyon; d. May l, 1828.

A pupil of David Leroy and of De Gisors. In 1806 he won second prize in the competition for the transformation of the chureh of the Madeleine (Paris) into the Temple tle la Gloire. His design was, however, preferred by the Emperor Napoleon. He undertook the Work, and hat charge of the building until his death, when he was succeeted ly Huré. (See Huvé.) The present classical form of the Madeleme is his tesign. (Sce Contant d'Ivry, and (conture.)

Paris dens sa Splendeur; Bauchal, Dictionnaire.

VIHARA. A Budthist monastery. Stmetures of this sort were often excarated from the solid rock; the halls, the ceilings of which were supported by sculptured pillars, being sumrounded by small sleeping cells. (See India, Architecture of.)

VIlle. A country residence designed partienlarly with a view of affording all the enjoyments of combry life, consisting of a honse and surroundings, such as gardens, terraces, groves,
summer. The site is selected on account of the beanty and healthfulness of the situation, and the arrangement of the grounds is such as to give the ocenpants all the advantages of the comntry. The villa is, therefore, more distinctly the country place of a man from the city, as opposed to that of a contimued country resielent, or farmer, who gains his livelihood from tilling the laml. And its requirements are aptly suggested in the French title for this sort of place, "Mcison de Pluist"nre" (pleasure honse). A villa is not "a lolge in some vast wilderness," or a summer cottage by the wayside, but the country seat of a highly civilized person who feels the necessity of heing surrounded by those forms of art which may tend in any way to enhance or hring in relief the beanties of nature.

The villa, as we know it, in its typical furm, is a product of Italian soil and of Italian art. Each country has its own method of arranging country places, varying with the character of the people, the climate, and local conditions; but the fundamental principles which govern the design of such places as may be properly termed villas are on the same lines as those of the

villa; restored view of that at elmarah, dee plan

Italians. Some of the firlest examples of the lienaissance villa exist in Italy, with haudly a change which affects their man features. Their treatment is strictly formal. The grounds are Laicl ont in architectural relation to the house. The paths, alleys, and roads are on ore with the principal openings of the house, and the whole armourment of gardens, terraces, groves, ete., is ustatly enclosed within watls or some lines of a formal character which may give one a sense of privacy. The hand of the artist is frankly in evidence, aml unler that haml the place becomes the fitting seat of the man of culture.

The origin of the villa may be traced to the earliest movements of civilization. The Hanging Gardens of Jabyton, those of the Pharaohs in Egylt, the (rreek villas, these are all treated in literature by the writers of the time. But the villa could thourish only at a time of high civilization, when the seeurity of properts bermitted men to live at a listance from cities or fortified towns. Therefore, it is not mutil we reach the time of the villas of ancient Fome, that anything like the molern villa came into existence. The ancient liomans were great lovers of country life, and the subject of the villa was treated extensively by many writers on architecture and agriculture. The letters of Pliny the Younger give very exact descriptions of three of his own rillas, and from these and the writings of contemporary authors, very exact rules may be laid dum for the arrangement of country places accorling to the style of the ancient Romans. The more important of their villas were divided into three parts: the Villa Urbana, the pleasure house and gromms of the master ; the Villa Rustica, buildings and grounds set apart for the farmer, servants, cattle, etc. ; and the Fructuria, or purely agricultural department. Sometimes the more common of these sillas were composed of the Villa Urbana alone, being situaterl near Rome or near some town which could supply the necessaries, and so simply a place of retirement for the owner. It was the custom of the more important Romans to hare several of these places in diflerent parts of Italy suited to the different seasons ; one near the sea, one in the hills.

Pliny's Villa of Laurentum, in Latinm, known from the descriptions in his letters, was a place which should be classed with the most important villas of the Renaissance, or with the country resilences of the English noblemen of our day, and it gives a very aceurate iclea of the type and of the style of the principal features of the Roman villa. It will be noted that arehitecture and senlpture played a rery important part in the lecoration of the grounds. Narble, porphyry, and bronze were contrastel with evpress, latuel, and box. Large parterres were laid ont in varions forms: amd while the ancient Roman had a comparatively limited number of plants from

Which to compose his garden, as compared with modern times, the main characteristics of the modern Renaissance garden woukd probably have been observed in that of the ancient Roman. It seems probable that in later times the architectural side of the Roman garden played too important a part. This is always a sign of decadence in formal villas, perfection in this kind of work meaning that a very nice sense of proportion should lie observed in combining these two component parts. Under the Barbarian invasion the gardens of ancient Rome disappeared entirely, and it was not until the fifteenth century that they were born again under the Renaissance mosement, the renewal of ancient art. It was meler Lorenzo de' Medici, at Florence, that this movement commencel. Little but the traces of the origimal garlens remain at present, but enough to show (and particularly in the garlens which followed them) that they were inspired by the spirit of the villas of the ancient Romans. Symmetrical forms and architectural lines and sculptural decorations phayed the same part.

Foumled upon these begimnings are the famons villas so well known: the Villa Hedici, the Villa Borghese, Pamfili Doria, and Colonna, in Rome, the Villa d'Este in Tivoli, and Mondragone, Aldobrandini, and others, in Frascati. These were the resilences of the most important families of that time, and their scale and scope were so important that they hare remained more or less intact since. Traces of some of the Merlici villas are to be fonmel in the suburbs of Florence : the Villa Castello, however, is the only important one in a good state of preservation to-day.

The Villa Pamfili, near Rome, has been selected from many others as containing the main features and the best of them. Nore importance is, perhaps, given here to the flower garden and the parterre than is to be found in some of the others, hut the skill of the architect is always shown by giving such importance to one part or another is the lay of the land seems to suggest, carefully disposing the terraces, groves, aml gardens, so as to make a romplete composition in relation to the house. Thus the site of the Villa d'Este in Tivoli, and the Frascati villas, required very extensive terracing. The artistic value of these terraces, forming a foreground for the distant views of the Campagni, is very great, and perhaps the main characteristic which distinguishes them from other villas. The situation of the bosquet, in the Villa Medici, distinguishes it from that of any other bosquet. The Tilla Albani is remarkable for the simplicity of its design, admirably adapted to showing the beantiful collection of senlptures of the owner. Besides the womlerful terraces of the Villa d'Este, it is remarkable for the extmordinary variety of its fountains. The architect has taken adran-

VILLA

tage of the umlimited supuly of water furnished by the caseades above the villa, and has rum this supply through the villa in humbreds of fountains of every variety and form. The tlower gartens in the Villa Lante, the Villa Pamfili, and the Villa Castello are their most distinetive features.

VILLA

and gnarding the works of art contained within it. Whatever may have been the caluse, the result was, undoubtedly, to proluce a very perfect work of art, every inch of gromed within the enclosure being taken alvantage of to produce some interesting effect, and a very delightful sense of privacy ahnost similar to

Villa; at Mostborun, neal Nice (Alpes-Maritimes), France.
A. Principal entrances: vehicles mounting by roads whicla pass herond the house, and from which dlights of steps ascend the hill.
B. Entraace for pedestrians by continuous path, partly a stair a cnridoni
C. Service entrances; that on the right below passing through the stable yard and thence by another wason road to the level of that on the left which is on a level with the house.
One characteristic of all these villas, and the one lost sight of in the work of the later perion in Italy, and also in Europe, is the limitation of the formal grounds within a comparatively small compass. This may originally have been necessary on account of the frefuency of wars, and the impossibility of protecting a larger area
1). Twelling house.
F. Gardener's cottage.
F. Purter's lodge.
G. Stables and carriage house fronting on stable yard, The unslialed fiarts are not included in the estate. The stairease a cordoni on the ripht above the word Villefranche is public, or at least common to several properties.
that enjoyed within the walls of the house itself.

The first European country to feel the influence of the classic villa of the Italim Renaissance, asile from Spain, was Frauce, where, under Francis I., Fontainebleau was startel, entirely on the lines of this school. But here, even in

VILLA

the beginning, the rast impurtance of the villa of the king of France made the scale upon which the usual features of the rilla were laid out much larger than anything that had been done in Italy. The idea ot carrying formal symmetrical lines to a greater distance from the house was started. In France, naturally, very different conditions governed the form which the comntry house and its grounds took, because those of most impurtance were not, as in Italy, muisous de pluisunce, occupied by the owners for recreation and pleasure, but were the permanent seats of their owners and situated in the midst of their vast estates. In feudal times, of couse, the honse was a castle, and fortified ; and though, unther Francis I., they gradually assumed a less forbidding aspeet, they were still so arranged as to be in a pusition to defend themselves if need be. At the same time, wherever it was possible, a sufficient amount of ground was enclused within the fortified region to permit of the arrangement of gardens, restricted in size, but similar in character and design to those of the Italian villa. Plans of some of these chiteaux, with their surroundings, may be seen in the work of J. Andronet Du Cerceau. ${ }^{1}$ These places do not properly come under the heading of villa, but shonld be mentioned as having had their effect in the rilla design which was developed later in France.

Under Henry 1V. the French method merely indicated in the original designs of Fontainebleat was extended, the seale of work increased, and the idea introinced of extending formal lines through a rast forest. The style reached its perfection later under Le Nôtre, whose genins expressed itself in vast proportions, and may be seen to-tay, having been preserved almost in its entire perfection at Versailles. It seems as if the impossible havl been accomplished, and one can scareely conceive of a work of this magnitude having been accomphished in the lifetime of one man.

With the perfection, however, of Le Nôtre's style, the logical conclusion of the extent to which formal work could be applied out of doors was reacherl. No further step could be taken. The time was inleed ripe for a reaction. The imitators and followers of Le Nôtre, by their lack of talent and merely striet following of rules deduced from his method, brought formality into disrepute. 'The result was to produce a revhlution in villa design throughout Europe.

The influence of classic and Italian style had been strongly felt in England, beginning rather later than in France, the first important example being Hampton Court, done under the inspiration of Wolsey. The style spread through the estates of the principal noblemen and courtiers, and resulted in the creation of many beantiful

1 Des plus excellonts Dátiments de France, Paris, 1576-1.59.

VILLA

places. These places, however, althongh their style was on the lines of the rilla, eannot properly come under this heading, being the seats of permanent residence of the owners rather than their pleasure honses. The large extent of the estate itself surrounding the house, and the temptation to include too mueh of it within the tines of formal treatment, causel the methods of Le Nôtre to be carried to a very great extreme here. This may he particularly well seen upon looking at the plan of Badminton, ${ }^{1}$ which has the appearance of a vast geometrieal problem worked out in alleys, vistas, etc., to an extent fatiguing in the extreme, completely obliterating the natural beauties.
The reaction against this sort of thing was inevitable. The work of the artist had ceased.

It does not come within the seope of this paper to treat of the school of villa design in England and in Europe, which was the result of this reaction. Treating the word "rilla," and villa itself, as of Italian origin, and the design as being on the original lines of the Italian villa, those places created under the hand of the landseape gardener and his influences should be elassified under another term. Suffice it to say, that the arehitect now ceasel] to design the groumds, his work ending with the house. The landscape gardener here took it up, and it will be seen that the reverse of formality was his theme, his object leing, rather, to make a contrast to the necessarily formal lines of the house, and his desire to produce a picturesque effect, reprolucing as far as possible natural e tisets. It may lee safely said that the result of this methoul has not been beneficial to arclitecture, no distinct style haring resulted. The desire to produce a picturesque building line, and a strueture which might not call too loudly for corresponding style in the grounds, has resulted in buikings being male up of sereral styles, towers and galles, the individual fancies of the architect and owner, playing a large part.

It seems now that a reaction against this method of desigu, the landseape garlening sehool, is on foot, and that the direetion this reaction is taking is a return to the old Italian school.

The habit of life of the people in the United States is distinctly congenial to the rilla idea. The winters are spent in the city and the summers in the comntry. Men go to the country for recreation, health, and pleasure, while in the city they leare their real interests, business, ete. Climate leads them to be as much as possible out of doors in summer. The country houses should be extended, and the seheme of gardens, terraces, etc., which does this in the Italinn villas ean be applied here. It seems not improbable that within the next generation or so this country may he the rentre of development in villa design. - Charles A. Platt.
${ }^{1}$ Kip's I'eus.
1004

VILLA ADRIANA

villa adriana. Near Tiwoli, east of Rome. A great accumulation of buildings over a mile of country measured from north to sonth, and including two theatres and grounds for exercise, swimming-tanks, and libraries, in addition to buildings of residence. Senlptures have been foumi there, but no organized system of exploration has yet marle possible a perfeet eomprehension of the structure.

Villa hadriana. (See Villa Aclriana.)
villa madama. Near Rome, on the north; a very beautiful builling of the later years of the Remaissanee, always aseribed to Raphael as designer, though built by Ginlio Romano (see Pippi).

VILLA MEDICI. In Rome, on the Pincian Hill ; buildings mostly of the sixteenth century, but altered for the use of the French Academy and School of Fine Art (see Prize of Rome).

VILLA MONDRAGONE. Near Frascati, in the Alban Hills; an enormons building, in part of the sixteenth century, and ascribed to Tignola.

VILLA PAMFILI DORIA. At Rome, close to the walls on the western side. The buildings are not of special importance, but the grounds are very extensive and magnificent.

VILLA PIA. At Rome, a small private house in the gardens of the Vatican palace, built in the sisteeuth century.
villa Rotonda. Near Vicenza in Venetia; one of the most famons works of Andrea Palladio.

VILLAGE. A small collection of houses; in the United States, forming part of a township and having hut little independent existence.

Tribes and subtribes of American Indians, in all parts of the New Worle, congregated, for at least a part of the year, in fixed hahitations, that were grouped together in a village. Among forest tribes these habitations were of poles covered with bark or mats, and were generally surromnded with high palisales of poles or logs set up vertically and sharpened at the top. Sometimes three or four rows of these logs were planted around a village. Among the Plain tribes the village was a cluster of tipis, or skin tents, arranged, according to a formma, in a circle. In the Southwestern United States the villages were sometimes, in early lays, made up of cletached stone or adobe houses ; but more commonly they were groups of great communal dwellings, aul often a whole village was comprised in one single, huge structure, like an immense honeycomb. In the Northwestern Unitel States the villages were of two or more blocks of slab honses, with four or five communal honses in a block. (See Aboriginal American Architerture.) - F. S. D.

VILLALPANDO, FRANCISCO DE; seulptor and architect.

About 1540, in association with others, he 1005

VIOLLET'LE-DUC

executed much of the sculpture of the great chapel and choir of the catherdral of Toldo. The pulpits in giked bronze in this cathetral are also ascribed to him.

Bermudez, Dicrionario.
VILLARD DE HONNECOURT. (See Wilars le Homeeort.)

VILLEDIEU, RAOUL DE; abbot and architect.

Abbot of Mont Saint Michel from 1225 to 1236. He built the cloister of that abbey about 1226.

Le IUéricher, Mont N'tint Michel.
Vimana. Same as sikra.
VINCI, LEONARDO DA. (See Leonardo da Yinci.)

VINERY. Same as Grapery.
VINGBOOMS, PHILIPPUS; architect.
An architect of Amsterdan, who erected many important buidhings in Hollant, and in 1715 published two folio volumes on architecture.

Immerzeel, Hollanlsche en I'laamsche Kunste. natrs.

VIOLLET-LE-DUC, EUGENE EMANUEL ; architect and arehæologist; b. Jan. 2l, 1814 (at Paris); 1. Sept. 17, 1879 (at Lausamne, Switzerland).

He was edncated at the College Bourhon (Paris) and in the atelier of Achille Leclère (see Leclere). At the suggestion of his father, who was employed in the eonservation of public buildings, he made a journey through France, studying and sketching the momments. He travelled through Italy in the same way. Returning to France, in 1840, he undertook the restoration of the abbey chureh of rézelay (Yome, France) and the church of S. Pere-Sous-Vézelay. About this time he restored the Hôtel de Ville at Narhonne (Aude, France), and was appointed curlitor of the Conseil des batiments cicils. He was associated with Lassus (see Lassis) in the restoration of the Sainte-Chapelle in Paris. In 1842 Lassus and Viollet-le-Duc were commissioned to superintend the restoration of the eathedral of Notre Dame (Paris). At the death of Lassus, in 1857, Viollet-le-Duc retained sole charge of that work, and designed the central spire and great altar, as well as the new sacristy and treasury adjoining the south thank. In 1846 he began the restoration of the abbey church of S . Denis, near Paris, and had charge of that building until his death. From 1849 to 1874 he was architect of the diocesan builtings of Reims and Amiens. In 185: he took charge of the restoration of the cite of Carcassome (France), with the ancient fortifieations, and in 1853 was appointed inspecteur général des édefices diocésains. In 1858 he began the recoustruction of the château of Pierrefonds (Oise, France). 1000

VIOLLET-LE-DUC

In 1862 he restored the church of S. Sernin, at Toulonse, and in I863 the chateau of Coucy.

In 1863 he was appointen professor of astheties at the beale des Beaux Arts (Paris). As his lectures were not in agreement with the traditions of the school, the students refused

VIOLLET-LE-DUC

and erected many new buildings throughout France. Among his many publications, the most important are Lidit Russe: Les Origines, etc. (Paris, 187T, 1 rol. 4to) ; Comment on construit une muisun (fth ed., Paris, 1883, 1 vol. I-mo); Lescription et histoire du

to listen to him. He resigned his position the following year, and published the material which he had prepared as the Eutietiens sur T'Architecture. In 1873 he began the restoration of the cathedral of Lausanue (Switzerland), and built the fine spire of that church. Viollet-le-Duc restored many less important monuments,
chateau de Pierrefonds (8th ed., Paris, 1876, 1 vol. 8 ro$)$. Dictionnaire raisonné de P 'Architecture firançais (Paris, 1854-1868, 10 vols. 8 ro) ; Dictionnaire raisonné du Molilier français (Paris, $185 \mathbf{5}-185.5,6$ vols. 4 to); Entretiens sur 1.Architecture (Paris, 1863-1872, 2 rols. 8ro and atlas), Essai sui l'A Achitecture Militaire

VITONI

au Moyen Âge (Paris, 1854, 1 vol. 4t.1); Habitations modermes (Paris, 1875-1877, :2 vols. folio); Histoire d'un Hôtel de l'ille el drane Cathédrale (Paris, 1878, 1 rol. 8vo), Mistaive dume forteresse (Paris, 187t, 1 wol. 4 to); Peintures mardes dess chapelles de Notre Deme (Paris, 1870, 1 rol. fielio), and with Lassus, Momographie de Notre Dame (Paris, no date, 1 vol. fiulio).

Saint-l'anl, Viollet-le-Duc et son système archéolonique; Sauvagent, Vollet-lo-Due ot son arnere dessine: Viollet-le-Due, Compositions of dessins; Banchal, Dietionnaire; Avery Architectural Library, Cateloghe.
vis. A screw; the French term used in English attributively. A spiral staircase is sometimes called a staircase de cis.

VISCHER, HERMANN ; sculptor and bronze caster; d. 148 .

Hermann received the citizenship of Nuirmberg (Germany) in 1453 . A fout in the parish churel of Wittenberg bears his name and the date 1457 . By him, also, are two momments of bishops in the eathedral of Meissen (Saxony).

Allgrmene dentshe Biograplie; schadow, H'ittenberys Denkmaler.

VISCHER, PETER; sculptor and bronze founder; b. probably letween 1460 and 1470 ; d. Jan. $\mathrm{T}, 15 \mathrm{O} 9$.

A son of Hermann Vischer (see Vischer, H.); he received the title of Meister in 1489, and was 1 robably twenty-five or thirty years old at that time. He was intimately assoceiated with Adan Kraft (see Kraft) and the bronze worker Sebastian Lindenast. His fire sons, Hermann, Peter, Hans, Paul, and Jakob, assisted him in his work. The elder sons, Hennam and Peter, were most skilful. From their atelier eame the statne of Otto IV., Hemeberg in the Stiitskirche of Römhild, the monments of the lishops Heintich IIl., Veit 1I., ant Georg Il. in the cathetral of Bamberg (Bararia), five monuments in the Firstenkalpelle at Meissen (Saxony), the monument of the Bishop, Johann IV. in the cathedral of Breslan (almont 1496), the monnment of the Cardinal Friedrich in the eathedral of Krakau (Polanl), the momment of Arelibishop Ernst in the cathedral of Magdeburg (abhout 1497), etc. Peter Vischer's most important work is the great shrine of S. Sebaldus in the chureh of S. Sebahlus in Niimberg (1508-1519). The first sketelies for this work were made by Veit Stoss (see stoss, V.).

Nendorfer, Nuchrichten von Kïnstlern und Werkleuten in Vimberg; Fah, Geschichte der Bihl. Künste; Allyemeine deutsche Bingraphie; Liibke, Introduction to P'ter Viseler Wirlie.

VISCONTI, LOUIS TULLIUS JOACHIM; architect; b. Feb. 11, 1791 (at Rome) ; d. Dec. 29, 1853.

A son of Ennius Quirims Visconti, the archæologist, who eame to Paris in 1798.

Between 1808 ant 1817 loonis studied architerture at the E'cole des Berner Ams and with Charles Percier (see Percier). 1n 181+ he won second Gruad Prixa and the Prix Deportmental. In 1822 he was employed as unter inspector under Destaillem. He replaced Delanney in 1825 as architect of the Bibliohlique Royale. His projects for this building were not carried out. Visconti was appointed in 1832 conservateur of the eighth section of the Monuments of the City of P'aris. 1835-1839 he built the Fontaine Loulois (Paris). He arranged the ceremony of the reception of the remains of the Emperor Napolem I., Dec. 15, 1840, and in 1842 was commissionel to construet the momument of the emperor in the chureh of the Jucalides. In 1842 he eompleted the Fontaine Molière (Paris), and in 1846 commenced the Fontaine of the hace Saint-Sulpice (Paris). In 1850 he was appointed :urchitect of Napoleon I11., ant in 1851 made the plans for the completion of the Lourre and the gallery uniting the Lonve and Tuileries on the north. This work was begun July 25, 1852. After the death of Visconti, in 1853, it was contimed by Lefuel (see Lefuel) accoriling to his designs. He built numerons residences in Paris, and the momments of the Marshals Lauriston, SaintCyr, Soult, and Sonehet.

Charles Lueas in Ilanat. Cyclopéclie ; Bauchal, Dirtiomnaive; Lance, Dirtionnuire; Babeau, Le Lenere.
viscountess. (See Slate.)
VISTA. A view or prospect provided by nature or art, as through in avemue of trees in a park, or through a serics of areles or other openings in a building. One of the learing motifs of design in the plaming of important works, as palaces, temples, or gardens, expecially in classic or Renaissume architecture, is the establishment of contimmons centre lines throngh openings in aljacent halls and chamhers, or through corridors or alleys, hy which vistas are obtained terminating in some feature of espeeial interest, sueh as a statne, fountain, ete. This device tends to orler, symmetry, and coherence in arehitectural composition.

VITECOQ, SYMON: architect.

June 29, 1527, he succeced Roullant Leroux (see Leroux, R.) as matre de lonere urohitect of the eathedral of Rouen (France). With Guillamne Dodemont he completed the church of S. Jean at Rouen in 1547.

Deville, Architcctes de la Cathédrale de Rouen; Lance, Dictionmire.

VITONI, VENTURA; arehitect ; b. Aug. 20, 1442 (at Pistoia) ; d. after 1522.

He was bronght up as a carpenter and, aecording to Vasari, was a pupil of Bramante (see Bramante). All the buillings which are attribnted to him are in Pistuia (Italy). The earliest is the chureh of S. Maria delle Grazie
(hegun 1484). That of S. Giowanni Battista was begun 1495 and completed in 1513. Parts of the church of S. Chiara may also be by him. Vitoni's great work is the chureh of S. Naria dell' Umilta, a combination in plan of the l'azzi chapel aml the satristy of S. Spirito at Florence. The large elosed atrium and the choir were begin in 1494 and the central octagonal portion in 1509 . That date is inscribed on the building. At his death he had curried the church to the windows of the third story. The dome is much later. (See Vasari.) His will is dated Jlareh 11, 1522.

Geymuiller-Stegmamm, Wie Irch. der Ren. in Toscena: Mlintz, Remrissance; Giuseppe Tigri, Nruova tiviete di Pistera.

VITRIFIED BRICK. Brick burued to a larrl, glassy consisteney so as to be impermeable to water and fit for damp-proof work, paring, or other purposes where sueh qualities are necessary.

VITRIFIED WORK. Masonry, especially of silicious stone, converted into hard glassy substance by fire and thos greatly solilified, as in certain early defensive works found in Scotland, France, etc. Argillaceous earth is sometimes so converterl and used for ballast in railroad work to solidify the backing between the ties, and in paving. It is called gumbo.

Vitruvian. Of or pertaining to Mareus Vitruvius Pullio, a Roman architect of the first century B.C., the author of amportant treatise which preserves much that is valuable in regard to Greek and Roman art, and is our principal authority for facts and practice in the building arts of the classic period. The term "Vitrurian" is usel to distinguish principles and practices of the architeeture of ancient Fome as revealed to us by this anthor.

VITRUVIUS (POLLIO), M. C. L. ; architect anl writer on architecture ; b. about 8373 в.c.

The anthor of a Latin work in ten books on architecture, the earliest existing manual on that subject, dating from about 30 B.c. Considerable portions of his book are quoted by Pliny in his Mistoria Naturalis withont acknowlelgment, and he is mentioned by Frontinus (see Frontinus) in his work on aqueducts. The little basilica at Fano described in his book is the only building which ean be attributed to him. Among the many sources from which he elerived information are the writings of Anaxagoras, Ctesiphon, Ictimus (see Ictimus), Theolorus (see Theodorus), etc. In a letter of the Councillor C. F. L. Schultz to the poet Goethe, the theory was first brought forwarl that Vitrusins' work was really a compilation made in the reisn of the Emperor Theodosins, and afterwaril ascribed to Vitrnvils, a well-known architect of the time of Augustus. This theory, with some changes, has
been developel by Dr. Ussing (op. eit.), and the arguments against it presented by Brown (op. eit.). Leake (Pelonomesiuca, 1846, pp. 128129) supposes "that we possess no more than parts of the original work of Vitrurius, blemded with productions of a later age." The work was highly esteemed during the Middle Ages and frequently transcribed. The manuseript of S. John's College, Oxford, was made as late as 1316 and belonged to the Abbey of Canterbury. There was a manuscript of Titruvius in the palace of the popes at Avignon, which was earried to Spain in the fifteenth century. The editio princeps was published by Johannes Sulpitins Terulanus about 1486 . During the reign of Julius II. (Pope 1503-1513) Fra Giocondo (see Giocondo) published his eritical edition, which he dedicated to that Pope. The most important editions of the text are that of Poleni (see Poleni), 1825-1830, 4 vols. 4 to., and the standard edition of Marini (Rome, 1836, 4 vols. folio). There are English translations by Newton (1791), Wilkins (London, 1872), and Gwilt (1826).

Brunn, Geschichte der ariechischen Kuunstler; Marini, Biography, in his edition of Vitrucius; Poleni. Biography, in his edition of Titrurius; Müntz, Renaissance; Aldrich. Elements of Ciril Architecture; Viollet-le-Duc. Entretiens surir ${ }^{\circ} \mathrm{Ar}$ chitecturp; Ussing, Obsevations on Vitrucius; Schultz, Briefuechsel; Brown, Ussing on V'itruvius.

VITTORIA (DELLA VOLPE), JACOPO ALESSANDRE; seulptor and architect; b. 1524; d. 1608.

The antograph notes of Vittoria, preserved in the state archives at the convent of S . Maria Gloriosa dei Frari in Venice, are the most important source of information about his life. He was born at Trente in the Tyrol, and received his first training in his native eity. He went to Venice in 1543, and entered the atelier of Jacopo Sansorino (see Sansovino, J.) in the Procmatie Vecchie. In 1545 he went to Ticenza and assisted Palladio (see Palladio) on the basilica ant other buildings until 1553 , when he returned to Venice. Much of the sculpture on the façade and the stuceo of the interior of Sansovino's Libreria is the work of Vittoria. Especially fine are the two caryatides of the main door. The famous sturco decoration of the Scala d'Oro in the Doges' Palace is ascribed to him by Temanza without eorroboration. He was also associated with Michele Sammichele (see Sammichele, M.), for whom, with the assistance of Pietro da Salo and Danese Cattaneo, he made the sculpture of the monument of the Arlmiral Contarini in the eluarch of S. Antonio at Parlua. In 155561558 he made the sculpture of the monument to Francesco Tenier at S. Salvatore (Venice), designell ly Sansovinn. About 1568 he superintended the sculptural ilecoration of the Tilla

VIVARIUM

Barbaro at Maser (Yriarte, op. cit.), built by Palladio and painted by Paolo Veronese (sce Veronese). Vittoria built the Scuolu di Sun Funlino (now Ateneo, Venice) after 1562. He devoted the last years of his life to the construction and decoration of the Capella del Rosurio at the church of SS. Giovanni e Paolo (Tenice). This chapel, which commemorated the battle of Lepanto (Oct. 7, 1571), and contained the picture of Peter Martyr by Titian, was burned Aug. 16, 1867 . Vittoria's tomb at S. Zaccaria (Venice) was erectetl partly by himself from his own designs. A list of his works is published by Moschini (op. cit.).

Victor Ceresole, Alessizudro Vittoria; Teman-za-Moschini, I'ita di 1. J'ittrria; Giovanelli, V'ita di Vittoria; Müntz, Rencissence; Selpatico, Arch. e Srulp. in Jenezia; liarte, La Vie d'un Patricien, etc.

VIVARIUM. A place where animals are kept alive, and as far as practicable in their natural state, as a zoölogical garden. When adapted especially to fish, it is called an aquarium; to birds, an aviary; to frogs, a ranarium, etc.
volcanic stone. Stone which has been formed by volcanic agency, including lara, peperino, punicce, tufa, tufo, etc.

VOLTAIC CELL. (See Electrical Appliances.)
volterra. daniello da. (See Ricciarelli, Daniello.)

VOLUTE. A spiral scroll ; especially that which forms the distinctive feature of the Ionic

Volete in Romanesqle Wurk; S. Nicolas, Caes; c. 1100.
capital, which is repeated in the horns of the Corinthian and Composite capitals.

VOMITORIUM. One of the passages arranged to give direct ingress to, or egress from, the various tiers of seats in a Roman theatre or amphitheatre.

VOUSSOIR. One of the stones used to form an arch or vault, being cut on two opposite sides to conrerging planes, in what is generally a welge shape, though in some forms of vault four faces converge as in a truncated pyramid.

WAGON-HEADED

VREDEMAN DE VRIES. HANS (JAN); painter and architect ; b. 1527 (at Leeuwarden, Holland) ; d. 1588.

A pupil of Reijer Gerritszen, glass painter, of Amsterdam. In 1569 he assisted in the erection of the trimmphal arch in honour of the entry of Charles V. into Antwerp. De Vrics painted many perspective decorations in Mechlin, Frankfurt, Braunschweig, Prague, Hamburg, Danzig, and elsewhere, and matle many designs for luildings, furniture, monuments, etc. He published works on Perspective and Architceture.
lumerzel, Hollandsche en Vlaamsche Kunstenaars.

Vuessorf; Cherch at Arsetein, Rhentin Pressia. Arch compurfd of Thiee Cotesors And Two Skew Backs or Imfort Blicks, fach Stone: ctt away to give the neceptive Applaramie of a Triple Arch under AN Exclosing Abth

VREDEMAN DE VRIES, PAUL; architect and painter ; b. 1567 (at Antwerp, Belgium).

A son anil pupil of Hans Vrelleman de Vries (see Vrealeman de Vries, H.). He attached himself to the court at Prague (Bohemia), and returned to Amsteriam (Holland) about 1600. In 1639 he was appointed city architect at The Hagre (Holland).

Galland. Hollandische Baukunst.
VRIENDT, CORNELIS DE. (See Floris, Cornelis le.)
vRies. (See Vreteman de Vries.)

W

WAGON-HEADED. Having a continuous round arched ranlt or ceiling, as in barrel raultiug.

WAGON ROOF

WAGON ROOF. Sune as Wagon Vault (which see under Vinlt).

WAGT. CONRAD: architect.
In 147 : he succeded Jost Dotzinger (see Dotzinger, J.) as architect of the catheural of Strashurg (Elsass, Germany). Some time after 1481 he was invitel to visit Milan (Italy) by the Duke Galeazzo Sfurza.

Gérard. Les Artistes de Ir tlance.
WAILLY. CHARLES DE: architect and painter; h. Nor. 9, 17こり: d. Sov. 2, 1798.

De Wailly enteral the school of Jacques Francois Blomlel (see Plondel. J. F.) and was associated also with Legeay (see Legeay) and Servandoni (see Serrandoni). In 175 ? he won the Grand Prix d drhitecture and visited Rome. In 1767 he entered the premiere clusse of the Académie d'Architecture in Paris and in 177l the Académie de Peinture. In 17.9178., in collaboration with Marie Joseph Peyre (see l'erre, M. J.), he buist the theatre of the Oleon (Paris). He enlarged the choir of the church of S. Len (Paris), and built a chapel in the Fue Hoche at Versailles. The plans which he made for the embellishment of the eity of Cassel (Germany) are in the library at Cassel. He had an atelier in the palace of the Lourre and died there.

Lance, Dictionnaire; Lerov, Rues de V'ersailles.
WAINSCOT. A. In British usage, a superior quality of oak imported for fine panel work: hence, panel work of that material, usually applied as a covering to interior walls.
B. By extension, any wooden corering or facing of an interior wall face, especially when of somewhat elaborate workmanship. The use of the term, common in the United States as equivalent to dado, and applied to any material, is erroneons.

WAINSCOTING. Same as Wainscot, B.
WAITING ROOM. A room for the use of persons waiting, as at a railway station or other public place, fitted with seats and other conveniences.

WALES, ARCHITECTURE OF. That of the ancient principality, iuchuding thirteen counties. In two departments of archeological study Wales is rich, namely, in prehistoric or undated remains, such as, in the first place, rurle stone womments, camps, and dikes, aud, in the second place, strong castles of medireval and later date. The early remains shlom reach much interest in the strictly architectural sense; but the cistraens are still mmerous, thongh many have been destrovel; and it is probable that t wo or three centuries ago there were more cromlechs and similar monmments in Wales than in any part of Europe of the same extent. There are inscribed stones also which are intportant. (Compare what is said under Cathstone.) The Roman occupation was so long disputed by the natives, and that occupation

WALES

was so purely military for a long time, that archmological rescareh would undoubtedly lead to the ideutification of many of the rule traces of fortresses aud iutrenchments as belonging to Roman permanent encampments. But others are nnquestionably natire, and are of generally unknown date. Circular huts of rude stone are fonme in connection with these early "camps," which were undoubtedly in most cases hill forts of the native tribes.

The medieval castles are numerous and of the best period, because they were built either by Edward I., as the means of securing his conquest of Wales, or at later times, cither afresh or on the Edwardian foundations. Conway Castle and Cieruarron Castle are celebrated in the north, and the castles of Kislwelly, Caerphilly, and Raglan are equally well known in the south of Wrales ; but some of these, aml especially the last named, hare kept little of their mediwal character. Raglan is an extraordinary structure, much ruincd, yet retalining so much of its character that it may be stulied as the best example in Great Britain of a fortress residence of the carliest Tudor time ; for it appears to hare been begun during the brief reign of Henry V., and to have been continued at intervals during succeeding reigns.

The cathedral of S. David's and that of Llandaff are the two most important churches of Wales ; but the priory church at Brecon, partly Norman, partly transitional Gothic, and partly perfected Gothic, is also a large chareh, and was of special interest befure it was restored. The restoration was, however, very complete, taking aray much of the original charm and introducing a certain regularity into a building, much of whose charm was its picturesque roughness of structure. Llandaff catherlral has been even more hardly treated by succeeling generations, for it was almost in runins at the beginning of the eighteenth century, and, during the nineteenth century, was almost completely built. It is, in short, an interesting modern Gothic church, in which the old lines of the building have been consciously followed as far as they could be perfectly understool. It is a plain structure with but little sculpture and of no great pretensions as to size. S. Darid's catheulral has been much more fortunate, and if it is not all in repair this is rather lecause of the smallness and porerty of the community than from any neglect. The church is, indeed, though small for a cathedral, yet large for the little town and its thinly settled neighbourhood; nearly 300 feet long, and with a transept $1 \geqslant 0$ feet long. The lady chapel and the chapels flanking the choir are rootless, but are not otherwise ruined, and the church is otherwise in good repair. The interior is much more interesting than the outside, for the nave is one of the most beantiful pieces of unaltered 1010

WALHALLA

Romanesque in Great Britain, and a very late flat wooden teiling is spirited in its design and so boldly divergent from the style of the arcalles which support it that it challenges ahmiration as a separate entity. There are interesting late Gothie stalls. Close to the luilding, at the northwest, are the ruins of S. Mary's College and a hishop's palace, the latter being a must pieturesplue lmilting and giving evidence of a former splendour which is well wortly the careful conjectural restoration of some competent student.
S. Asaph's eathedral, in the north of the principality, is, in size and architectural treatment, only a very small and umpretending parish church ; and it has been ahmost entirely molernized, though retaining its interesting window tracery and other details.

Apart from these buikdings, the churches of Wales are not very important. There are, of course, attractive parish churches, some as yet unrestored. A church at Holyhead retains very murious fiftenth century scalpture. - R. S.

WALHALLA. In Bavaria, on a hill above the Danube and near Ratisbon (Regenshurg); a Hall of Fame built by King Lutwig I. about 1830. The exterior is like that of a Grepian Doric temple, but of granite.

WALL. A structure of stone, brick, or other materials, serving to enclose at room, lomse, or other space, and in most cases, to earry the floors and roof. A framed structure, as of woud or irm, serving the same purposes, is called a wall as som as it is sheathed or covered in so as to look solirl.

Cavity Wall. A wall built with an Air Spate (which see).

Hollow Wall. Same as Cavity Wall, alove.
Partition Wall. Same as Partition, lut often nsed with the sense of a partition of importance, as of solit material or between large divisions of a lmilding.

Party Wall. A wall built upon the division line of aljuining properties, the owner of each having equal right to use it. It may belong to one owner, or partly to each; but what characterizes it as a party wall is the easement which hoth owners have in what lelongs absolntely to neither. Party walls are built under party wall agreements reciting the character of the wall itself and the privileges and limitations of use which each owner may have in it.

Springing Wall. A buttress wall ; a wall huilt to withstand the thrust of an areh.

Sustaining Wall. A bearing wall, or retaining wall, in comtradistiuction to one serving merely as a partition or sereen.

WALL (v.). A. To form a division or partition between rooms.
13. To support a superincumbent weight.
C. To affiord ilefence, shelter, or sechurity, as a rampart, a fortification, or a solid fence around

WALL PAPER

a garden or park. (See sub-titles under Wall, n.)

WALL CHAMBER. A chamber built in the thickness or mass of a wall, as often in a melieval castle in the upper stories.

Hollow Whll; Fig. 1. 'lies More Common F'ヵRM, USED FO\& ' TWU-STURY AND ' IHREEsTORY BUILDINGS.

Wall painting. The painting of the surface of a wall with urnmental designs or figure subjects, as decoration. It is nsually classified as Encaustic, Freseo, or Tempera painting. (See those terms and Mural Painting.)

WALL PAPER. liaper, usially decorated in colours, used for pasting on walls or ceilings of rooms. The term includes plain papers iu 1018

WALL PIECE

single colours, or printed in many colours, often with gilded or bronzed pattems, often imitating stufts, tiles, weol. leather, and other hangings, or with pictorial, architectural, or historic effects. Warims surfine effects are also obtained, as satin fimish, thonk paper (callell also relvet paper), and watered, cmbonsed, and stamped patterus. Thick cartridye papers and papiermaché are usel, decply stamped with diapers and other patterns, and prepared for painting. The designing amd manufacture of wall paper are importaut bram hes of demrative art.

WALL PIECE. A lecorative painting with figures especially atjusted to the share. josition, and uther local conditions of a wall.

Wall plate. (See under Plate.)

WALL RIB. (See under Rib.)

WALL SPACE. That part of the superficial area of a wall unoccupied by doors, windows, or other features; the clear area of a wall.

WALL STRING. That one of the string prieres of a staircase which is set next the wall.

WALSINGHAM, ALAN DE : ecclesiastic and architect.

Alan de Walsingham, IVir tenerabilis et artificiosus frater, was subprior of Ely in 131 and prior in 1341. As sulprior he is supposed to have designed S. Mary's chapel in Ely cathedral. After the fall of the central tower he built the present beautiful octagoual tower and lantern. Alan was a skilful "fabricator" in gold and silver.

Redgrave, Dictionary of Artists.

WALTER, THOMAS USTICK; architect; b. Sept. 4.1804 ; d. Oct. 30, 1887 .

In 1819 be cutered the otice of William Strickland as a student in architecture. In 1831 he designed the Philadelphia Countr Prison, and in 1833 the fine building of Girard College (Philadelphia), which was built eutirely under his direction. In 1851 be was appointed architect of the Capitol in Washington, superseding Robert Mills (see Mills). The old Capitol was completed according to the designs of Charles Bulfinch (see Bulfinch) when he left it in 1829 , and remained practicall? unchanger until 1850 , when Walter presented his scheme for the addition of two mings containing accommodations for the Senate and House of Represeutatives. The cornerstone of the new work was laid by Daniel Webster, July 4. 1851. Walter rebuilt the western front. which had been destroved by fire, and added the library.

Hollow Wall, beilt with large Chaybers, a Rare Form EECALSE MTCH GROLND SPACE IS L'SED.
the dome was completed in 1863 and the entire work in 1865, when Walter retired from office.

Howard, Architects of the Chited States Capitol.
WALTHAM CROSS. (See Cross of Queen Eleanor.)

WANE. The berel or feather ellge on a board or plank sawn from an unsquared \log, the berel being a part of the natural currature of its surface.

WARD. A. The outer defences of a castle.
B. A dirision or quarter of a town separated from other quarters to facilitate the transaction of public business, and for the sake of proper representation in the town govermment.
C. One of the apartments into which a hospital is divided; as a convalescent ward, a ferer ward. casualty ward. etc.
D. A curved rilge of metal insile of a lock, forming an obstacle to the passage of a key which has not a noted in the web or bit of the key corresponding with the ridge; hence, one of the open notches or slits in the web of the key.

WARDROBE A. A room or large closet, prorided with presses, shelves, and hanging spaces, generally enclosed br doors, for the convenient keeping of wearing apparel; and where 1020

WARDROBE ROOM

in former times the making and reparing of duthes were done.
13. A picce of furniture, fixed or mowalme, enclused hy doors, amb often with drawers below, for the convenient kepping of waring apparel, either hung from hooks or follet.
C. A cloak room, as in a sehoolhouse or other pmblic buililing.

WARDROBE ROOM. (Sinne as Wrardrobe, I.)

WARE, ISAAC ; architect ; Il. Jan. 5, 1766.
Wrare is saisl to have hegun life as a chimney sweeper. The attractesl the attention of a wealthy patron, who erlueated him amd sent him to Italy: October 4,1728 , he was appointed clerk of the works at the Tower of Lomlon, and Oet. 14, 17:39, to the same uthice at Winisor Castle. Ile is known by his Complete Body of Architceture (1 vol . Folio, 1756).
hedgrave, Dictionery of Ahchitecture.
WAREHOUSE. A stowhouse; especially one in which goods of some value are kept, either ly the owner or oecupier of the buiking, as when a large shop or store is spoken of jopularly as a warchouse, or for the safe kecping of the property of persons who hire a room or a safe in the building, or who leare goorls on deposit. (See subtitles.)

Bonded Warehouse. In countries where a chstoms tariff is placed unon mermandise, a building in whid such goods may be left for a certain length of time withont paying the duty, which becomes due only on their withdrawal "from bond." Accorling to the law of ditlerent nations, greater or less privileges are allowed to the owner of such ghouls; thims, he may be allowed to exhibit his goouls in boum to prossible purchasers, or may he allowed to change the form of their packages, as by bottling lifuors which arrive in easks, or the like.

Storage Warehouse. In many modenn citics, a lmilding supposed to be fireproof and to be watchect at all times, in which space is rented for the deposit of private property. l'ersons giving up their homes are smplosed to leave "in storage" finmiture and other valuables, and rooms of ditierent sizes can be semred in storage warehouses for such depusit. The more precions ams compact articles, as jewellery, securities, and the like, are generally put in safe deposit vauls (for which see the article Safe).

$$
-1 \therefore S
$$

WARING, JOHN BURLEY ; artist and writer on art ; b. 18:3; d. March, 1875.

In 1843 Waring travelled in Italy and later in Spain. He published with Macquoid Examples of Architectural Art in Italy umd Sprein (folio, 1850), -1rchitectural Studies in Pargos ant Miruflores (folio, 1852). He was associated with M. D. Wyatt in preparing the handhooks for the Crystal Palace (8 ro, 185 J). He pmblishel also The Arts conmected with Architec-

WARMING

ture: Central Italy NIII to IVII centuries (1 rol. folio, 1858) ; Notes of en Architect in Spain (1 vol. 8 vo, 1855°) ; cts.

Waring, A Recorel of M!y Arlistic Life; Avery Architertural Librery, Cotnlogue.

WARMING. In trojnimal countries, even at the present day, houses large and small are huilt withont any means whatever of affording warmth, whether hy raising the temperature of the atmosphere within on by affording radiant heat to persons sitting near a souree of heat. The honses, often of wealthy men, in regions Where the thermometer never goes below 60° Falur., are usnally upen on wither side to the wind; anl lamps, gas flames, aml the like have to be sheltered with peculiar care on this account.

In the remote past, aml in classical antiquity, there seems to have been a comparative disregard of what we now consiler necessary to comfint ; and even in the comparatively northcrn climate of Greece and Italy the preparations for waming were what would now lic considered very slight. Eren at the present day, many persons living in the cities of Italy spend the winter without the use of fires in stoves or otherwise; a physician of high stamling in an Italian city told the writer in 1883 that he neederi a little fire in a plaster stove for his consultation room, but that the waiting room for his patients could not hare a fire, as it would give personssitting there healaches and cold feet, and keep his patients away. So, in Pompeii, there has been found but one house which has any arnangements for warming, except in the heating of baths. The same difference in hahit is seen in the slight warming of English interiors as compared with that in use in the United States. As a general thing it appears that the colder the climate the hotter the interiors may be kept with comfort, partly because the booly seems to reguire a perfectly comfortable temperature (about 70° Faln.) if it has to face an exceedingly low temperature when in the open air. The high degree of wamth considered necessary for interiors in Russia, north Germany, aud parts of the United Stater, is easy to maintain if no great thonght is given to ventilation; but if a great deal of fresh air is called for, then the warming of such interiors becomes expensive and tromblesome.

In the megaron of a Greek house a fire on the hearth in the midille of a large room, the smoke of which escaped through the opening in the roof, would be thought sufticient cyen in winter. In the wonen's apartment one or more small fires wonld be kept up. The dwellings of the poor were probably altogether without fire except for cooking. The same conlitions existed in the honses of the German farmers (sce House), in which a single fire served for cooking and for such wamth as was expected

WARMING

in winter, and the smoke circulating through the building is thought to hare been found hygienic and even agrecable, as counteracting odours from the cattle lodged under the same roof. Such a fire may, however, have been kept up night and dixy without difficulty, owing to the abundant forests of Ceutral Europe in the Middle Ages. The first chimmeys would be a mere exteusion of the above described "fire on the hearth," an providing a more direct passage outwarl for the smoke, and as placing the fire against one side of the large room instead of in the middle. Great waste of heat accompanied this change. but conrenience, and perhaps a rulimentary notion of elegance, dictated it. The chimmey in the Middle Ages, as now in many firmbonses, had a very open throat and tlue, so that a person standing beside the fire of loge could sce the sky above, and feel the rush of cold air downward besides the warn air ascending. The warmth of such a fire is merely that deriven from radiant heat in the most pleasaut and wholesome, but also the least economical way. The chimney in this way grew to be an important architectural member, both within and without. The "middle chimner" of a New England wood-framed house is a billock of rongln masomry, in which fireplaces are opened, and aromd which the rooms of the honse are clustered : and the chimneys of the French or German châteaux are the most conspichous parts of the whole structure, adorning the roofs outside and the walls within. In some cases tro or three fireplaces side by side fill one eud or side of a great hall ; by which system one or more fites of logs could be kept burning, and on occasion a great amount of heat proviled.

The Stove (Which see) undoubtedly preceded any attempt at increasing the convenience and economy of the open fireplace, partly because it would be readily seen that the economy of fuel was very great. This also supplies radiant heat. Another form of proviling warmeth by rauliation was in the use of the Hypocaust (which see). The warmth of the floor would in this case raise the temperature of the air in the room slightly; but the direct warming of the person of any one standiug upon such a floor would be more important. Some attempts at a like system in modern schemes for warming have been based on the theory that a low temperature in the surrounding air, but a greater heat radiatel directly to the body, is a more healthful condition of things. The immediate tendency, however, of any warning of an interior, whether by stores or by heated tines or other ssstem of direct radiation, is fuund in the demand that the temperature of the room shall be always kept at what is thought a comfortable point - sometimes 68° Fahr., sometimes $i 0^{\circ}$, sometimes at an eren higher point.

WARMING

The use of furnaces, which seems to have begun in the United States about 1830, involvel the admission into each room of warmed air taken directly from a chamber in the cellar, which immediately aljoines the iron of the furnace proper, a kind of stove built in with brickwork. In this way the use of radiant heat was almost ignored, but the immerliate successors of the hot air furnace, the steam heating, and the hot water heating apparatus, allowed of either or of both methods of warming. Thus, a radiator or a stack of radiators would be filled by the steam or hot water, and would warm a hall by direct radiation, while other rooms in the same building would be heated by warmed air rising from boses in the cellar, in each of which boses was a coil of pipe, or the like, filled with the stcam or hot water. The hot water apparatus was in some respects the most simple, because when used in conservatories the pipes could be very large and the water would fiow naturally and conld easily be returned to the boiler, and no elaborate system of stopcocks anl the like was requisite. Many honses on the Continent of Europe are warmel in this simple way, the iron pipes ruming from room to room upstairs and dorm, and the hot water circulating through them everywhere. American practice has usually demandel a rery elaborate system of control, doubling the cost of the apparatus. Some hot water heaters are filled with a strong brine, and that with the purpose of aroiding freezing in the case of sudden changes of temperature. Such an apparatus as this marks the highest claboration of the scheme of heating interiors previons to the introduction of modern plants of combined warming and rentilation (for which see Ventilation). -R. S.
Warming electric. The production of heat loy means of the electric current. Energy is necessary to force an electric current though resistance, and this energy is all transformed into heat. All conductors offer more or less resistance to the passage of electric current, and the amount of heat generatel is proportional to the resistance if the current remaius the same. When the production of heat is the end to be attained, a comparatively great resistance is confined to a small space, so that there will not be conduction and radiation except in the direction wished. In electric smoothing irons, for instance, a coil of fine wire is placed inside the iron and the current is led to this coil throngh flexible conductors. The beat generated in the coil raises the temperature of the iron till the heat that is radiated and couducted from the outside of the iron just balances the amount generated in the coil. When this point is reached the temperature remains constant. If the current is doubled, the heat generated is increased four times, and

WARNER

if the current is halved the heat generated is one fourth as much. By means of proper alppliances the current can he increased or diminished with the gratest refinement, so that the heat is under perfect rontrol. Electric heaters have been male for a great wariety of uses, but uwing to the eost of generating and distributing electric energy most of the heaters have been used where the amonnt of heat ran be small if applied directly to the jurpose inteuled. Smail portable stoves, foot wamers, smoothing irons, soldering irons, chafing dishes, ghe pots, and similar appliances have been the ones most commonly used. The advantages of electric heating are evident. It is under perfect control. The heat can be applied in the must direct way, aul the temperature can easily be keput constant. There is no combustion, and consequently no vitiation of the air. It is perfectly clean, and the heat almost instantly available. Except in special cases where the advantages just mentionel have a considerable pecuniary value, heating by electricity is more expensive than heating by means of combustion. Electricity is usually generated by dyna-mo-eleetric machines that are driven by steam engines, and these in turn are driven by steam that is generated in steam boilers by the combustion of fuel. Owing to the losses in boilers, piping, steam engine, lynamos, wiring, etc., only a very small proportion of the energy of the coal is available at the electric heater, and to get this small proportion an elaborate system of appliances must be kept in repair. For this reason the mere production of heat is of conrse anch more cheaply accomplished directly hy combustion of fuel. However, in most ases heat is wanted only for a definite time that is often short, and usually one wishes to apply the heat to a particular oliject. Stoves and other appliances for getting useful heat from combustion must often generate in enormous amount of heat for the sake of a small amount marle use of. A large proportion of the heat generated by electric heaters can be made effective if care is used, amb on this accome they sometimes compete successfinly with other heaters in spite of the losses in generating the electricity. - Russell Robb.

WARNER, OLIN L.; sculptor ; b. 1844 (at Suffielr, Comnecticnt) ; rl. Angust, 1896.

At the age of twenty-two he entered the atclier of Françis Jouffray at the Ecole des Boanx dits in Paris. He remained in Paris three years. Among his most important works are the statue of W. Lloyd Carrison in Loston, the statue of Governor Buckingham in the Capitol at Washington, a fountain at Portland, Oregon. He "aried out some important sculpture of strictly architectural character, as at the Congressional Library Building.

Obituary in American Architect, Aug. 22, 1896. 1025

WASTING

WASH. A thin layer of water colour put on with the brush while in a very lifuid state.

WASHBOARD. Generally the same as basehoart. Sometimes, specifically, a similar member, especially disposed so as to retain or throw off water and direct its flow to a drain.

WASHER. An ammala piere of leather, rubber, metal, wr other substane strung on a screw joint of a pipe or fancet to secure tight fitting and prevent leakage, or over a bolt so as to make a tight joint, or enlarge the loaring surface when a nut is screwel orer it. Wishers often serve as cushions or parking in the joints of machinery and constructional ironwork, or in metal are used at the ends of the rods to give them a more secure hold on the points to be ticul.

WASHHOUSE. - 1. That part of a laundry in which the actual washing is done.
B. A public lammery or lavatory. In this sense not common in the Trnited States.

WASHTUB. In plumbing, a wooden, metallic, porcelain, slate, or soapstone vessel or fixture, rectangular in form, connected by a trapped waste pipe with a soil or sewer pipe, sipplied with hot and cold water, and intended for cleaning and rinsing the wash of the household. - W. P. G.

WAS IST DAS. Same as Yasistas. WAST (VAST), JEAN (I.) ; architect; d. 1524.

Maitre d"onere of the eatherral of Reanvais (Oise, Framee). Nay 21,1500 , he was associsted with Martin Chamhiges (see Chambiges) in the construction of the transept of the cathedral of leauvais. He was also employed on the eathedral of Amiens.

Nodier-Taylor-Cailleux, Pirardie, Vol. III.; Desjardins, C'uhberdrule de Benucais; Benouville, Cathétrale do Deatrais; Revue Universelle des Aンts, Vol. NHV., 876.

WAST, JEAN (1I.) ; architect ; d. Oct. 8, 1581.

At the death of his father Jean (I.), he sueceeded him as muthtre en secomel in the construction of the cathedral of Beauvais, serving under Martin Chambiges until his death in 1532 , and after that under Michel Lalye (see Lalye). In 1557 he hand succecded Lalye as chief arehitect. Wast made the plans of the famous central tower of the cathedral of Beanvais, and built the lower stories, which were of stone. The wooden spire was aldel by Florent Dailly. This tower fell in 1573.
(For bibliograplyy, see that of W'ast, Jean, 1.)
WASTE PIPE. A pipe intended for the conveyance of waste water from all kinds of plumbing fixtures, except water closets. (See House Drainage.) - W. P. G.

WASTING. The process of rough dressing a block of stone with a pick or hammer so as to secure approximately plane surfaces.

WATCHHOUSE

Stone so workel is said to be wasted off. (See Boast, r.)

WATCHHOUSE. A police station; a locknp; the heahpuarters of a pulice force, esperially of night watehmen, providel with cells for the temporary safe keeping of offenters against the peace.

WATCHING LOFT. A looknt chamber in a tower, steuple, or other high buikling for police or military purposes, or fin fire service.

WATCHMAN'S REGISTER. (See Electrical Appliances.)

WATER BACK. In plumbing, a coil of pipes, generally cast in one piece, adjusted to the bark of a fireplace in constant use, as a stove or cooking range, and connectel with the circulation of the hot water service pipes of a house, the rontact of the water back with the fire furnishiner the beat for this purpuse.

WATER BAR. In British usage, a small strip. usually of metal, applied to a sill so that a door or casement will shut against it, thus preventing the entrance of water. - (A. P'S.)

WATER BUTT. In a fombain, livatory, or architectural structure of any kind involsing the storage or free use of water, the receptacle for water of whatever form and material.

WATER CHECK. Same as Water Bar.
WATER CLOSET. The apartment in which phumbing fixtures are placed which are intencled to receive and remore the alvine diseharges by means of water (see Latrine; Priyy). More specifically, the phombing appliance used for this purpose, nsually consisting of a metal or porcelain bowl with flushing rim, counection to a soil pipe, hardwood seat, and flushing cistern. (See Hunse Drainage ; Phumbing.)

WATER COLOUR. In painting, any work done with water as the rehicle, thongh some riscous or adhesive medium must be adked. The varieties of this method used in architectural practice are calcimine (or kalsomine), distemper (or tempera).

WATER HAMMER. (See Hydranlic Jar.)
WATER LEAF. A pectliar leaf observed in fireek ornament, probably a kind of iry. The term was introduced by the archeologists of the eighteenth century.

WATERPROOF. Impermeable to water, as any structural derice or covering for roofs, walls, or floors, to keep water from penetrating ; or any application of tar, asphaltum, or other material to the face of foumdation walls to keep the basement dry, or interposed in the courses of an underpinning to prevent damp from rising in the walls. (Compare Damp Course.)

WATERPROOFING. The process of preparing and applying matcrial to render roofs, walls, or floors impermeable to water.

WATER RAM. (See under Ram.)
WATER SEAL. A horly of water in a trap unchanging in quantity, though constantly

WATER SUPPLY

supplied and overflowed, which prevents, by reason of its depth, the passage of sewer air through the same. (See House Drainage; Trap, III.)

WATERSPOUT. A spout, pipe, or duet for the conveyance of water from a roof gutter to the ground or to a cistern. (See Conductor ; Learler.)

WATER SUPPLY. An artificially constructed system designed to furnish water to cities or buildings, comprising means for collection of water, storage in reservoirs, tanks, or standpipes: distribution mains aud services; valves, hydrants, and fancets, and sometimes a pumping plant.

The water supply of buildings varies according to source of supply and available pressure. In cities it is derived from the network of street mains ; but for country houses it is often necessary to install a special supply, derived from wells, cisterns, springs, rivers, or lakes.

Plumbing fixtures are supplien? either from direct street pressure, or from house tanks, or by a combination of both. Where the pressure in city street mains is sufficient, honse tanks are umnecessary, but country houses usually require them to store the water pumped. A combination of both methouls becomes necessary in districts of cities where the day pressure is insufficient to reach the upper floors. Sometimes tanks fill from the street main during the hearier pressure at niglit ; but in some city houses, aud nearly always for country residences, water must be pumperl. For this purpose hand pumps, hot air engines, gas, steam, anl electric pumps, and, in the comutry, windmills and hydranlic rams, are employed. Drinking water is best supplied from lirect street pressure. House tanks are also used where the pressure in the main is very heary, for this wears out piping and fancets quicker.

Honse storage tanks are made in rombl shape of wooten staves, or oblong and square in shape of narrow boards: in the latter case the inside is lined with timed copper. Lead-lined and galvanized iron tanks are unsate, owing to danger from the water coming in contact with these metals. Wrought iron riveted tanks, painterl, are much used. All tanks, except roof tanks, require safes, and iron tanks particularly, becanse they sweat in summer, owing to condensation. The tank overflow should discharge on the roof or into a sink in the lower part of the liouse ; it inust not comect witli a soil pipe. Emptying pipes are providerl for cleaning out the tanks. All tanks shouhl be covered to exclude dust and germs ; ventilation is desirable, also precautions against freezing.

Street mains are of east iron, aml service pipes of heary lead or galranized wrought iron pipe. Brass $\frac{1}{2}$ and $\frac{5}{8}$ inch taps or corporation stops 1028

WATER SUPPLY

connect service pipes with the main．Larger buildings are supplied from $\frac{3}{4}$ inch and 1 inch services，through water meters．Publie build－ ings should hate supply pipes varying from 2 to 4 inehes，and theatres 6 －inch mains，tor fire pro－ tection．Water pipes in houses are of different material．（Sre I＇ipe．）Table I．gives the size of pipes userl in dwellings for plumbing fix－ tures：－

Supply pipes are run so they may be com－ pletely emptied when water is shat off；lines are usually kept exposed and not placed in out－ side walls or plastered partitions．Where re－ quired，pipes are protected against freezing． Branches are proviled with shut－off valves and air chambers．Special devices are used for gov－ erning the flow of water through house pipes， such as ball cocks for＂istern and tank supplies ； stopeocks in the line of pipes regulating the How of water through same，and faucets or bilb－cocks at the ends of branches for supply－ ing fixtures．These are constrncted either as grouml key work with all－metal tapering blugs， or as compression work with compressible wash－ ers．Roundway corks give more water than orlinary encks．Compression cocks are either hand－rlosing or self－elusing．
liy Table II．the amount of water in Thited States gallons per minute delivered by suply pipes of different diameters，under varions heads of pressure and length of lines，can be deter－ mined．（ $I I$ erguals head of water in feet；L equals length of service in feet．）

WATER－TIGHT

	19 ${ }^{1}=11$	$\stackrel{3}{i}$	侖	$\stackrel{\rightharpoonup}{6}$	굴	\％		\％
	＇${ }^{i}+11$	si	4	：	$\stackrel{\infty}{\sim}$	㫛	\％	$\stackrel{+}{\text {＋}}$
	＇Ti＝31	\％	\％	9	昗	\％	5	䉼
	＂ $19=11$	$\%$	答	5		$\stackrel{\text { ¢ }}{\text { ¢ }}$	咢	淢
	$\cdots \mathrm{T}=\mathrm{Hi}$	$\stackrel{7}{+}$	涼	）	雄	$\stackrel{\text { ¢ }}{\text { ¢ }}$	淾	－
	＇\quad t $=11$	T	$\stackrel{\square}{8}$	$\underset{\sim}{3}$		笭	等	笭
	＇ $\mathrm{T}=11$	$\stackrel{\text { \％}}{ }$	全	$\stackrel{!}{1}$	永	菏	${ }_{\text {T }}$	家
	${ }^{1} 1{ }^{1 / 21}$	吕	\pm	－	\％	\％	号	$\frac{5}{4}$
	T $\hat{o}_{\hat{c}}=11$	：	$\stackrel{\rightharpoonup}{\underline{s}}$	$\stackrel{\sim}{8}$	会	筞	䔄	哭
	＂1t＝11	管	药	¢	安	響	系	䠌
	＂I $9=11$	管	㥻	$\stackrel{\text { \％}}{4}$		$\frac{8}{6}$	$\begin{aligned} & 6 \\ & 8 \\ & 8 \end{aligned}$	－
	＂ $1=11$	号	＂	－	三	$\stackrel{\leftrightarrow}{E}$	$\left\lvert\, \begin{aligned} & \text { 佥 } \end{aligned}\right.$	諒
	T $\mathrm{HH}^{\text {ch }}$	名	令	兌	$\stackrel{3}{\equiv}$	18		管
		－	幺	\vdots	\vdots	\vdots	－	\vdots

Where water pressure is very heavy，pressure regulators are used．Water meters control con－ sumption of water and check waste，particularly in manufacturing establishments and large build－ ings．

The quantity neerled for domestic supply raries in different cities and is larger in the United States than in Europe．In Londom 37 gatlons is a standard allowance per head per day．In America it is 60 gallons，which includes water for drinking，cooking，wash－ ing，bathing，laundry，stable，flushing water－ closets，and ordinary mannfactmring purposes． In Washingtom the consmiption reaches the enormous amount of $1 / 2$ gallons per capita daily．In cities using water meters the amount is much less．In New York City（Manhattam aml Bronx），with one fifth of the water taps metered，the consmmption was 116 gallons in 1899 ；in Lowell，one third meteverl，it is 80 ； in Provilence，three fourths metered，it is 57 ； in Morristown，N．J．，where all supplies are meterel，it is only 40 gallons．

Bayles，Ifouse and Dramaye and IVater Sir－ vire：Deutsehes Bituhermulhuch；Folwell．Wrater Suphly：Gerhaxd，Smitory Entiuerring of Build in！s：Vol．\because ；IIanelluch der Architectur，Part III． Vol． 4.

－IV．P．Gerhard．

WATER－TIGHT．Impenetrable by water （See Waterproof．）

WATERWORK

W ATERWORK ; WATER WORKS. A ronstruction, or cugine, for roulucting, forcing, distrihuting, or otherwise elisposing of water. The agrgregate of constructions and appliances for the collertion, storage, and distribution of water for clomestic service, for the working of machinery, or otherwise for the practical use oft a community, or for the purpose of maintaining fountains, waterfalls, and other similar ornamental teatures of a park or garelen.

WATTLE. Basket work; a framework compusel of interworen rous or twigs.

WATTLE AND DAB; WATTLE AND
DAUB. Bulding with wattle work plasterel with clay or mud.

WATTLING. A method of construction by the interweaving of boughs, rols, canes, withes, vines, ete.

WAX PAINTING. That lone with a medimm composed of wax dissolved in an essential oil, such as turpentine; althongh this may he modified, if desired, by other ingredients. The following merlium has been used suceessfully for more than twenty years in America :-

4 oz. apothecary's white wax. $\frac{1}{3} \mathrm{ib}$. Venice turpentine. 1 qt. spirits of turpentine. The wax and turpentine to be melted tosether, then the spirits of torpentine to be stirred in gradually and the whole made to boil.

If the medium he too stiff, add spirits of turpentine. It can be kept for an inlefinite time withont injury. The metuons nature of Venice turpentine -an oleo-resinons substance - facilitates the working of the colours and nltimately hardens them. This medium combines perfectly well with the ordinary oil colours ; but experience comsels the avoidance of oil, or, at least, its reduction to a mimimum. If the wall to be painted is of a porons nature, such as stone, plaster, mprimel wool, or canvas, saturate it with the medium and let it dry for a day or tro. Were the picture to be painted directly on stone, the "burning in" of the medium wouk be desirable. When the picture is to be painted on a previonsly existing gromed of oil paint, the ahdition of a small amount of linseed oil to the medium is advisable for the first painting - not subseruently - to prevent possible scaling. The advantages of wax painting fior murat decoration may be summarized as follows:-
(1) Its durability. Wax resists moisture and the action of aeils and sulphuretted hydrogen gas.
(2) Its flat surface and exquisite airy tones. It has low-tonel and transparent capabilities too; may be polished, burnt in by means of the brazier, and ereu varuished.
(3) Its impasto, equalling that of oils without the latter's tendency to darken.
(t) Its quick-drying qualities, that enable the painter to complete the work in hand at a sit-

WEATHERING

ting, or to continne it without fear of subsequent cracks. - Frederic ('rowninshieli).

WEATHER (r. t.). To slope or ent or build with a slope, as the upper surtate of any projecting buttress, moulding, wimlow head, sill, or other exposed feature, so as to shed the water. (Sce Weathering.)

WEATHER (v. i.). To suffer change (not always deterioration) by exposure to the weather. A stone weathers better if laid in its natural bed, and wood if painted. Stone is often much improred in appearance by Weathering (which see).

WEATHER BACK. Any application to or treatment of the back of a wall to render it more impervious to wind or water, as back plastering, coats of tar or asphaltum, layers of sheathing paper, etc.

WEATHER BOARD. A board which, when laid horizontally orer any construction, its thimer edge orerlapping the thicker edge of a corresponding board above, protects the surface so covered from the weather. (Sce Clapboard; Novelty Silling, under Siding.)

WEATHERCOCK. A rane; especially a vane in the form of a cock, as an emblem of rigilance, often associated with a horizontal crosis bearing on the ends of its arms the letters N. S. E. and W., to denote the points of the compass. (See Vime.)

WEATHERING. A. The inclination given to any upper surfiace, as in Weather (r. t.). (See Amortisement.)
B. The process of madergoing change which is caused by the action of the weather. In this respect stone, brick masonry, mupainted wood, and the like, are to be very carefully studied, the different kinds and qualities of each of these materials being very different in the character of their weathering. In some materials the effect of time ou a milding is almost wholly beneficial, giving to the surface a beauty of tint Which nothing else can imitate, and which is entirely destroyed by "restoration," or by cleansing or scraping of the surface. Weathering is often morlified by smoke, as in London, and by exhalations from salt water, as in Tenice ; but apart from these influences it should he welcomed, and materials should be chosen with express reterence to the farourable change in their colour resulting from continned exposure. Painted exteriors are generally unsusceptible to this influebre, for the injury done to painting by the weather is repaired by other painting. The cast-iron fronts of American cities are kept freshly painted, the colour often changing. We have no means of jurlging whether the polychromatic decoration of Greek and Greco-Roman buidings was coustantly rencwed, but it may be assumed that it was kept in what appeared to the custodians good and fresh condition. The picturesqueness

WEATHER STRIP

cansed by weathering seems not to have appeated to the pooples of antipuity. Painterl surfices of woorl, like those of ohd claphourded and shingled bouses in America, often receive a rery effective weathering when the paint has mot ben renewed for many years and that which clings to the wooden surtace has become dim. In this way, honses seventy yeats ohl, or more, are sometimes as beatutiful as if they had never been painted. The weathering of unpainted wood, as in the case of shinglet rous, differs greatly accurding to the kind of woorl empluged; thus, sume shingles receive an exquisite pearly gray which no stain or paint can eutual for beauty: (see col. 637). - R. S.

WEATHER STRIP. A slender strip of wool or metal, sometimes monliled, to which a strip of cloth, or more properly of rubber, is attached, so that when secured to the jumbs of a door or wimlow, and adjusted so as to bear against the door or sash closely, the weather is effectually exchuded.

WEATHERVANE. Same as Yane, if (compare Weathercock).

WEB. A. The vertical plate connecting the two horizontal plates or flanges of a steel or iron beam or girder, as in ath I beam.
B. The blade of a saw.
C. The flat part of a key which enters the lock.

WEBB, JOHN ; architect ; b. 1611 (in London) ; d. Oct. - $4,167 \approx$.

Webb was a neplew and pupil of Inigo Jones (see Jones, I.), whose only dangliter he married. He carried ont many huidings from Jones's designs.

Rengrave, Dictionary of irtists.
WEDGE. A solid horly bounded by two planes, which meet at a very acute plane angle, and by at least three other planes. The perfect wenge is used only as a tool, but truncated wedges are used for arch solids (see Arch; Yonssoir), and the Lewis consists of such wedges acting together.

Foxtail Wedge. (See under F.)
WEIGHT (I.). The force of gravity acting rertically, as in the case of a pillar or horizontal lintel, or diagonally, as along the line of a rafter. (See Stress.)

Breaking Weight. The weight which is just sufficient to break a har, beam; or the like.

Crushing Weight. The weight which is found sufticient to erush a solicl, as a prism or conbe, of known timensions.

Shearing Weight. (See umler Shearing.)
WEIGHT (II.). Fur a window. (See Sash Weight.)

WELDING. The process of uniting or consolidating two pieces of metal by hammering or compression, with or withont previons softening by heat. With most metals this process is accomplisherl just before the actual fusing point

WELL CURB

of the surfaces to be united is reached, the fusing being done in the furge, by l, low pipe, by a hot iron, or ly a current of electricity, and the union of the abutting points so treated being oltained ly compression, by pereussion, or by both, according to the mature of the metal.

WELL. A. Primarily a spring which zells u] from the earth.
B. More usually a deep pit, usually sylindrical in form, and comparatively small in diameter, by means of which access is given to a spring deep in the earth. Orelinarily the water is drawn from such a well ly means uf a bucket ; but there are a few eases in which arcess to the water is gainel ly more elaborate means. Thus, in the remarkable well at Orvieto, called Pozzo (li San I'atrizio, the cylinter is 180 feet deep and nearly 50 feet in diameter, and this is filled with a tower or shaft of masonry, louble-walled, containing between the walls two continuous spiral staireases, which occupy the same space in the tower, that is to say, a person ascending or descending by one of the spirals bas the other abore and also below him. The water, filling a cylindrical cistern at the bottom, is reached in this way, and is brought to the surface on the backs of asses, and by similar means. Illustrations of this well can be seen in the book entitled Stamme del Duomo di Oretieto, published at liome, 1791. (Compare Well Curb.)
C. An open space, more or less enclosed, and commonly of small dimensions as compared to its height. Thus, the open space between walls in which a stair or elevator is placed may be spoken of as a well, while the term is equally applicable to a wellhole in its more specific meaning. - R. S.

Absorbing Well. A well sunk throngh impervious strata to enable surface water to reach an ahsorbent stratum and so be carried away. C'allerl also Lrain Well ; Waste Well.

Drain Well. Same as Alsorbing Well.
Waste Well. Same as Alsorbing Well.
WELL CURB. A larapet or low wall built at the mouth of a well to prerent persons or beasts from falling into it, and so arranged as to allow of drawing of the water under proper conclitions. The term may be taken to corer also the appliances for drawing the water, so far as they are constructive in character and not mere pieces of machinery. The well curb of common wells at farmhomses in America and largely in England is of wool, and often has a slight roof' orerhead. This is sometimes enlarged into a decorative piece of architecture, especially for a well on the village green, or the like, or when a memorial purpose is attached to it.

The well curbs of the Midrlle Ages have generally perisherl. There are, however, sume elaborate wrought-iron canopies and herses ex1034

WELL CURB

isting, as notably in Nuremberg and cities of Belginn, some of which have come down but little altered from the fitteenth century. Very splenclid well curbs of architectural character

Well Cerb, Fitheon Cathedral, Bavarla, 10th Cestcri.
exist in some tomns of Italy. Thus, one in Pienza, attached to the Palazzo Piccolomini, has two columus unull which rests a trabeated structure treated on either sile like a classical entablature, and from the under surface or soffit of this trabeation is suspeuded the wheel and other machinery for the buckets of the well. Another at San Gimignano in Tuscany is much more simple and probably earlier. In character it is still somewhat medieral and probably dates from the early fifteenth century. The horizontal beam of stone in this case is supported on simple uprights which are carried

WEST END

out on the inner side with corbels, so as to diminish the free bearing of the lintel, which is loaded with a small ornamental superstructure. (Sce Vera da Pozzo.) - R. S.

Wellens. Frantz ; engineer; d. Dec. 6, 1897.

A Belgian engineer. He was vice-president of the jury of Classe 66 (civil engineering) at the Paris Exposition of I878. For a long time he lirected the works at the Palais de Justice at Brassels (Belgium).

- Jecrologie in Construction Moderne. Dec. 18. 189.

WELLHOLE. Any open area of which the vertical dimensiuns generally preduminate orer the horizontal, and in this general sense not to be distinguished from Well, C, except as being smaller. In its most specific use, the clear vertical space about which a stair turns, or between a stair and a landing or passage parallel to it : usually limited by the hand rail ; but not the hole in any one floor as commonly as the rertical space left open through two or more stories.

Well Cure; Piazzi nfi signori, Verona. The Cerr Pruper and the Columis and Crosis behil are of Marble: the Box with Wicket Is of Woun, and Tempurary.

WELL HOUSE. A small house or parilion built over a well.

WERWE, CLAUX DE. (See Claus de Werwe.)

WEST END. (See Orientatiou.) 1036

WELL CURB IN TIE OLD MARKET, MAIENCE, DATED 1526.

WEST INDIES

WEST INDIES, ARCHITECTURE OF.
That of the islands, their country districts and their tuwns, some of which latter are of ancenent estahlishument and contain buidings of the sixteenth rentury, and those which have immediately succeeled them, while others are in architectural charater entirely of the nineteenth century, and not of its carliest years. The number of ronmmunties is so great and they are individually so petty, the number of nationalities and of mational influences represented ly these commmities is so large, that nothing cin le slone here more than to call attention to a few of those marked peruliarities which make the arditecture of the iskads interesting to the student of plaming and design.

It will realily be mulerstood that the churches arr not strongly differentiated from those of liurope. The cathedrals and larger churclues of C'uba, Santo Domingo, and Fuerto Rico ate, like thuse of Mexico, reflexes of the buidings of span of slightly sarlier date, nor are there, as sometimes in Mexico, any novel princizles inherent in their design. The Anglican chureh of the comparatively wealthy town of Purt of spain, Trinidarl, is, in its pian, its general appearance, and its location among trees, a slighter and less cared for English parish church, amd that is all. The proclivities of nien of the south of Europe are seen in the solid masomry of the Spanish buiddings, and those of the English builders of the first half of the nineteenth century are equally visible in the slight structure last named. The Spanish feeling for clesign is well shown in the cathedral at Cienfuegos in Cuba, and something of it is wisible in the church of Guadaloupe in the same island, as atso in the cupola and its arrangement at Guayama, Puertu lico. On the other hamd, there is lere and there among the Fritish colonies a small attempt at morern Victurian Gothic church building, but it is never of importance. The British settler, even in the chlest colonies, seldom thinks that he has come to stay: the permanent resident, "the West Indian," exists, but there are not enough of him to make a church building community.

The public buildings are impossible to classify. There is here one of considerable importance; and, again, in another colony, equally large and rich, there is nothing which deserves remark on account of its plan or disposition, or which, in its exterior design, differss fiom a grivate house somewhat enlarged, or from two or three private houses side by side. Thus, in the great British colony of Trinitad, the governor lived in a cottage which was nothing more than the Lodge attached to the Botanical Garken near Port of Spain, until about $18-6$, when a new house wats finished which has since been the gubematorial palace. Even the new house is small compared with an English comutry mansion, but it is still
a national or, at least, a provincial building of some dignity. So the Captain Ceneral's palace at Havana - long and low, with only one story ahove the gromad hoor areade - has not a very imposing character, but its patio within is dignified; and so, to an even greater degree, is the court of the Club House, which our newspaper writers call the "Spanish Casino," at Havana. At Mayaguez, l'uerto Rico, is a town hall not badly designed, with an order of pilasters in the principal story and large open arches between, and this fronts upon a plaza which is laid ont with a really imposing disposition of pilasters and terraces, thongh on a small scale.

There must here he mentioned some of the curions conditions which obtain in a chimate where there las never been frust in the memory of man, and where the range of temperature is very moderate imleed. Thus, where there is no frost, the conditions which govern masonry are radically different. Water is hardly to be feared by brickwork, even when only fairly well laid, where the themometer never goes below 65°. If one walks through the streets of Charlotte Amalia, the one town of Saint Thomas and a busy free port, as soon as the streets begin to climb the steep hillsides back of the town, it will be noter that the whole street, carriage way, foot way, street gutters, and all, are arranged to take a sudden and overwhelming flood of water. In the sime town a great deal has been done of late years in the building of comfortable small houses, and in the dressing up and fitting with pretty garlen walls, and the like, of these and of the older dwellings; and all these accessory structures are built of masonry - of good average brickwork laid in lime mortar and rather prettily and fantastically adorned with the material itself. No precantions are taken against the "heaving" or "lifting" or "creeping" of these copings, or of the fommations: nor, indeed, is it necessary to guarl your fomdation arainst anything except the direct rush of a summer flood. Every one who knows our New England towns is somewhat familiar with that curious coping which is mate of large boulders, roughly dressed on one side so as to form a hed, and then laded upon the top of a wall, their great mass preventing tor a few years any disturbance from frosts, and the spaces between them, triangular or otherwise, being covered as best may be for one season at a time. It is precisely in the other way that the Dinish mason works in the tropics. He will set a llight of steps the whole with of the street, alternating with the slopes ahore and helow, - providing, in short, a stairway a cordone where the grade is too steep for at ramp ; aud lie buills these steps of brick set on their edges, so that each tread is composed of the face or namower surface of the bricks set close together with a small mortar joint. This

WEST INDIES

is found to wear pertectly well, for the narrow joint and the fairly well-mixed and well-laid mortar defy the rush of the warm rains even when these have aceumulated in the hillside above and rush down in torrents.

Now, the dwelling houses of olden time seem to hare taken little note of these peculiarities of climate, and still less of those requirements of life in the tropics mhich the ofler lauds of the sun-India, North Africa, and Javia have studied. The bomses of even sixty years ago are European honses, differing in little except their somewhat inferion construction from the honse of the mother comutry - Spain, Great Britain, Hollam, Denmark. The town of Willemstalt, at Curaço, presents on its harbour fronts just such rows of gabled humses as, in the serententh century and to day, faced and still face the canals of Amsterlam. The dwelling honse on a rillage street in Cula, as in the towns of the Spanish Main (Puerto ('abello, Cumana, Caracas, Cindad Bolirar), is Spanish in character, low, witio but few upenings on the front, and those heavily fencel, the monstrons cage of stont wooden hars built out a foot or more from the face of the wall, so that the inhahitant leaning on the sill can look up and down the street through the hars which form the tlanks of each cage. If fewt of these honses are buitt in the orthodox way around a patio, it is becaluse the simplicity of life and the small amount of money spent upon each residence has, in most cases. prevented this. Insteal of a court surrounded on every sile with a culomade with rooms opening from this, quite like a Roman peristyle and its adjoining apartments, a Spanish colonial homse of medium size is apt to consist of a building on the street in front, another building on the street or alley in the rear, and an open yard between, divided frum the neighbouring property by a high masonry wall on earh side, and affording in one corner of its breezy extent the most comfurtable place for the family meals, serred at a table beneath an awning. These houses are built direetly upon the ground, with but sellom any cellarage below the principal floor, which, inkeed, is laid with bricks or tiles upon a prepared surface - with nothing else to separate it from the natural soil.

In the abore, and in similar ways, the European house has hecome adapted to tropical requirements: lut this change is more marked in the recent dwellings, that is to say in those of the last thirty-five years, than in those of any previons epoch. Thus, it has been customary during those years to alter the town houses from their original aspeet, as of town honses in Southern Europe, by buidding. nutside of their stone walls, long stretches of woolen galleries which are enclosed on the outer face by jalunsies. This involves great changes in the internal

WEST INDIES

economy. Suplose a house standing at the corner uf two streets; on each side fronting upon the street and its own garden, howerer small the latter may be, sou buikl a gallery, like a verama, lout enclosed everywhere with light wootwork with slats like those of the Venetian blind, but broader. These slats are generally fixed, but every now and then there is a panel which opens on hinges, and every now and then there is a glass window set into the slatted wall, the pmrpose of that window being to give a free outlook during the torrential summer rains, when all jalousies must be kept tightly clusenl. The floor of this veranda is on the level of the floor of your rooms within ; therefore, you cut the win-dow-back or cllegfe away, yon remove the glazed saril entirely, and leare free exit from the rooms within to the gallery. This gallery increases the size of your honse by just so much. There is no louger any prorision for shutting ont the external air. The pretence of the necessity of shutting casemnnts or sash like those of Europe is dismissel. Some centuries of experieuce have proved to the inhahitants that there is no day in the year when a thorough traft is not desirable, and, therefore, one ceases to shut ont the winds of beaven, and resorts instead to various derices for protecting the Hames of kerosene lamps or candles from too direct sweep of the wind. Nothing else is to he feared, for there are no fires nor any fireplaces in the honse, and dust must needs be allowed to come in freely and settle, even in the course of a few hours, visibly upou fluors and furniture. These galleries are never on the street level, nor, in the country honses, are they very often as mear the gromed as the reraudas in the U'nited states. In the city the sidewalk is left beneath the gallery, which is supported on posts, and in the country the better honses have the family rooms raised a half story, or eren a whole story, aisore the ground lerel, aud the first gallery is also at that height, level with the floor to which it corresponds.

The eftect of all this upon the arehitectural appearance of the streets is very great. The street of a prosperous town in a colony of modemized teudencies shows an alnost unbroken row of what seem to be large woodeu houses walled entirely with window shutters. The fact that there is a stone or a brick house inside of this outer shell concerns no one. As for the larger dwellings in town or country, where the strueture is newly arrangel or rearrauged, and where there has been money enough to do things in a fairly convenient way, the marked peculiarity is the opening up of all partitions so that the trade wind may search nut every comer of the dwelling. Thus, in a merclant's dwelling house of Barbados, Trinitad, or Jamaica, to name the British islauls only, the drawingrooms and sitting rooms open into each other

WESTMINSTER HALL

and into the enttance passage or staircase hall by loorways set close together - 4 feet © inches of doorway to 2 feet 4 inches of pier ; and these doorways are not filled by doors, either sliding or hinged, nor lave they, in must ases, portieres, unless those of the most absolutely morable quality, easy to put up and casy to take down and put away. In like mamer, partitions dividiag the beltroms are very of ten kept to the height of s feet or thereabonts, the remaining space below the exiling left open with the slightcst railing of wood filling up the space between the solinl partition and the ceiling. Whatever inconvenience this may cause, as not preventing the tree tramsmission of sound from room to room, is jut up with for the sake of the free admissiun of air. And in this comnection we are reminded of the great hospital at Port of Spain, and the boast of the physician in charge concerning its perfect ventilation. The rentilation consists of the admission of the winds as they blow, freely, throughout the rooms, above a height of about i feet. The 7 -foot sercen shelters the patients' beds, the space above that and to the ceiling is the opening for "rentilation." Slowly the northern European mind has reached the conclusion that comditions are diflercnt in the hearenly climate of the West Inclies, and has acceptel the novel situation.

The above are the marked peculiarities of building among the West Indian islands. The couthions of the time are not favourable to the derelopment of a new style of architecture. In an architectural epoch these new principles of planning and building might be expectel to develop something rery interesting in an artistic way, and that before many sears had passed.

WESTMINSTER HALL. (See under Hall.)

WESTMINSTER PALACE. In London; originally an irregular group of buildings of many epochs, whieh was nearly all destroyed by fire in 1834. Since that time the new palace at Westminster has been built, which is nothing more than the legislative palace of the United Kingdom of Great Britain and Ireland, or, as it is more commonly called, the Honses of Parliament. This buibling was designed by Charles Barry, who was knighted after the completion of the work. Westminster Hall forms the public entrance to the building, and this disposition has sared that important structure from serious alteration, the taking down and the repairing of the southern wall being the only change made. The building encloses eleren principal conrts. The official residence of the Speaker, the Sergeant-at-Arms, Librarian, and other ofticers of the Honse of Commons, and of similar atticers of the House of Peers, are included in the structure. The whole building is an elaborate piece of Tudor Gothic, 1043

WHISPERING GALLERY

rather successfully maintained throughout, but the exterior is a rather monotonous piece of panelling, similar in all its parts, and there is not much satisfaction for the enthusiast in fine art, except in the sturly of a few of the large and important wall paintings.

The greatest peculiarity is the arrangement of the two legislative chambers. The House of Commons affords sittings for only about twothirds of its members, and this on benches which have no divisions, ant are like the pews in a church. There are no desks or other conveniences for papers or for writing. The accommodation for strangers, too, is extremely limited, for the galleries on both sides of the House are for members, and the lower gallery over the speaker is for reporters. Strangers, then, are admitted to two galleries at the end opposite the Speaker, containing in all about two hundred sittings, aud women are admitterl only to the gallery behind the Speaker and abore the reporters; which is fitted with a grating in frout and resembles a cage. The chamber is, indeed, very small, its dimensions being given generally as 45 by 70 , and 41 feet high, and the retention of it in this form, so that all speakers can be easily heard and all debates be kept conversational and casy, seems to be the reason for the anomalies abore mentioned. The House of Peers is larger, a little wider and higher, and nearly 100 feet lung. It is also much more elaborately fitted.

$-\mathrm{R} . \mathrm{S}$.

WESTON, WILLIAM DE ; architect.
William de Weston built S. Stephen's Chapel, Westminster, in the reign of Edward III.

Redgrave. Dirtionary of Artists.
WHEELING STEP. (Same as Winder.)
WHISPERING GALLERY. A room, natural or artificial, so shaped that a whisper or other faint sound, produced at a particular point, cau be hearl at some distaut point with remarkable loudness.

Whispering galleries are usually accidental, but may without dithiculty be predetermined. They are of two general types - focussing and conducting. In the one the somal direrging from the source is receired upon some concare reflecting surface, and is concentrated again at the conjugate focus. One of the best and most accessible examples of this type is the Statue Hall - the old chamber of the House of Representatives - in the Capitol at Washington. The ceiling of this is a very considerable portion of the surface of a sphere whose centre is near the floor. Standing at the centre of this sphere, one can hear his own whisper returued to him. Standing at one side of this point, he can whisper, especially if he turn his face toward the ceiling, to a person stanting at an equal distance on the other side of the centre.

1044

WHITE

For any position of the speaker there is a corresponding point at which the whisper is more or less aceurately focussed. The ceiling, painted so that it appears deeply panelled, is smouth. Had the ceiling been panelled, the retlection woukd have been irregular and the effeet very mulh reduced. The nust aceluate form for a whispering gallery is that in which the reflerting surface is a considerable protion of the surface of an ellipsoid, that has tor its fuci the two points between which there is to be a communication.

The second type of whispering gallery is best ilhastrated in the dome of s. Paul's cathedrat, Lomblon. A whisper close to and along the smooth concave wall is contimally detlected inward upon itself by the wall, is prevented from spreading, and is thus conducted with but slightly diminished intensity to the other sile of the dome. The sound, travelling from the source by great circles, cumentrates again at the opposite end of the diameter on which the sound is produeed. The spherical form is, therefore, in this case the best.

The essential difference between the two types is: that in the first the soumd is brought to a focus after a single reflection ; in the second it is brought from the one point to the other by a series of reflections at short intervals, and it is in this sense that it is spoken of as conducted. In the secomd case, the convergence of the great circle paths of sucressive reflection might he regardel as focussing the somnd. - W. C. Sabine.
white. A. Having a surface which reflects light as it is received, without change in its spectral quality; hence, having a surface nearly or approximately perfect in this respect. In the arts and trales white wool is almost any wool of pale colour, yellowish, brownish, or of a greenish gray: the white coat in plastering is the fimishing coat ren if much sperkted, or even of a generally gray he; white armour in the fifteenth century and later was brightly lurnished steel, as distinguished froin that of backened, browned, or reldened surface.
B. In many trades and arts, devoid of colour, or nearly so ; transparent, or nearly so. Thus, white glass is clear glass, such as is used for common windows and tahleware.

White finish. (See Plastering.)
white house. In W'ashington, capital of the United States; the official residence of the President, finished in its present form in 181R.
white lead. A mixture of the carbonate and hydrated oxile of lead in about the proportion of three quarters of the former to one tuarter of the latter. In manufarture the resultant pure white carhonate is seldom more than 65 per cent; mixed with 10 per cent of

WICKYUP

linsced oil it forms the paint known as white leal and oil.

Whitewash. A composition of quicklime and water, of of a whiting size and water, used for whitening woulwork, brickwork, the plaster surface of walls, ete., esjuceially in cellars. A superior kinul of whitewash, often tinted, is called calcimine, or Kalsomine.

Whiting. A preparation of dried and ground chalk, used in fine whitewashing and in distemper painting, aloo as an adulterant in making putties for modelling and gilding.

Wickeeup. Same as Wickyup.
WICKER. A pliant twig, osier, or withe used in making wickerwork or basketwork, also work done ant any fathrir made in this way. As appliel to the making of closures with mud or clay, wiekerwork is generally called wattle (see Wattle and Dab).

WICKET. A small door, gate, window, or trap; especially a sluall hloor or gate forming part of a large one, usually specified as wicket door, wicket gate, etc., according to use.

WICKYUP. (Written also wickiup and wickeenp. Wikiup is the form adopted by the United States Burean of Ameritan Ethulogy, in accordance with the system usen there.)

Wimeyep; Pai Ute Furm, of Tilee Rushes; Nevada. There is generilly di Upening at Tup.
A. An American Intian but or shelter composed of brush, rushes, boughs, or lark ; especially one of the dwellings of the Pai Ute, which are binit of tule rushes woven over a conical framework of poles 8 of 10 feet high, and also in some loealities of rough cedar (juniper) or pine branches covered with boughs and twigs from the same trees, and open to the sim for a thind of their circumference.
B. Throughout the Western United States any rude, temporary shelter or hahitation.

The derivation is from the Algonquin, though Dorsey suggestel (p. 275, 13th An, Rep. B". Eth.) an origin in the Dakota worl uchkeyapi, the phural of wakeya, a form of skin tent. The Word is foum in many of the Algonguin diatects. In the Sac-and-Fox-Algonquin it oecurs as wigiap and wikiapi, Heing, arcorling to Chatschet, their form of the word "wigwam." In the Menomimi-Algonquin it is wikiop, a habitation 1046

WIGWAM

of bark, bush, wond. According to Hoffman (1 ith $-1 n . R_{1}+$). Bu. Eth.) it is a comption of wikumik, which in turn he derives from wigiWam (wigwam). lt would appear, however, that inasmuch as wiki is a wonl for home aml wolom is bassworl bark, that a probable deriration is from a componnd of these two, wikiweklop, denoting it home covered with basswood hark (or with mats of lasswood hark) as distinguisherl from one corered with another material. This wonld be contrated according to Indian hahit into wikinf. (See Communal hwellinf (Tigwam; Tipio) - F. S. DellenE.tlotif

WIGWAM (pron. wig'-wahm). (From the
 Hoftiman ilerises wikomik, another Algompuin name fir a house, also from wigiwam, lout this would appear lather to be contracted from something like wikimatik; "wiki," home, and "whtik," tree or wood, and meaning a house of woml or logs, as distinguished from wigiwam, deriverl from wigi (wigwas), birch bark, a honse of birch hark. The American languages differentiated amd eliminaterl in this manner, and it is probable that the variation in the Algonquin terms for honse arose, at least partly, by differentiations, combinations, and contractions (see Wickyup). The derivation of wigwam is also given from wek, his hon-e, or wekowen, their house. When the dialects of Algonquin hare been more thoroughly studied, the confusion now existing as to the clerivation of wigwam, and other terms, will disappear.

1. An Algonuuin house, built of poles and bark or mats, varying in size and shape according to locality and tribe. It was generally either circular or a flattened ellipse. It was marle by planting poles in the ground and bringing their tops together. The Ojibwa bronght them to a point with a curve outward, that is each pole was bow-shaped, the convex sile ont. The Menomini form was a flattened ellipse with the pules forming an arched rout; and when the wigwam was quadrilateral its roof was arched. The covering was of various kinds of bark, and also mats off woren basswood bark, and skins. The covering was held in rlace by a second series of poles tied through to the first : and on the inside horizontal poles were alled for bracing. A hole was left in the top for a smokeoutlet. The size on the ground was about 10 by it feet for the oblong, and 10 to 16 feet for the circular. The height was from 6 to 10 feet. The quadrilateral were much larger, beiag sometimes 50 or more feet long.
B. In popnlar use, any Redskin habitation, except the stone and alobe houses.
C. In the United States a large building, more or less permanently constructed, used for political meetings. These were originally rule board structures of a temporary nature, but 1047

WILLIAM OF SENS

some substantial buildings are now so called, as T'ummany Hall, New York, which is often spoken of as the "Wigшam." (See Lodge; Long Holse; Tipio.) - F. S. Dellestaugh.

WIKOMIK. An Indian habitation made of logs, bark, or other material ; probably originally meaning specitically a honse of Jogs ; a wigwan. (See Wigwam ant Wickyup.)

WILARS DE HONECORT ; architect.
Wilars, thought to have belonged to Homecourt, a village near Cambrai (Nord, France), is known by an album of sketches preserved in the collection of mannscripts taken from the Abloey of S. Germain des Prés, which are now in the Bibliotheque Sationale, Paris. In the fifteenth century the rulume contained forty-one leaves of vellum. There are now but thirtythree. The drawings are made with lead or silver point, sometimes inkerl in. The buok contains mmerous figures probably taken from sculpture or glass, sketches of architectural details, such as the plan of the towers of Laon, the ruse window at Chartres, the rose winlow at Lausanne, and many mechanical derices. From internal evidence contained in his book, it is supposed that he was one of the leaders in the development of Gothic architecture in the thirteenth century, and that he built, between 1227 and 125$]$, the choir of the cathedral of Cambrai, which was destroyed during the French Rerolution. About loit he risited Hungary. The apse of the church at Meanx and the church at Yaucelles, also some buiddings in Hungary which show Freuch influence, have been attributed to him br tlifferent writers.

Villard de Honnecourt. Album (edition Las-sus-Darcel); Wilars de Honecourt, Sketrhbook (translation by Willis, with essay by Quicherat); Garling. Remarks on the Album of Villard de Honnecourt.

WHLDERNESS. In ornamental gardening, of the formal sort, a part of the grounds less regular in treatment, and supposed to hare some of the wildness of nature.

WIKINS, WILLIAM, M.A., R.A.; architect; b. 1778: d. Aug. 31, 1839.

The eldest snu of Henry Wilkins, the author of a book on Pompcii, Imblished in Rome in 1819. In 1800 he graduatel at Cains College, Cambridge. In 1801 he won a travelling scholarship, aml spent four years in Greece, Asia Minor, and ltaly. He erected rarious buildings in imitation of Greek architecture. Among the many works published by him are The Ciril Architecture of Vitmoins, a translation, prefacell by a Histor? of the Rise and Progress of Girecian Arohilectwre (folio, 1812-1817), and Polusiomes Amhilertonicee (4to, 18:7).

Hedgrave. Ilictinnory of Artists.
WILLIAM OF SENS : architect.
In 1175 the chapter of the cathedral of Canterbury (England) undertook the reconstruc-

WILLIAM OF WYKEHAM

tion of that building, which hinl heen destroged by fire in 117.1. Willian of Solns (Yome, France) wat cmployed is architect, and built the walls, pilleus, triforium, and dearstory of the choir, and completerl the vanlting of the choir aisles. He was prepratige to thm the great ranlt of the choir, when (abont Sipt. 13, 1178) he was thrown from a sattohl, receiving injuries fiom which he diel two years later. It is supposed by Viollet-le-Due and others that he built a cousiderable part of the catherlabl of Sens lefure he went to Eingland.
G. S.. Chronslogical Mistory of Canterbur? Cuthedral; Willis. Canterbury Crethedral; V iotlet-le-1)ne. Dictionmaire.

WLLLIAM OF WYKEHAM ; architect ; b. $13:+$; d. Sipt. 27,1404 .

He was born at the village of Wiekham near Winchester (England), and was ellucated at the priory school at Winchester. He anly became known to Bishop Edington of Winchester, who employed him on the catherial and recommended him to the king. In 1319 he was appointal king's chaplain. October 30, 1356 , he was appointel surveyor of the works at Winclsor Castle. Jnly 10 he was male chief warden and surveyor of the royal castles of Windsor, Leers, Dover, and Hadleigh. Wykehan made important additions to Windsor Castle. In 1361-1367 he lmilt Quecusborough Castle. He was made keepor of the Privy Seal ami king's secretary in $136 t$. According to Froissart (Chtronicles) he had at this time attameal such power " that by him everything was done, and without him they dinl nothing." October 17, 1367, he was matle chancellor of the kinglom, and October 10 of the same year was consecrated hishop of Winchester. March 5, I380, he lain the foundations of New College, Oxfori, and March 26,1387 , commenced S. Mary's College at Winchestrer. In 1394 he commenced alterations at Winchester cathedral. He began the reconstruction of the nave and aisles, which was not completed until after his death. In rebnilaing the churd Wykeham used the existing Norman masomr, transforming it into the perpendicular style of the time.

Lowth. Hilliron of Wyheham; Moberly, William of W'yhshom; Willis, Architectural Mistory of 11 "inchester Cuthetral.

WILLIAM THE ENGLISHMAN ; architect.

He suceecded William of Sens (see Willian of Sens) as architect of Canterbury cathedral, ant in much of his work simply carried out the designs of his pralecessor. The new Trinity chapel or chapel of becket was built entirely umler his direction.

Willis, Canterbury Cathedral.

WIND (fronounced to rhyme with mind). A bend, twist, or crook, such as occurs in some timber in drying.

WINDOW

Out of Wind. Free frenn hemds, twists, or cronks; pertectly straight and true, referring to timber, hoarls, panel work, or any artificial surface, as al plaster wall, ete.

WIND-BREAK. An ilrangement of vertical poles, bushes, hmghs, fommed rushes, or of stones, in a semicirele or in a straight line, as a shelter from wiml. Used by Anerican Indians also to protect tent entrances. The wind-break in winter is utten extenderl entirely around the Tipi.

WINDER. A step, more or less wedgeshaped in plan, arljusted to the angle or curve of a turn in a stair, as described under Step. As a winder rannot conform in widtl to the size assmmed for the fliers, this regular spacing is nsually - in good work - measured on the curve natmally followed by a person ascending with his haml on the rail along the well or newel side. This is nsmally taken as a curse parallel to the rail, and from 15 to 18 inches from it. The risers of such steps should not, in soorl work, radiate from a common centre except in the case of a winding stair. It is mone convenient, as well as safer, to cause them to converge somewhat before the actual turning place is reacherl, so that the fiers jass almost insensibly int" the winders. The common flan in an ordinary stair, and one to be generally condemmed, is to promit three, or even four, steps to nceupy a quarter-pace (see Pace), with risers radiating from a common point. (See lBalancel Step, under Step.) - D. N. B. S.

WIND-GUARD. A cowl for a chimney.
WIND-LOAD. (See Wind Pressure.)
WINDOW. An opening for the admission of light and sometimes of air into the interior of a buibling; and, by extension, the filling of this upening with glass, as usial in modern times, with the frame aul sash, or casement, and their accessories. The term is nsmally confinel to upenings in vertical or nearly vertical surfares, as walls. It is impracticable to distinguish in terms hetween the opening and the filling, as can be lome between Doorway and Door.

Wimbows are of comparatively little consefuence in commtries where the habits of the poome are based mon life in the open air. Such countries are, in morlern times, only those of the tropical zone; but in antiquity, for reasons that are not wholly clear, the people of the Merliterranean lands livenl as if their clinate were tropical and withont a winter. Hence windows are not known to have existed in Grece in classical times; they were rare in Grecian lands elsewhere; and althongh the window was certainly in use among the Romans of the later Republic, there are almost no mstances known to us of windows in the msual moxern sense, cither in Ponpeii or among the ruins of monuments clsewhere in the West,

WINDOW

precions to the fifth century A.D. Rooms of private honses ofremed on courts (see Atrium: House; P'eristyle), and generally received light and air mily through doorways of greater or smather dimeusions, the sitting rooms of different kinds having high and wide openings, with little hut curtains and low screcns to separate them from the court or garden. The sleeping rooms (siee C'nbiculum : HInse) were rery small, and had hesiles the dour of entrance merely one or two very narrow lowholes high in the wall. There is found in Pompeii an arrangement by which a cubiculum had a small door as well as a large one, whinh latter could be barricaded

and left open in warm weather; but nowhere is a windor of the usual modern sort known to exist. The Rumans, moreurer, ased glass for windows but rarely, though it is known that they underst nod the glazing of sash.

WINDOW, PART I. The Lichitectural Trentment of the Opening. This depends chiefly upon the character of the wall, though where a permanent framework dirides up the wind wo opening, this may have great intluence npon the general design. Thus, where slabs of plaster or of marble, piecced with larger or snaller opeuings. fill up the whole window space (as in some Byzantine and some modern buildings), or where bronze gratings, with square openings set diagonally, are usell, or a copy of these in marble, as in some Roman

WINDOW

Imperial buildings, it hecame easy to open rery large spaces, such as the lunettes under the intersection of vaults with walls, and this without losing a serese architectural character.

The private buildings of the third and subsequent centuries down to the twelfth century have disappearel, learing behind them no inportant trace. Unly in the deserted towns of Syria hare the stone-built edifices kept their shape aul ordonnance. Figure 1 shows a rery early Greco-Roman window, probably of the third century, and we need not doubt that such openings as this were somerrhat common in Roman country bonses. This window is in the second story, the larger opening mearly 6 feet wide. Figure? is a much smaller mindor, and is rery like many which existed thirty years ago in the earliest still existing Romanesque houses of Western Europe. It mill be noted that here

Winduw, Fig. 2: Pritate Holseat Khcrbet-Hass.
the spanning of the opening by a lintel, and the supporting of that lintel br uprights, as well as the apparent serring of pilasters for the same purpose, are the esseutial characteristics. The window is here what it became so commonly in later times, a chief element in the design. The form of a lintel supported br a column existed even into the Gothic period in Belgium and other Northern lands. In general, however, the earliest Romanesque windows were single lights, and these hald semicircular arched heads except in the commonest work. The lancet windorrs of early French and English Guthic (see Figs. 3 and 4) show the same trpe, with merely the substitute of a pointed for a round arch. These two figures show the outside and the inside of very similar single lights in churches. The fact of the interior being much more highly adornel than the exterior is not merely because the one church is larger than the other: it is a marked peculiarity of the earls medieral architecture that the interior is always richer, and this applies especially to the window and door openings. Figure $\overline{5}$ is also the interior of a lancet window, and this time almost devoid of orna-

Window, Fig. 3: Witney Church, OXFORDSHIRE; c. 1220 .

Vindow, Fig. 4: Church at Saint OUen

Winduw, Fig. 5: Witney Church, Oxfordshire; C. 1220 .

Window, Fig. 6: Salisbury Cathedral; c. 1225.

WINDOW
ment. In all these caves the glass in small $y^{\text {gharrels }}$ is molern, though the ancient work was probably like it.

WINDOW

the (nfenings below are widened until they fill the whole space between two buttresses, having but a narrow monolithic mulliou to separate

For the begimings of the traceried window see Tracery, Figs. 1 and 2 , in which two pointerl lights with but a nartow pier between them are surmounted by a rondel enclosing a

Window, Fig. s^{\prime} : stune fhulich. Kext: c. 1240.
eusped quatrefuil. It is easy to see that the enlorgement of all these three openings from what they are in Fig. 1 gives us the tracery shown in Fig. - (Tracery), where the rondel above puts on the form of a rose window, and 105%
them. Figure 6 (Window) shows the same influences at work with somewhat less elaboration, and with a larger sense of the importance of the bounding and enclosing arch, for in the

Window, Fig. 9: The Deankkr, Nukwil ; c. 1200
Chartres window (Fig. 2. Tracery), that arch has not interested the builler much, while in Fig. 6 of the present artiele it is seen that the architect has cared more for the generally pointed shape of his window than for the de1056

WINDOW

tails of its subdivision. In Figs. 7 and 8 is shown a very curious system resulting naturally from the heavier walls of the early English Gothic work. In France, at the same time, the

Window, Fig. 10: Boyton Church, Wiltshire; 1200.
vaulting principle had come to control the whole design, and the space beneath each wall arch and between two buttresses was treated like a great opening to be filled with glass ; but in England the wall still interested the buiders, and a natural way to make a window in a very thick wall was (Fig. 7) to make an onter arcale with four arches filled with glass, and an inner arcale with six arehes with very slender col-

Window, Fig, 12: The Broletto, Monza; c. 1250. umns and with no filling of any sort between them. Figure 8 shows the same principle, of somewhat later date and with still more refined forms.

About the middle of the thirteenth century the tracerien window had assumen the most inportant place, and Fig. 9 comparel with Fig. 6 will show how this tracery itself had been refined and made more delicate as well as more logical. Figure 10 is a single light of the same

WINDOW

epoch, showing in an interestiug way how the freling for cuspling, so impurtant in all tracery, finls expression even in a single opening. In domestic work at the same time windows were becoming larger, and were getting to be filled with more elaborately finished casements. It was, therefore, natural to make the actial window heads square ; and in a building of peinten style this condd be inchuderl beneath a jointen areh with advantage both in construction and in utility (see Fig. 11). Figure 1:2, however, shows a winlow which, thongh taken from a building of civic purpose, is as hadly arranged as possilhe for the convenicnce of handling casements. This, however, was in north Italy, where conlitions of life were very different. Figure 13 shows a French Gothic winlow in which the preparation for the woodwork has

Window, Fig. 14: Thurning Church, IHuntingDONSHIRE; C, 1300.
leen carried so far that the stone mullions are cut with a deep blade in which a bolt hole is made. The arel is a mere simulacrum, eaelt archen heal, including the cusp, consisting of two pieces only. In Fig. 14 the simplest tracery of the eluse of the thirteenth century is shown as it appeared in the simpler English churches, and in Fig. 15 is shown that which replacel at the same period the earlier lancet window. The form, resulting from a flat lintel partly supported by two corbels of slight projection, and the head thus resulting modelled with simple splay or with more elaborate cutting, but always mitring at each angle and carried around each curve, remains, from that time, a favourite form, more especially in Englanul.

In the middle of the fourtenth century the square-headed wind ow hecumes very common, and in elaborate buidelings is filled with tracery

Window, Fig. 13: Hotse in Ree de Rapin, Tours; c. 1250.

WINDOW

in accordance with the style set for the larger and pointed openings. Great ingenuity is shown in the arranging of this tracery, and the forms resulting are sometimes very beautiful (see Figs.

Window, Fig. 15: 'Hhiningtun Church, Kent; C. 1300 .

16, 17). Figure 18 is a single light of the same epoch. Figure 19 is the exterior view of a manor bouse of about 1375 , the fenestration of whieh is very interesting. Figure $\because 0$ shows the small

Window, Fig. 16: Arbley Church, OxfordSHIRE; C. 1350.
square window near the gronnd (see Fig. I9) immediately below the sill of a larger one, this latter view being taken from within, which accomts for the discrepancies in the arrangement of the head and sill. The term "low

WINDOW

side window" is sometimes applied to such windows as this, but without sutficient canse.

Window, Fig. 17: Denford Church, NorthAMPTONSHIRE; C. 1350.

The windows of the Renaissance in Italy, of the Renaissance in the North a century later, and of the subseruent neoclassic styles, are so varied in the character of their design that it

Window, Fig, 18: Aprleforn Church, BerkSHIRE; C. 1350.
would be harl to grive them in sequence. (See, for the Italian Renaissance, Vol. I., cols, 50, 223,225 ; and Jlates XI., XIII. For the French Renaissanre, Vol. 1., col. Il; Vol. II., cols. 150, 349 , and Plate XV. ; Vol. III., cols. 1062

WINDOW

186, 273, 2ブ, 279. Fn later neoclassic, Vol. I., cols. 603, s 06 , and Plate XXVI. Vol. $11 .$, cols. $\because 1,241,373,801$, s07, ame Plates Vil., XV1., XVIl., XXII. In Vol. lll., cols. इt, 303. For mondern work, see Vol. 1., Plates III., NIX., XXXVI.; Vol. II.,

Windot, Fig. 19: suttun Cunrtexay Manur House, Berkshile.

WINDOW

pat into window openings of a building not yet completel. It may be slight and rongh, thongh more permanent, as in stubles and varions tactories (see Hit and Miss Window, below). Again the Casement or Sash (see those terms) may be very elaborate in make and fittings. Figure :2 is an elaborate Swiss window in a woodbuilt house, with hinged casement, bull's-eye lights in simple metal frames, and a wicket. The arrangement still existing in north (iermany involves donble windows with an air space between them during the winter, the permament casement usually opening inward and the temperary sash put nu, nearly flush with the onter wall. In this temporary sash a wicket opens, hisually one to earh window, and this is all the chance
culs. 117, 819.) The simpler form of window in which some neoclassic decoration is attempted may he instancel by Fig. 2l. - R. S.

WINDOW, PART II. The Fittin! of the llindove Upening with a Firame to receice the riluse. This may be wholly architectural in

Wininow, Fti. 20.
character, as in the case of the Roman bronze gratings ant the mediesal tracery (for which see Part I. and Tracery). It may be slight and altogether temporary, as where a wook en hinged shutter fills the whole space when closen, or as where temporary sash or white cotton cloth is 1063
for rentilation ciming the four or five months of coll weather. Such double wiutows are comparatively rave in the Linted States; but it is to be clesired that window frames should be plannel with special reference to putting them mp, and fitting them so that they can be opened wide unon occasion.

Window, Fig. 21: Widstera, Protince of OestergütlaNi, Sweden.
The usual form of a winlow in a dwelling house, hotel, business building, or public building is an oblong, with its length set vertically ; lont there are exceptions, involving peculiar treatment of frame and sash or casement. Thus in English country houses, ancient (see 1064
cuts, Bargeboard; Half Timbered ; and Plate XIV. of Vol. 11.) and morlern, it is not infreyuent to open one side of the room into a single wide ant low wintow (the sill about 3 fert t inches from the thoor, the heal about 3 feet higher, the whole width 7 or 8 feet), divided into several lights earh of the whole height of the window, and each fitted with a single casenent of light ironwork. So in recent American work windows have been built nearly as follows: opening in wall, 10 feet wide, 7 feet high, with the sill \because feet 8 inches above the floor; one heary transom, about t feet above sill ; the space above the transom filled with two or three swinging casements between mullions ; the space below the transom fitted with a fixed frame holding a single sheet of phate glass. Many modifications of this arrangement will suggest themselves.

In public buildings, where adequate systems of foreed rentilation are in use, fixed stsh are preferred as allowing nointcrference with the regular supply of air ; and this will tend to become the rule in such eases. It is probable that, in the ease ot any one room or hall, the ehoice will he made between full forced rentilation with fixed window frames and sash, and morable sash or easement with no system of ventilation.

Part III. is devoted to the consideration of decorative glass, usmally coloured, and the filling of windows so as to make them arehitectural in the highest sense. The more ordinary glazing of windows may be treated here.

The high cost of glass during all periods previous to the first improvement, introInced about 1830 , eansed the general adoption of small lights, whieh, eren when involsing much labonr in glazing, whether with woolen or metal sash bars, was cheaper than paying for larger sheets of glass, and, moreover, proviled that, if a piece were broken, the loss would be comparatively slight. In the country houses of moderate eost throughont France and England glass was used in small quarrels (not exceeding eight inches in greatest dimension) ; in the cities window glass hardly exeeeded under any eireumstanees what is now a small light, about 10 by 12 inches; as late as the close of the seventeenth eentury even the superb halls of Versalles conld not have mirrors of a size greater than twiee the above in each dimension. The consequence of this was the inevitable appearance of the window from the outside as being in great measure part of the wall. A elosed window could not be like the open window, a positive hole made in the wall sulstance. This fortunate circumstance, of great value in domestic external architecture, was done away with by the introduction of large lights, not merely of plate glass (see under Glass) but of
large sheets of wintow glass at nu great cost. In the cities of Europe, even shops of considerable display previous to $18: 0$ hardly possessed any show windurs in the mokern sense. The bow wintows (see Bow Window, and under Bay Window) were indeed filled with glass, but the lights were small and the sash bars heary. It was not until a time within the menory of living man that the first large plate glass shop windows appearen, anl these were usually made up of four or six lights; the single light show window with a single piece of plate glass eontaining 120 square feet or more having been very rare until long after the midalle of the nineteenth century.

The unarchitectural effect produced by these vast sheets of material, which are at once nearly

Window, Fig. 22: Double, with Wicket, in a Sblisi Chalet.
A, elevation : B, plan at a scale four times as great: the clear width of each half is about $\underline{g}^{\prime} \mathbf{s}^{\prime \prime}$: the wicket about $1^{\prime} \underline{g}^{\prime \prime}$.
transparent and with a surface so brilliant that it reflects extemal objeets if any dark surtace be arranged behind it, has bronght ahout the attempt, repeated in many forms, to fill a part, at least, of the window opening with glass of a very different appearance - with leaded sash and eoloured, or, at least, obseured glass, which will give an architectural and somewhat deeorative effect - leaving the perfeetly transparent plate glass to the show window proper next abore the sill. As yet no rery snccessful result has followed.

Another modifieation of the glass flling of windows is seen in the prismatie lights userl for mills and factories of different sorts. By means of this glass the rays of light are thrown horizontally into the room, and thus workmen at the greatest possible distance from the window, 18 or 20 feet, may be expeeted to reeeive daylight nearly as abundant as that which is to be had nearer the window opening. Ilifferent

WINDOW

WINDOW

patent arrangements have been proposed to cover the use of this kind of glass, and the business houses controlling these are proposing to introluce them into business buildings and dwellings.

Rough plate glass, corrugated, marbleized, and ribbed glass are rarely used in windows, perhaps only when the window looks into some light court or illuminates a closet, bathing room, or similar ottice. - R. S.

WINDOW, PART III The Translucent Fillin! of the Lights. In the following paragraphs the word "glass," used simply, means glass colnured in the mass, except in the case of design in unculoured glass or en grisaille. Glass which is coloured in its body, while molten, is called Pot metal (which see), and it is to this division, especially, that the worl "stained glass" is inaccurately applied in ordinary phrase. Properly it refers to a transparent colour, which is fastened to the surface of glass by the action of heat, hut differs from painting with enamel colour in being fastened by cementation and incorporated with the glass. This manner is almost entirely confined to one colour, yellow, made from silver - hence called rellow stain (see Silver Stain under Stain). Painted glass means glass that has had paints made of enamels fused to the surface of the glass by means of heat, whether that glass be coloured in substance or relatively white.

The breaking of surfaces, either dark or light, by opposing divisions, that is to say, of light on dark and dark on light, has alwars been a pleasure to the instinct of man. The necessary openings in objects of use, either buildings or utensils, hare been filled in by varions modes of ornament; perhaps first based on utility, hut continued for pleasure. The artistic ingenuity has been exercised to make these divisions unite handsomely with the edges of the openings. This we see distinctly in the dirisions of windows that we call tracery (see Tracery and Winlow, Part I.).

It is not only the division which abstractedly gives pleasure to its shape, but also the sizes and shapes through which light passes, thus modifying the quality of the light, and themselres affected by the light, so as to present differences of light and clark, and simmlate gradation, making what the artist calls values. It is upon these general considerations that the successful artistic filling of windows is based. In certain countries of little development in methods, but of sensitiveness to beaute, mother-of-pearl shells have beell used, for instance, to gire a pleasant value of light br the irregular breaking of the same. At a great distance this irregular semiopacity comnects with the definite forms of such divisions as tracery and bars and leading. In the same way, at rarious epochs, semitransparent slabs of stone have been used
for the purpose of tempering the light in a handsome manner. When glass was first made and used, in remote antiquity, it would seem natural that it should have been used in some such way as above clescribed. But we have no trace so far of a rery remote use of glass in openings of buildings.

Glass slabs have been found, and, as before said, translucent stones were certainly used. Here and there we find descriptions that may mean a great deal. In Ceylon there is uncertain record (in the Maharansa), of the date 306 B.c., mentioning ' windows with ornaments like jewels, which were as bright as eyes," indicating, perhaps, such methods of decoration as were formerly in use in Europe, and still in the East, by which means small pieces of glass, coloured or uncolourel, are fixed in frames of marble, stone, or stucco, so perforated as to form patterns.

We know that, far back as we can go into antiquity, we find glass made for ormamental purposes: and the skill and taste sh-wn in every ancient example implies already a precerling industry long established.

The Egyptian remains indicate great mastery orer glass, and the Egyptian records refer to it in a remote antiquity. We know enough from the extraorlinary fragments of glass made in Roman times to feel quite certain that the men of that day were consummate masters in countless variations of process. Their materials, also, are not essentially clifferent from those that we are especially using here to-day.

Our imagination, therefore, can be indulged in making images for ourselves of possible wall openings and wall spaces filled with beautiful glass, used by the Roman, the Byzantime, the Ganlish, or the Eastern artist.

In the Western world, when we corne to the twelfth century, we have remaining examples implying that they are made in succession of earlier work. But whether we have any hesitation in admitting that the Western world of an early date - the Greco-Koman period - employed colourel glass for openings. such as windows, we certainly can admit that the Eastern work indulged in modes of translucid decoration of buildings at a remote perioul. It wonkl appear that with the first relations of Rome with Asia there came into Italy mosaics composed of coloured glass paste, again not essentially different from what we are using liere to-day. When the empire was established in Byzantium, came rases of coloured glass highly valued in the West alreally in the serenth centurs. The East is more or less uuchangeable ; and the openings, filled in with stucco, or with narhle, either translucent or opaque, into which are fitted bits of glass of various colours, and which we see in buildings of the thirteenth and fourtcenth centuries in Asia or in Egypt, must

WINDOW

belong to a very ancient tradition, whose origin may perhaps be toward Persia.

The use of glass in the Arabic windows is ancient and points to previons similar uses. There are typical windows in Egypt going back to the fourteenth century. Some are merely of one tint, earefully chosen. Others are deseribed by Mr. Gayet (L 'Art Arabe), as follows: "The window is merely a frame of plaster in which the design is cut out. Little pieces of glass, rudely shaped, are incrusted in each opening of the network. When in place these perforated panels produce a singularly artistic effiect. The theme of the decoration is that of the larger decorations of pottery - a bunch of flowers and a cypress. The decoration is symbolical : the bonquet of flowers is a prayer rising with its perfume to Allah. As to the cypress, it is to the Arab the tree to which Satan was chained, an emblem of life and delivery; for the Persian, the image of a soul tending to heaven. Smaller windows lave hardly more than a flower pattern or an arrangement of polygons. But, owing to the idea of the nature of the window, the full spaces are more important than the empty ones; and under the light of the east the rays of the sun, filtered throngh the red of tulips, the violet of jacinths, the yellow of pansies, the white of auemones, the green of the cypress, drop into the building in a powdering of opal, of gold, of purple, of sapphire, and of emerald, in a light din and melancholy. From the narrowness of the openings the light seems to come from afar. Under the domes of the tombs its charm is strangely sweet and sad, and one regrets that the architects have not closed more bays that he might light them in with similar glazed openings." The most beautiful windows of the Arabs are those of the Baharite period. Similar use of glass occurs in India, in Persia, and in the mosques of Jerusalem.

We ean see that all this resembles the use of cloisonné enamels, whose existence quite far back, and certainly common in the Byzantine period, would be but one step from the joining of glass by heavy lead or heary metal instead of the divisions of gold or copper.

It is a question whether it is worth while to indicate the varions accounts of glazed ornamental windows, prior to those that we know in the West. It is evident from the make of the first ones that exist, whose date is certain, that they represent a result of much previous experience.

The precision of the work shows no hesitation or trial of the means employed. Already as far back as the fourth century, windows of magnifieent eolour adorned the Basilica of S . Peter, aecording to Anastasius the Librarian, and earlier than that Lactantius speaks of coloured windows being frequent. S. John Chrys-
ostom and S. Jerome have mentioned coloured glass of chapels in the churches. Prudentius at the beginning of the fitth century says of the windows of S. Panl beyond the Walls, " In the areaded windows are various coloured glasses ; thus gitter the meadows adorned by the flowers of spring." Sidonius Apollinaris describes the filling of the windows with brilliant and many-coloured glass in a chapel erected at Lyons by Patiens, bishop in 450 . Fortunatus compliments the Holy Bishops who fill the basilicas with glass, and sings of the first lights of dawn through the illumined bays of the cathedral of Paris, whose expenses were paid by King Childehert. He also eelebrates the seventy-two windows which lit the church of S. Martin, rebuilt by Gregory of Tours after the fire of 525 . Gregory of Tours himself speaks of the windows of the ehurch of Izeure, which were detached from their openings by a thief who thought that their splendour might be the result of golld and silver, and hence tried to melt them. S. Bennet Biscop brought to Wearmouth, from France, toward 680, men skilful in the art of glass. Hinemar, Archbishop of Reims, in the month of April, 845, placed coloured glass in the cathedral which he had completed. In 863 Charles the Bald grants residence with ineome to the glass workers, Ragenulf and Baldenc. It is said of Adaibern, Arehbishop of Reims in 969, that he adorned his eathedral with windows representing historical subjects. Roger and Herhert, elergymen of Reims, fanous in their art, executed, abont 1060, windows for the Abbey of S. Hubert in Ardennes, ordered by the Countess Adelaide. The eathetral of Le Mans was filled with stained glass by Hoel, bishop in 1081. Erachius wrote on the painting of glass a treatise, in the tenth or begiming of the eleventh century. Desilerins, Abbot of Monte Casino, orders the colouring of the windows of the Capitular Hail and Chapel, 1058-1066, and Leo of Ostia in the next century describes the making of these windows in a manner that shows the similarity of methods to those later employed.

About Theophilus and his essay we speak elsewhere. Nor is it to be forgotten that S. Bernard, in the severity of his monastie building, forbale decorated windows of colour. The general chapter of the orter in 1134 decides that they shall be white without any cross and any colour.

With this we come to the twelfth century, whose windows remain in part to us with those of the thirteenth eentury, and represent the hegiming of the great period of medieval art in glass. For one of the windows of the cathedral of Chartres, a claim is made that it may have been executed before 1113, having eseaped the fires of 1120 ant 1194 . This is known as "Our Lady of the Beautiful Glass." It would

WINDOW

not be far in date from the beantiful panel of Veudime, also representing the Virgin and ber Sun, and executed somewhere about 1170 or 1180.

The glass of the twelfth century and beginning of the thirtcenth in Western Europe is at once a perfect model of its kind, and as it is applied to architectural decoration, an example and a lesson for all artists. Then, again, whether from aceomulated tradition, or from that accurate reasoning which intense interest in art brings on, the principles upon which all this decorative stained glass work is constructed are fundamental ones, carrying the result as far as the knowledge and the materials of that day allowed. Later things may be as interesting, or more interesting as being nearer to our feelings and notions. But in the older stained glass windows, such for example as the glorious west windows of C'hartres, all the principles of work in glass are staterl, though in an archaic form. A clear understanding or apprehension of the difficulties of colour radiation and its effects from one colour upon another, the opposing or harmonizing effect of the use of complementary colours, and design arising from an adjustment of these difficulties, - these points can be seen stated there as in a grammar.

Certain points of the machinery or mechanism of the technique which met these difficulties and made use of them as points of beanty are morth referring to, though I must repeat that the subject is two complicated and too technical for a proper analysis within our brief space. In decoration by glass, whether painted or not, we meet with a well-known phenomenon, less known, less risible to the painter who paints pictures on causas or on walls. The artist who uses a piece of blue glass, for instance, where the painter in oil uses a touch or more of blue paint, will find his piece of blue glass change its size and shape at a distance, as opaque colour would not. If be uses other colours, their shapes and sizes, their distinctness and their tones, are all modified by distance. Naturally, too, placed alongside of each other, they not only change in themselves, but they change the appearance of their neighbours.

In some old work, for instance, the shape and the painting of a hand, will be elongated and narrowed because with the glass that they used, and more or less with all glass, the real shape would look too large and too broal. The painting of the older work was arranged to meet these difficulties. We may notice that the ilea of representing natural forms, or of making ornament more or less natural, that is to say, to look bike a modelled thing, like a thing that is to delude you, is one of the inevitable directions of art. The mere pattern which satisfied the older Eastern workman, such as that of carpets and stuffs, has always passed
into attempts at representing nature. By painting upon pieces of coloured glass the older men conld both simulute a certain imitation of the modelling of real things, and at the same time, by a judicious conrentional method of painting, varying according to each differen' colour, sacrificing very often the real shape, they mate a certain picture effect, and they also met the troubles of irradiation. With a greater development of painting with other materials (opaque painting, which is what we nsually call painting), came a time when the methods of opaque painting were more or less transplanted to the transparent painting of glass, and necessitated a weaker, less powerful effect, which last tradirion has been continued down to our day, into the English windows, for instance.

The lead used to join the pieces of glass together is an important part of the design of the older windows, and their decorative pattern persists eren into the Renaissance, so long as the tradition of glass is umbroken. Therefore, this intelligent use of leads persists longer in Northern Europe than in Italy, where eren the work of such a consummate desiguer as John of Uline is meant to do without learls, so that they are merely an ugly necessity. Though the medieval work, at its best moment, is much painted, it is so in strict connection with the leads which help to form a background. As in all high forms of art, the edge or ontline is the part most taken care of. The necessity of the leads was also turned into a beauty by helping to comnect the representations or patterns of the design with the edges of the window itself. In many of the earlier and more splendid examples the impression of connection of the window with the wall is so great that the window gires the impression of the wall being translucent and coloured. Later medieval art insists more distinctly on the edges of the window repeating the shapes of tracery and edges. The fact that, in the representations of nature by painting, things were detached one from another by ralues and lines, and not by cast shadows, or later by what is called chiaroscuro, is repeated in the picture in glass. The study of shadows by later pictorial art was antagonistic to the representation by values, and in so far destroyed the tendency to use glass as a material for pictures.

The abandonment of merlisval tendencies by the Renaissance implied, at that moment, the abandoment of medireal methods, and quite logically the latest work of the Renaissance in glass is typified by a light or clear opening in which subjects coloured and painted are hung. Some of it is quite admirable in its way, but is no longer of any importance as affecting the trall.

In the older way the method of laying on the

WINDOW

WINDOW

enamel paint upon the colonted glass was calculated so ats not to make the glass dirty or dingy; and thereby letract from the pleasure the eye has in receiving a framk, luminous expression through a crystal medium. The older artists, perhaps from necessity, worked with a small number of principal colours of glass, modifying their tones by relation so as to make more of them to the eye, if not in fact, and using these limitations as a source of that power whichattaches to simplicity aml repetition.

With the early medieval artist his pieture, as we would call it to-day, that is to say, his intention of making an illustration, will not have been different from his decorative work. He will, like the Chinaman, make a horse blue or red, if thereby the decorative space or picture attains the neeessary balance of effect, and patterns keep their place, from the colour values representing, as in nature, atmosphere and modelling.

Later the same general methods were followed, but they were followed with less conviction. Changes were made in methorls of execution, probably with a certain notion of improvement, often, from the unfortunate tendency of all art - I might say of all things - to fall into the domain of trade. In that way mechanisms, which have hal a reason in their solutions of liticulties, merely become trade recipes; and if the ditticulties remain great, the canse of the difficulty is eliminated absolutely by some change of material.

At various times in the later Middle Ages, with changes of style, new departures, not very grave ones, were made; until at the end, in imitation of supposel classical building, such as it was unlerstood in Italy, the stainel glass became more or less pale and weak, even when helped, as it was oceasionally and very handsomely sometimes, by the use of patches of solid colour, and the beantiful imovation of the yellow stain.

Grisalle flass. As shown ebsewhere, the name "grisaille" is the same as that of "griset," which is the name of the nentral coloured enamel paint, used to model amd draw upon the surfaces of glass. There are windows, and very beautiful ones, with no colour, or very little, which belong to this class. There are some very celebrated ones. As I state elsewhere, there are cases of a winlow being partly in full pot metal colour and the halance in grisaille. The examples and the subdivisions of the subject are too numerons to do more than to mention this separate class, and to point out how originally the grisaille window may have been nothing but the white or colonrless glass, joined together by leads. Then patterns of pleasing shapes are placed between leads; and leads and patterns make the design of the window. It was a possible desire for 1073
more light, as a practical ruestion, also a matter of great economy ; and lastly, the effect of the temperal white light, passing over the coloured light, adels the veiling which makes the colours of the deeper glats more mysterious. At certain moments the monotony of the absence of colour was relieved by spaces filled with coluur. The method has persistem more or less through all the ages of glass painting. In its best example its pinciple is that first stated in this notice, of the joining of the borders of the window by interhacing of patterns of flark on light; athl the more successtinl pieces are depemtent for their beaty upon the combination of pattern which will produce a scries of ralues that fill the space, and avoil, therehy, the monotony of continuons repented ormaments. That monotony is very much lelt in many grisaille windows, to the extent of making them extremely fatiguing to the eye. This amoyance is, as I have just staterl, much lessened in those windows in which the arrangement of colonrless values has heen well understood.

Wre know that the end of the cighteenth century saw the almost entire disappearance of the art, which had been preceded by attempts at painting on windows in what was thought to be a parallel to painting in oils. The story of the disappointment of Sir Josha Feynolds, when he had a picture copied upon glass by Jervas, is historieal, but may not be, for all that, thoroughly unlerstood.
"I had freyuently," said Sir Joshua, "pleasel myself with reflecting, after I had proluced what I thought a brilliant effecet of light and shadow on my canvas, how greatly that effect would be heightened by the transpareney which the painting on glass would be sure to produre. It turnel out quite the reverse."

To-day one might say, "Well, he should have known better." Nevertheless the principle of the mistake is not, I think, usually grasped. Sir Joshma, like most of us artists, fomm life too short to make analyses of the principles of light and colour ; which even now the scientific man, with all his engines of observation, is only legimning to aecomplish for us. Sir Joslua saw indistinctly the iteas belonging to his own art of bainting, which is the representation of colomred appearances that we see about us by coloured surfaces, which we make ly apllying opanue colours to wall or canvas. He confised these fumbamental ideas with his own methoois of work, his trate recipes, all clerived from the practice of painting with oil colour in opaque surfaces, which makes more or less the representation of the sharling of things, - that is to say, the dulling of things, - and as it were taking away colour to make shadow. The shadows of things are also colours, and in such a material as glass, which gives a full intensity of lights, and which allows one, in 11174

WINDOW

fact, to paint with light, the proper gradation and representation of shading is by other colours of glass to represent the shadows. Consequently his painting on glass, done by the increasing of what he would have called shadows, that is to say, by athling more oprqueness and more dirt, was not the brilliaut translation of his painting that he had hoped for. I use Sir Joshua's example - which is not, perhaps, absolutely fair - that we may understand the disappointing effect of tramsplanting to a transparent surface the exact methods that are meant for an opayue one. Whether Sir Joshua went into an analysis, and whether I have attributed too much or too little to him, is of no consequence as to the facts of that case or similar ones.

The second quarter of the century saw in England a revival of ancient methods, which has contimen with landable results to the present day. I shall make no reference to what was done in a similar way in France and in Germany, espeeially beeause one important side which the English tried for was not properly cared for on the Contiment, and that is the making of glass fairly similar to the ancient material of the Middle Ages.

Making of llimfous. A colonr study is made at each moment, as he prefers, of the system of chromatic decoration to be employed by the lesigner. A full-size drawing is also made, in which the outlines of the figures, pieces of landscape, decorative patterns, etc., are carefully drawn, all of the full size of the intended pieces of glass, and sometimes coloured. Upon this " cartoon," as it is generally called, the pieces of the leads are marked with accuracy, or this is done on separate drawing. The lines of this cartoon are transferred to other sheets of paper, several such transfers being marle. One of these transfers is cut up into pieces representing the pieces of glass which are to be cut. Upon another of these transfers the lead lines must be accurately marked, if they hare not already been so transferred from the cartoon. Now, as in medieval times, a drawing or cartoon has to have the lead lines listinctly indicated before the work upon the glass is begun. In the early mediseral directions which we have, the lead lines alone are mentioned. It may eren be supposed that in many of the earlier and funcr windows there was little indieated in the cartoon besides the lead lines, the painting of the actual pieces of glass being left to the skill aml knowledge of the artist, who would probably be the same man who had made the cartoon or transfer upon which the leads were marked. Of course, fragmentary cartoons of parts may be made of one single rletail. Upon a large sheet of plate glass, commonly ealled a glass easel, the divided pieces of the transfer, above described, are arranged together, and the artist haring previously decided upon the colour of some one of
the pieces of glass in the future window, lays this piece upon the paper pattern at the point where that particular colour is to be used. The piece of paper which has hitberto represented the piece of glass is remored, so that the effect of the glass may be judged by transmitted light. The piece of glass being in this way finally decided, the workman marks upon the glass what he is to cut out, or else places the paper pattern immediately mpon it and follows the edges with a diamond. Before the introduction of this use of the diamond, the glass was cut with a hot iron. It shouhl be said, however, that in a good deal of simple work and in much of the work which the Englisb do to-day, the indication of the colour of glass is made on the eartnon, or on some other drawing, by the mere use of letter and mumber. In very special glass, like the American opalescent glass, there is an unlimited choice, and such simple methods are only for cheap work.

The piece of glass, eut to the right shape, is secured to the glass easel by some cohesive matter, such as wax. The replacing of pieces of paper by pieces of glass of the same size and shape is continued until the entire window, or so much of it as the easel will accommodate, is in place upon the easel, but, of course, without its leads. This process enables the artist to change or molify the colour scheme to almost any extent. If needed, upon these pieces he then paints in enamel colour, which pieces are separately placed in the kiln and fired until the enamel is fixed.

Plating is also used to alter the effect of colour. This means the superposition of one piece of glass upon one or more others, so as to vary the colour or its depth, or the modelling of the gradations of colonr eontained in it.

After the pieces of glass hare all been eut, they we joincl together by a lead ribhon, with tlanges, having nearly the section of a capital I. The pieces of glass used in plating, which may be two or three thick, are helo by lead bars of similar character, especially soldered to the lead of the main surface of the windon, or a wider gruoved lead is used. The leads are finally secured to iron bars and armatures, by which the window is kept in place in the wintow opening.

The essential mechanism for stained glass windows is, therefore, of a very simple, almost childish, character. It is more difficult - it is harler work than using a brush with ink to draw with, or a lead pencil, but it is of a similar infantile nature. That does not make it easier.

Let us see how near the description of the method of the monk Theophilus, the oldest document we have on the making of stained glass windows, corresponds with the deseription just made. Judging by certain parts of the texts, Theophilus may have lired in the second part of the twelfth

WINDOW

WINDOW

century. This is his way of making a window : "First," he says, " make a table of wood, level and of such width and length that you may trace upon it two panels of cacle window." This table is covered with a coat of chalk mised with water and rubbed with a cloth. Un this preparation, when quite dry, the artist traces subjects or ormaments with a stylus of lead or tin. Then, when his line is determined on, he makes it over again, with a red and black outline, put on with a brush between these lines. The colurs are marked for each piece by means of at sign or letter. Suitable pieces of glass are placed upon the table, and these lines, which are those of the leads, are traced upon the glass; after which they are cut with a hot iron and nippers.

Theophilus does not clearly indicate whether he draws on his table what we now would call a cartoon - the complete modelling of figures or ornaments; he speaks only of an ontline. However, when he speaks of painting, that is to say, of putting on enamel paint-work, indicat ing modelling, on the pieces of alreally coloured cut glass, he says that one should follow carefully the lines which are on the drawing. This passage, however, relating to such early work, may merely refer to the fact that on these pieces of coloured glass, in very early work, the modelling is little more than certain lines traced in the direction of a form. Thongh wherever there was a gradation in the glass which the artist could use as modelling, he took advantage of it.

In the gradual attempt to model more delicately, which has slowly gone on throngh ali these centuries, the modelling of the forms represented in the window has come at length to be merely a copying of a delicate, usually a very weak, drawing. This is not to say that in many cases, especially in those which were imitations of archaic work, or continned to be so, there is not some use of hard, firm lines; but they usually do not connect with the leads in a successful way. These windows are either, as I say, archaic imitations, or are distinctly the representation of a drawing on paper transposed to glass; and I mean by trensposed, carried over, not properly translated, as they slould be when made in another material. To meet this halfway, the original cartoons are prepared alrealy so as to miss some of the great qualities of drawing on paper, and the weakness is at both ends. Hence we may see in some interesting winlow, by a superior English artist, a surface of mere drawing, with tints here and there of colour, which is glass, while the intensity aud richness of that same artist's work is kept for his paintings in oil or distemper, materials which in their essential nature are less rich, less powerful, than the material of glass.

American Ait of Class. Some account of 1077
the renewal of the art of glass in the United States will be in place, becanse it has involved an attempt at bringing back into the art of glass the ancient principles which allowed the medixval artists to make of their windows, monuments as important as those of scnlpture and painting, and to use the most splendid way of carrying out the full strength of colour and the strongest expressions of line. An analysis of its origin will serve agrain as a method of explaining the capacities of the art, which however great in the past, yet offers possililities not yet attained.

When the American artist first turned his attention to the art of glass and the making of pictured winlows, lie had one foremost difficulty: the best glass, meaning the material itself, was imported. Even then only poorer samples came here, the better being carefully culled by good European workers. European manufacturers even objected to accepting orders for better material, as injuring the pussible sale of the more common sent orer. In limited quantities and in limitel choice, colour, and substance, some was made here to supplement this need, with the adrantage that the making of a few varieties showel that in such a simple manufacture anytling could be obtained in small quantity if needed. The imported material seemed to be intimately connected with foreign methods of using it. There were no inferior artists or superior artisans here to copy the cartoons of designers and supply smaller details indicated in the general plan. In Europe such and such men were employed for such a part of the work on a window; some for ormament, some for figures, and some for drapery, etc.,-all strictly non-individual, and all their ways based on a well-known convention which has reached its furthest limit of development. No improcement then could be male on that line.

The first attempts were made with considerable novelty of design and with great attention to the importance of line and compositimn ; but all the more did the material betray by its thimess the representation of line made by the connecting leads. Nor were there fairly skilled painters to paint upon this poor material of glass, though some artists of higher grade might oceasionally attempt it.

Designs were therefore made, which were strictly designs in lead. Here, again, came the difficulty that the cuts, that is to say, the shapes which the glass coutd assume unler the use of the entting diamon! in the mechanic's hand, were extremely limited, and any considerable refinement was ton difficult to carry out into anything like practice; but the illea persistel of drawing with the learls, which, though at first a failure for mecbanical reasons, was in itself a novelty for modern times. This 1078

WINDOW

development of clesign, therefore, was one of the first impulses. But, as usual, design eannot be separated in the necorative arts fiom colour, even in its simplest form of light and shate. The colour of the inalequate material of the glass wats nut of sutticient quelity to join harsh eelges of glass without the alljoining of painting on glass ; for which, as said before, there were no expert artisalls, and only protessional artists, too costly to employ often.

The su-called mosate work implied the necessity of consilerable range of what are called values, to be detined as degrees of depth and tone in the quality of the glass; but this was almost impossible from lack of material.

Hence arose the use of what is called plating, superposing one colour on another so as to increase its depth and richmess, to modify its transparency, or to change its tone; ass, for instance, when we plate a colour with its complementary colour, or variation of that complementary. Yet there seemed to be a possible future in a strictly lugical order ; that is to sty, the use of glass in its purity, untouched by pigment, or added colour, and joined together by leads which shond he as carefully designed as the choice of glass itsedf.

It was at this time that it occurred to the writer that opal glass, then made in this comstry and used for the imitation of procelain, lout often so barly male as to be more than transhcent, suggestal a means of meeting the defects of thinmess of texture and flatness of colonr, and of securing a permanent recall of the necessary complementary colour. The deficient pieces, which were translucent, exhilited that peenliar effect of two contrasting colours, which we call opaline. The making of such glass seems to have been known for an indefinite period, though it does not appear that this glass has been nsend in this way in window work. After many experiments in having it colourel, in testing its variations in density, the material seemed to be the proper basis for a fair venture into the use of free colour in windows, even when it was used only in small patehes, alongside of the English glass, whose Hatness was relicved by the opal's suggestion of complementary colour,- that mysterious quality it has of showing a golden yellow, associated with a violet; a pink flush brought out on a ground of green.

From this moment began a long series of experiments in the making of opal glass, either to recall the tones of mexiieval glass, or to increase the number of shades and tones. All the various firms of makers of glass for artistic use in windows have grown out of these first demands and struggles of the first American artists in glass, whose number could be counted twice on a single hand.

With the use of these new materials, necessitating a different handling by the cutter, a finer

WINDOW

training and a habit of doing more difficult work became characteristic of the American workshop. The everyday acquirements in that way would have leen some twenty-five years ago merely pieces of work such as a master workman might do to show his lest skill oceasionally. Hence rane the pussibility of taking up greater refinements of the leal line, - refinements increasel by the casting of glass into shapes already laid ont, cutting out similar shapes with acid, stamping and moukling the glass into shapes, etc.

With these improvements came the widening and narrowing of leads, the shaping of the leads into irregular forms, so as to imitate the touch of the brush or the different widths of lines. Moreover, the infinite variety of modulations of the upal glass allowed a degree of light and shade for each piece, which not only gave modelling, but also increased the depth sutficiently to allow the darker spaces to melt softly into the harsh tead line.

Painting was almost wholly dispensed with, and the work became a form of transtucent mosaic, held together by lead instead of cement. Only the heads, hands, faces - what the trade calls flesh - still continued to be painted, cspeeially becanse with them expression, an element of design and not of colour, would always be the principal aim.

However, in the anxiety for a thoroughly logical system of doing without any painting, a method was invented by the writer of joining glass without lead, by melting, or of joining exceedingly minute divisions of glass, small as those cut by the jeweller, with threads of finer metal, so that these should become almost invisible at a distance. But the costliness of the process and the great risk involved in firing, with the rude appliances of the American workshop, prevented this method from going further than a few examples. The architects, also, and clients, had not enough exprerience and knowledge of decorative building to appreciate such a refinement, and there still remains an entire division of this great art of glass to be explored.

It would then seen that the theory of window decoration is that of painting in air with a material carrying coloured light. The first attempts are those we know of the Middle Ages, which expressed all that can be done. But they were obliged to work within a narrow limit of material and size of material ; and they had neither the knowledge of representation of form of their classic prederessors, nor their successors of the Renaissance. The later medixvalists fell away in the weakening of all their intentions, and by the methods becoming more commercial. The Italians at the beginning of the Remaissance made a few attempts in the rightdirection, embodying the general principle of the past work, and introducing some of the results of their study of mature. But the study of form 1080

WINDOW

in nature had become so important as to carry even the arts of painting and sculpture with it. The art of glass would logically be one of the very first ones to be neglected, as not being a proper field for such studies ; and indeed all that sille of art which we call decoration suffered through its impersonality, and has never again been in complete union with the other side, either experimental art or art as consilered as the expression of sentiment. The painters, anxious to express their feeling through the human face, for instance, would wish some methorl adjusted to delicate fluctuation. And they gradually turned more and more from monumental work.

Historical Styles in Glass. All varietics of art are properly in the state of transition ; so that the division into periods nust always have. a certain arbitrariness. This is especially so in the case of the art of stained glass, which has covered only a small part of the general history of art. For convenience, it may be well to assume the thirteenth century glass as so connected with the previous work of the twelfth century that we may run them in together as possessing similar characteristics, which are merely extended by practice.

There were stained glass windows, apparently, by the year 1000 at Tegernsee, the earliest example claimed as existing ; and there are a few undecidel cases up to the time of the twelfth century, when, toward the middle, we have the glass of the Abbey of St. Denis in France, whose history we know, and which remains to us, but unfortunately subjected to rearrangements.

The difference of date of others, a little earlier and a little later, is mimportant. Part of the three great wido ws above the doors of Chartres, some at Angers, an extraordinarily beautiful one at Vendôme (perhajs $112 \cdot$), may be cited. In the earlier glass, the most important feature is its deep rich colour, recalling jewels. Notwithstanding, however, there are cases of silvery grayness. There are also grisaille of ornamental pattern. Medallion windows, that is to say, subjects on small scale within medallion shapes set in ornament, are characteristic.

The strong iron bars are, except in the earliest, bent to follow the outline of the medallion. Rose windows occur mostly in French churches. They are mainly circular arrangements of the medallion. Figure and canopy windows are frequently placed in the clearstory and triforium. The protection of the figure by being placed in a sort of niche, which is an ingenious way of connecting the edge of the window with the centre so as to recall architecture, develops later into what are called canopy windows, and in the next centuries, and up to the very end of the Gothic period, become extraorlinary features. The border in the early glass was very important, and frequently very broad. In certaiu cases, as

WINDOW

at Chartres, it is used to tie the design to the wall in such a way that at certain hours of the day the window looks like the wall hecoming trimsparent. This is an example of the principle staterl in the beginning of this notice. The ornamental detail is, of course, very conventional, beginning with the Romanesque tradition which in Germany lingers far into the thirteently century, as at S . Kunibert in Cologne. Heraldry and the personality of the donor are very modestly represented. The glass is very uneven in substance and in colour. The glazing is distinctly of the mosaic type, even if much paintel. No large pieces of glass occur. Sometimes masses of one colour are made of many picces, whence great richness in tone. The painting is of one pigment, strongly markel, as if in the way of a shetch; and in the more important cases, this manner of suggesting form and expression has a value which more than rivals all possible delicate modulations and recalls the extraordinary charm which the sketches of the great masters had, such as we see in the abbreviations of Rembrandt's drawings or even of Raphael's sketches.

Leads indicate the movement in the same manner of synthesis. Of course this implies, in the greater examples, the existence of remarkable artists, and is not to he given to the date ; for it is impossible to smaller minds.

The early palette consists of white, greenish, and rather clouded ; red, often streaky and rubylike; blue, a deep sapphire, and even inclining to violet, dlown to palest blue. A turguoise blue, which in many of the French windows is still distinctly on the blue; yellow, quite strong but not reddish ; green, very pure, like emerald, or deep and low in tone, sometimes inclining to olive; purple, brown-reldish or brownish ; a tlesh tint, appareutly lighter, and pinker shades of the same colours. Violet dues not come until later. Though the palette must have been restricted, accident might lave producel almost any colour. It is well to be remer: bered that from one source alone, iron, any of the colours can be obtained ; anl also, in the same connection, that greater fire will vary a colour from red to green or gray.

In the early glass, the painting is thus described by Theophilus, who was supposed to represent the middle of the twelfthl century. Bontemps, who has translated him, and who has written on the manufacture of glass and of the making of windows, puts him in the elerenth century. He indicates the composition of a grisaille or enamel colour made of equal parts of oxide of copper and of burnt green and blue glass. This, in powder, is put on with a brush, reserving the lights. Theophilus adrises three distinct ralues, "so that they may seem to be three colours brought near one another" ; this is spoken of with regard to tlesh. These gradations

WINDOW

should he placed under eve-brows, around eyes, nose, chin, and so forth. We can observe the same process in the printing of the Japanese colour prints, which, indeal, in other tomes contain the whole grammar of the early glass colourscheme.

Un these half tints the painter drew with a brush his outlines and shadows. A point was useal to take out some lights. After the sharlows, an intermediate coating was placed between the lighter shatows and the general clear tone. The painter again twok out lights with a point and edged his darkest stroke by a fine line of white. The glass, thus prepared, was placed in the oren in an iron tray, covered with asles or unslaked lime. They were places in the oven according to the resisting power of their make. The pieces of glass were placed in lead "cams," joined together by tin soldering ; all this cliffering little from our present methods.

Theophilus gives some recommendation as to the arrangement of colours, such as recommending a white ground if the draperies are coloured; on the contrary, white drapery if the ground is red or blue or coloured. We must rememher, continually, that the harmony of colours remained until the sisteenth century a constant preoccupation of the artist : all the more in the earlier period when traditions were most alive. The local colour, or natural colour, is changed, if necessary ; as, for instance, the Christ of the Passion, in the great window in Patois, has blue hair. The artist in glass studied, before everything, the values as translated by colour. It may be well to note that Theophilus speaks of France as being specially a home of stained glass, using these words, "whatever in the precious rariety of their windows is lored by France."

The glass was cut with a hot iron. The use of the diamond is quite late, perhaps not anterior to the beginning of the sixteenth century. The shape was completed by the use of "grosing," that is to say, breaking off the edges with a kind of nippers. There was some advantage in this orer the clean cut of the diamond, as taking a better bold of the cement put into the leads.

With the fourteenth century, or intermediate period, the colonr may be described as more lively, and does not diride so distinctly into colour and grisaille. Thus, both are used together in the same window (S. Pierre, Chartres). There are more panels than medallions in the compositions; decorated canopies begin to come into use, at first in flat elevation, and often as the most conspicuous point of the window. The windows have borders, as a rule narrower than before the Tracery lights, which norr form an important part of the construction, haring borders of their own. There is also a marginal line of white as a natural insistence upon the

WINDOW

shape of the division. This persists to-day in what is called "the white line."

The nse of this white line marks a distinct view of the problem of treating an opening, as stated in the first paragraphs of this notice.

Sometimes the white line was broad enongh to hare a pattern painted on it, or to be broken by ornament or colour. The yellow stain which gives its name to stained glass comes in at this periorl. It was an important invention, and its complete sinking into the glass separates it from painting by enamels. It is more delicate than pot metal, and helps to brighten these later windows and to do away with the necessity of lead in certain cases. However graceful the figures may be, they are less natural than in the early work, and posed more. There is much use of diaper pattern in background; omament inevitably becomes more naturalistic ; the glass material is more eren, sometimes lighter ; flesh tint becomes white, and white glass, which before had always been more or less coloured, is now almost white; the painting becomes more delicate ; stippling begins to be used at the end of the period.

More green is introduced, and more yellow, and there are combinations of yellow and green. Green is used for background. There is much more olive green. In some German windows, green, sellow, purple, and brown are the main colours. Occasionally pale blue is made green by the yellow stain.

With the fifteenth century, glass is made in larger sheets, is lighter in fact as well as in effect, and white is more used. Canopies become more and more important ; the screens behind figures are more and more used, and, of course, the yellow stain becomes more important. Armorial bearings, and the donors of windows, are on a larger scale. Borders are often left out in the canopy designs. Naturally, there is a more curious nse of material. The graded glass is used to suggest shading or local colour, or to imitate marble, for instance. Glasses, first blue and later red, are abraded for a white pattern ; attempts at landscape and atmospheric effects are made, and occasionally the picture runs through several lights. The colours are higher and sometimes grayer. Red glass is less crimson.

As with the fifteenth century comes the development of the art of painting, the drawing is no longer archaic, and is sometimes excellent. Painting is still more delicate ; stippling is used ; figures and ornament carefnlly shaded. Naturally, too, with this development, the learl lines tend to he less a part of the design, and finally do not even convey it : but there remains, even in the sixteenth century, a manner of arranging the leading in a handsome way. This dies out gradually, and is one of the grave deficiencies of modern work. It is to be remembered that there is still a close connection between the

WINDOW

painter in distemper or oil, beginning to feel the possibilities of his art, and the artist in glass.

Of this we shall speak later as we pass into the sixteenth century, which brings in the Renaissance of the North. In what we have been eonsidering, we have not brought in the Italian as subject to these styles. The Italian glass does not express its date as does Northern glass. The persistence of the classieal feelng is seen in Italian work even of an early date, whose manner realls the earlier Northem manners, that is to say, a strict mosaic treatment of glass and a scorning of small modelling and detail. It also happens that often the painting upon the glass has been worn away, so that the exact effect of its use cannot be determined. Yet we know that the Italians used paint to attenuate or affect certain crudities of their material.

However mimportant the Italian glass is in quantity, it has earried out almost to the end some of the better principles and finer ways. We do not expect it in such quantities as in the North, for the development of the fresco, and afterward of the painting to be placed in churehes, was not favourable to closing out light or modifying it extremely by eolour. There are certain points which are what might be expected of the Italian : a certain colouring of such parts as canopy and its frame, which is less hald and obvious than the Northern one. The design is also simpler, and recalls the arehitectural work of the frescoes. With the development of painting on wall and canvas, it could not be expeeted that the more difficult material, glass, should equally continue its development, especially with no accumulation of tradition. And it is obvious that the greater artists would inevitably turn to those manners in which they could best and most easily express themselves, as well as continue the study of external nature, of which the art of painting was but one form.

The art of glass, however stupendous in its possible results, is not favourable to the expression of delicate sentiment. Its very power is in its way. As, for instance, in music, the instruments used to express fine shades of meaning are developer singly for that purpose. And yet what few specimens there are of later Italian glass of the fourteenth century are sutficient to show what could be done in glass upon the lines of the development of that period and in a manner connecting thoronghly with the earliest and best work. We can see, also, how completely the painting of the Italian Quattro Cento could be translated into glass. But it would have needed men of the same power as those who worked on wall or canvas. Along such lines there might have been a full continuation, and it is on such lines that the future serious work must go. It is impossible to ask of the artist who is abreast of his time to turn

WINDOW

back and forget the materials of his knowledge. He may insist upon some more than uponothers, but that he does in whatever department of teehnique he works.

In the North the very fact of the existence of a previous method of glass, already somewhat degraded, seems to have interfered with the full expression of the few painters who undertook to work in glass. We shall see this later in the case of Vin Orley, at Brussels. He abamlons in his glass some of the best developments of the art of painting,

In the sixteenth century, in the North, Gothic tralitions survive, even in the furthest Renaissamee, perhaps in many cases helping to injure the new style by eramping it, and also by opposing, through tradition, an application of the general primeiples of painting. It must be owned, however, that the Italian influence in the Renaissance of the North was not of the better kind, and was more or less a side development of painting, destined to destroy it later in its own country. For example, we see how, in that remarkable book, the first treatise on Decoration, the Hymerotomachia of Poliphilus, the beautiful, easy lesigns of the Venetian artist (which give figures not strictly within the canon of proportion, and ornament largely treated) are changed for the worse in the French edition published soon after. The misunderstoor Italian intluence on the French draughtsman, traditionally a famons one, J. Cousin, has made him design these small figures over again, so as to give them the reruisite "number of heads," aud, in general restudy, their anatomy and the probability of their drapery. This is a type of what happened in most of the foreign applications of the new departure in design.

As the separate stuly of various naturalistic points, perspective, anatomy, ete., became more advanced, certain principles of general design were less noticed. This was the ease with all forms of art. The development of the picture as a representation of nature, involving a loosening of the subject in the frame, detached artists more and more trom that one principle which I first noted, - the connection with the borter. In painting, as we now umlerstand it, this deficiency, if it be one, is not felt, because of the question of tone and chiaroseuro, supplementing our need for line and construction. The decorators, influenced by those Italians whose methods were followed outside of Italy, forgot the traditions and the study of the values of colour, which were still carefully kept by the painters of northern Italy and Spain. They therefore abandoned the great principles of decoration that had held in all the decoration of the past, and which, we notice, have been so carefully kept by the Orientals, notably the Japanese. The separation of decorative painting from the art of painting had begm. These general con-

WINDOW

siderations estahlish the main reasons for what happened, and to them we must ald the social and religious disturbances that filled the end of the sixtenth century and a large part of the seventeenth, which necessarily broke up contimually the industrial conditions. In the traditions of glass, destruction of windows by religious fanaticism is one of the notes of the change. The gradual wish for more light, which had begun at once with the end of the fifteenth century, and continued increasing, mate the practical ditticnlty of a continued system of design still greater, and as we get into the dry settling of the Renaissance the absence of Roman tradition for window decoration tended to prevent serious attempts at ornamenting windows in the new style.
The increasing division between the artist and artisan is also a sufficient factur for any change or decadence. We are thus prepared to see that the glass work of the sisteenth and seventeenth centuries was neither true to the best principles of previous glass work nor of the best contemporancous painting. At the same time, a curious attempt at realism involved the trying to imitate the appearance of seeing throngh the window into a reality -an attempt which was carefully aroided by the great schools of painting. One of the most splendid of these attempts, typifying some of the best late Renaissance work, is the great window of S. Guclule in Brussels. A huge monumental structure fills the greater part of the winlow, not making a canopy over the subject. Figures stanl against it or against the sky, beyond which is a delicate painting on gray blue, giving a considerable effect of reality. This is increased by the shadow of the arehitectural part. But the result is what it might be in painting: the figures look as if cut out and set up against the distance. This is one of the splendirf examples, and a great work of art, notwithstanding the mistakes. It gives the chararteristics of Femaissaner glass, - monumental work with figures in front, strong contrasts of light and shade, an attempt at accurate perspective, and an attempt at atmospheric effect in the distance, not continued into the foreground. In the early part of the sisteenth century, and in many pieces of more intelligent work later, the shadows are obtainel by selarate glass and not by mere painting. But the tendency to paint as much as possible was inseparable from the tendency to obtain modelling. The use of enamel colour is also a mark of the perion, and probably dill not reach its possible results from the fact of the separation of the art of the artist designer from that of the craftsman. Ocrasionally, in certain places, these two connected, perlaps owing to the tradition of certain families of artists and artisans.

Certain details of style may be indicated: canopy and sometimes a rich frieze and cornice

WINDOW

occasionally filled with subjects. Oceasionally the figures are seen through the monumental ornamentation. Naturally, the portraits of the donors, sometimes of great beauty of execution, occupied important parts of the window. The spaces of the window above the arehitectural ornamentation are often merely of clear glass glazed in squares or diamonds, as in S. Gudule athove mentioned. Earlier windows have a coloured ground above the Renaissance canopy. The pot metal colours are used for the figures, while white glass is used for the architecture. The delicate distance is painted in landscape, in architecture, and sometimes in figures. This is paintel sometimes on white, sometimes on faintly coloured glass. The tracery lights often contain figure subjects. The detail of ornament abandons the Gothic leafage. Screens and draperies have patterns in white and yellow stain, or on ruby or other coloured grounds, produced by abrading the colour and painting and staining the white. Other patterns are stained on the coloured glass, yellow on blue making green, and so forth. The pieces of glass become larger and larger.
In the seventeenth century the art of the sixteenth continues, more and more in the same direction, with more painting instead of coloured glass, with a heavier use of it, and usually less skill, so that its lastinguess is less great than that of earlier momments, and more especially the lead line is in the way, and looks ugly and unnecessary. This, of course, is felt more in the smaller work than in the very large windows.
In the famons windows of Goula, in Holland, the end of the sixteenth century saw the carrying out of an attempt at realistic rendering, which still preserved a great many traditions of mechanism. They cannot be described in our small space; but though very deficient in the greater elements of art, that is to say, in line, composition, colour, and moral elevation of character or purpose, they remain examples of what might have been done had their makers been men of genius instead of excellent traditional artisans. Their effect is much enhanced by whitewashed wall, and we must consider also that greater lighting and whitewash had much to do with later mindows. The Gouda windows are attempts at using great masses of architecture and landseape, and their reputation is deserved so far as the extraordinary courage with which the artists have earried out the project of what might be called hig pictures. But they are distinetly the work of inferior minds. Perhaps had many excellent designers who worked for the Renaissance windows found such men as the Crabeths and their pupils and assistants to carry out their intentions, a more adequate representation of what the Rcuaissance ideas were eapable of might be found. The French dranghtsmen of the sixteenth century,

WINDOW

and many of the Germans of very high grade, have marle designs for glass in themselte's extremely beatiful. The names of Aldegrever, of Holbein, of Dhirer, of Baldung Griun, and of Jean Cousin are sutticiently important to show how slowly the artists detached themselves from the workman ; out thongh we have many designs remaining, we have no equivalent representations. Occasionally in some of the Frenels windows, notably those attributed to Jean Consin, one can recognize in actual execution the hand of a better artist retonching the inferior work. Mere mention can he made, but it is essential, of the windows used for private dwellings, as distinguished from churches, wheren, during the sixteenth and serenteenth centuries, the window had merely a space in it reserved for coloured glass. Many of these designs are remarkably suceessful, both in their intention and in their execution ; and eren to a very late date in Holland the treatment of these windows is perfectly well alapted to the intention of private dwellings.

In Germany and Switzerland especially, these panels, carrying eoats of arms and supporters, or figures acting as such, are rery ofteu pleasant works of art and thoroughly well understoul in their design and execution.

The painting and enamel which ocenpies part of them is relieved by the intelligent nse of pot metal colours, to give elaaracter. The designs of Holbein or Diirer, of Manuel Deutseh, of Baldung Grin, for similar subjects, are the types of that special elass of work of which extraordinary examples can be seen at Basle.

The eighteenth century has little to tell us. Leaded glass is still much used. Already with the serenteenth century the making of foloured glass had so deelined as to make it oecasionally difficult to obtain. The great dislike for the earlier work, or anything that recalled the Gothic, and for splembour of colour, had increased to such an extent that a very intelligent admirer of art, Presilent de Brosses (in his Jorrney in Ituly), uses the example of the mosaies of S. Mark as a type of all that is abominable in art. The word "Gothic" became, as we know, a term of reproach. The tendeney of religions serrices to depend on preaching increased to such an extent that the most saered, from national and religious reasons, of the great mindows of Chartres - a window placed by St. Lonis, king of France, was taken down so as to allow the preacher of the day to be seen in a clear light. It is true that other reasons of lighting certain moxern works of art were also given, and that frequently:

The whole tendeney of the temper of the time, in and out of decoration, was one of aroidance of the more solemn siles of art. Perhaps something might have been done had not the encl of the seventeenth century already broken

WINDOW

the traditions. Le Vieil, perhaps the only and last of the artists in glass in France in the middle of the century, and the author of an important treatise, remarks that " there are still coats of arms placel in the windows, and through their use we keep up the only practieal aco quaintance we have with the art of glass mainting." At any rate, England alune scems to have kept some intention of trying the effects of glass. The famuns windows for which Sir Joshua painted the studies I have referred to elsewhere.

The detalls of the resuseitation of staned glase, owing to the interest in Guthic art, I shall not go into further than to state that they came to a point of considerable importance abont the middle of the mincteenth century.

Before that, in rarions places, attempts at imitation of older work were made; one of the main difticulties in the way of getting baek at the meaning of the old work being in the make of glass itself. The resinscitations were all troubled by the fact that painting on the glass was still consitered an obligation, and filled the mind of the artist and his encomagers.

It should be noted that Cherrenl, the eminent scientist, called the attention of the architects and designers for glass to the main principles of medieval work somewhere in the thirties. He explaned that they had not umlerstool the questions of the material as atfecting colour and light, and that they paid no attention to the use of the complementary eolomrs, which were one of the most important of the ancient factors in use of colom: Also, that they treated the work as they might a drawing more or less tinted. It was, therefore, by no want of waming that the modern artist in glass did not surceed in recalling the prineipal merits of ancient work. This misunderstanding persists th this day, wherever, even in failly good work, the whole effect is really translatable into black and white, or gradations of the same. The use of glass as translucent mosaic was not perreived as the main methol of getting bark to the first principles ; and thongh many imitations and restorittions were accomplished, they were, like most restorations and imitations, meelanically done. But a great deal of intelligent imitation was done in England, and still more or less persists. When varied, it has the difticulty of bringing in the newer habits of represcntation with older habits of design. Sume remarkable men have deroted some effort to the art ; but those efforts have heen limited by the separation of the draughtsmen from the executants in the class, so that the most famous of these, Burne-Jones. eomplained to the writer of this article, in 18 -3, that his designs assumed a commercial shape when translated into glass, though marle through the firm of as symathetio manufacturer and a very intelligent designer himself, Mr. Morris.

WINDOW

The difficulty still persists，and mast eontinue as long as the drawing and cartoon are the main points，and the excention made so easy that，as Bume．Iones noticel，each work eond be re－ peated imbetinitely，therehy becoming strictly commercial．

The possible future of the use of glass in winduws as decoration is much larger than would seem even yet at present．The general derel－ opnent of its ruake points to a number of new nses：when the wall itself will be of glass and a latge part of the ronstruction．However titted tugether，the window may hecome all the richer．But these considerations are not his－ torical，nor wouk an appreciation of juresent or late work，which＂an he tomnd described in print or is within easy access．Persomal motives of uroprer comrtes also prevent my formulating any jurgment．

> - Johi La Farge.

Émile Amé，Recherches sur les ritraur in－ colores de C＇Yonne，Is⿹\zh26灬t；Appert and Henlivanx． l＇erre ot lerreries，1sat：La lerrerie depuis vingt ans．I ${ }^{\circ}$ ：；Albert Babean，Linard froutier et ses nits，peintres remiers， J 888 ；Troyes； Belhomme．Stutus des peintres verriers de Tun－
 Blanquart．Notice sur les vitraus de Gisors，me－ mière partie，los peintres remiers．J884．Pontoise， iup．de A．Paris（extrait des Méuoires de la Société historique（du Vexin，Tome 111．）；G． Bontemps．Guide the rerier：traite historique et pratique de la falurication des verves，cristuur， vitrous．J868：Peinture sur verre au NIX siecle．Les serrets de cet art somt－ils re－ trourés？Quelyues rétlexions sur re sujet arresséps aur saronts et artistes．Paris． 1845 ； Bultean，V＂itrouer Il I．D．de Chartres；Cahier， Caractéristıque des suints，I84；：Cahier and Mar－ tin．Monouraphie de la cathmitrale de Bourges； Capronnier，Jitranc de la cathedrole do Tournay， 1818．Brttelles；L．Charles．Atelior de rerrier it in Forté－Bernard il la fin dly $\mathrm{TV}^{\text {Te }}$ siembet aut N＇17e，Le Mans， 1 s．il：L＇Abbé Coth̀net，Les peintres revriers de Trobes，J858：L＇Abbé Crosnier．I acalulaire tes symboles ot attributs． Tome 111° du Bullctin momenental：E．de Conssemaker，litrouc prints it incolures des églises de la Flandre maritime．1stio，Lille； L．F．Day，ITindors． $18: 7$ ；André Félibien．Des princines se larchitecture．de la seulpture ve do la peinture，16\％）．Paris（Chapitre NXI．Principauc monles Ir＇nssemblulayes usités ì rette éponque pesur le rerve hlane）；A．Fourniex．La verterie drem－ tienx（Lorraine）．1886，Paris；Gessert．Cifschiohte der fildmmerei．18：39．Stuttgart and Tïbingen； De Grandmaison，Duruments infots pour sorrio
 des Pinaigrier），Jsin，Tours；LiAbhé＇V． Guerher．Essai sur los citraus de lat cathodrule de Strashoverg．1848，strasboure；Docteur Hafner， Les chers－ito vurpe de l＂peinture suisse sur terve， publiés juer la suciété d’hestaire et deuntiquité de
 originules sur verre，existantos en duffermts lieur，1892，Berlin ；Herberger，Die ütesten（ilas－ gemëhld im Dom zu Augslury．1860，in Der Him－ merschen Buchlruckerei．Aussburg；Holbein，le jeune，L＇aurre de llins，photographs of drawings for glass by Braun；Henry lloliday，Stained 1091

WINDOW

Grlass as an Art，London，1897；Eugène Hucher， l＇itraux de la cathédralo du Muns，Le Mans， Jiff；Ingres，Iitraux de lu chapelle Suint－Ferdi－ nand， 1845 （planclues）：Kunkel，Glasmacher－ Kunst． 17 at ；l＇aul Lacroix，Peinture sur verre， in Volume V，of Mouen \hat{A} 隹 ef de la Fifuaissunce， 1845．Parix；I．La Farge．The－Imeriran Aut of Gluss，1803；Hyacinthe Langlois，Essice sur ia peinture sme verre，1832，Roven；Ferdinand de Lasteyrie．Histove de lu peinture sur verre， d＇apres les monuments frumerais de Fronce．1843， l’aris；I．A．Lenoir．＇Truté historique de la peinture sur rerre．et description de vitraux anrions et modernes，pour serrir it thistoive de l＇urt en France． 1856 ；Pierre Le V＇ieil．L＇urt de lin peinture sur verpe（dans les arts rt métiers de R゚Aculémie），J－7t，Paris：Edmond Lévy， Mistrire de la printnre sur cerre en Europe．18t50， Bruxelles；Lucien Iagne，Liouvre drs peintres repriers fronçais．lerrièts de lontmorency． d＇Érouen et de Chantill！，18s．\％．1＇aris；Marchand et les ablés Bourassé et Manceau，F＇Errières du cheur de l＇éntise mítropolitaine de Tours．1848， Tours；L＇Ablé 1．．Marsanx，litraux de léeqlise Sant－Martin．do Grosluy，1889．Jaris；Abert de Méloizes．Les ritranx ite lo rathedrale de Bourges， postéricurs all TIIIe vierle．Bourges；F．de Mély，Étudos icmno！！${ }^{\prime}$ aphiques sur les vitraux du S71 e sienle de la rathédrale de Char－ tres．1888．liruges（estruit de listrt Chrétien）； Mrs．Merrifiele，Original Thatises．18t9；Oliver Merson．La＇s l＇ifrule．J＇aris，1s！5；L＇Abbé Michaud．Notice sur l’église dr sitint－Vicolas de Chêtillon－sur－Seine．son origine，son architec－ ture，ses rerrieres．Dijon，J870；Aubin Louis Willin，Antiquites nationales ou rerupil des monu－ ments pour sedriv al rhistoire générale et particu－ lière de l＇empire fornças．tels que tombeaux， inseriptions，statues，ritmux，fresques tivées des alhayips，monastères．châtpaut et autres lieux devenus domcines uatiomoux，1590，Paris；Rondot Natalis．Printressur reme de Troyes，du TII ét du I＇1 ${ }^{\text {e }}$ siécle．1887，Nogent－le－Rotrou；Alexander Nesbitt，Gluss．South liensington Handbooks， 1888 ；L．ottin，L＇art de faire un vitrail，Paris， 1892；l＇ierre l＇elletier，Lfs cermers dans le Lyomais it le Foreż．1886，l’aris：L＇Ablé Jerdreau fiuide dn visiteur et du pélerin à T＇église Saint－Étienne－du－Mont，brochure in 16， l＇aris；J．I＇schmilt．Uomuments religienx．18．9； C．Schoefer et A．Rossteucher，L＇ormement dans les vitrous du Yuyen Aye et re la Renais－ sance．Iitreuer allemamls movenant de Varbur！， Alteriorg，Immenhousen．Sordelhatwen．Lingen． 17 m ．Augshnu\％，Stasbour！．ete．；R．Sturgis， Decorative 1 limbonss $^{\text {in }}$ Enhland and America， 18：\％i－7；L＇Abbé Texier．Histoire de la peinture sur reme dans le Lintousin，1847，Paris ；Histoire de la peinture sur rerre．1850：Lemoine Théo－ phile Direrserrm artima scholula，traluit par le romte de Lesralopior．Toulouse．I＊43；Emile Thibaud，Consitérutions：historiques et critiques sub les vitruux anriens it montormes at sur la peinture sur verre．Ist？：L．C．Tiffiny，American Art Supreme in Coloured Gilass．Forum．XV．． 621．July， $180: 3$ ；Villarl de Honnecourt．Repro－ duction exarte de rallam de 1．de Homecourt， 1858：Viollet－le－Juc，article，Vitrcure，in the Dictiomnaire ruisomé durchitecture；1ohu Weale，Diors II＇orlis of Early Musters in Chris－ tian Decorution，L．ondon，1846；N．11．1．Westlake， History of Design in Painted Glass，London， 1ss1－1885 ：Clailes Winston．An Enquiry into the Difference of Style nbservable in Incient Gilass Prautings．sesperinliy in Entlame，rith Hints on Glass Paintiny by an Amateur，（）xford， 1817.

1092

Winduw, Fig. 2z: Ruse Winduw, Cathedral of Charthes, West Fleont, c. 12gos.

Window, Fig. 24: Rose Winduw, West Frunt of Church, Muxtréal (Yunne), Burgundy; c. 1250.

WINDOW

Catherine Wheel Window. Same as Rose Wimlow (whicll sec unter li).

Winnow, Fig. 25: Ruse Window, Barfheston, Kent, c. 1180.

WINDOW

tion with regarl to another and larger window above as to be supprosel to symbolize one of the feet of Clurist.

Rose Window. A circular window elivided into compartments by mullions, forming tracery radiating from, or having more or less getmetrical relations with, the centre. They are especially frequent in French medierval architecture, where they oceur as the characteristic central feature of the western fronts and transept, fronts which allow great size. They are distingnished by great beaty of cletail, geometrical or Hamboyant, according to the period of their construction. Some eiretilar windows of the later medieval eathedrals of France hardly recognize the centre as a generative pint for the tracery. (See Wheel Wintow, below.)

Transom Window. A. A window aliviled by a transom into an upper and lower part.
B. A winduw above a transom, as in a doorway.

Compass Window. In England, a baywinduw of a semicircular or otherwise eurved plan: rare or obsolete in the United States.

Diocletian Window, Same as Venetian Window.

Hit and Miss Window. A window nsed in stables, the upper sash being fixed and glazed, while the lower half of the winlow is filled in with two wood gratings, the unter one heing stationary, the imer one moving in a groore. The bars of the movable grating are made wider than the openings of the stationary one, so that these openings are completely cuvered when the immer sash is closed down. - (A. P. S.)

Lancet Window. (See Lancet Areh, under Arch.)

Lowside Window. A winlow, ustaally rery small, set much below the level of the larger windows, especially in a ehurel, principally English. There is mueh dispate about the purpose of a lowside window in a clumeh ; all the ecclesiologists agree that it was not origimally glazed, but elosed probably by solid shutters, and it has been noted that a seat of solish material is often placel immediately within the opening. When the lowside window is very near the chancel, it may have been intenden to affor:? a riew of the altar from withont; but these openings are found in all parts of the chureh.

Offertory Window. Same as Lowside Window.

Palladian Window. Same as Venetian Windurs.

Pede Window. A window in such a posi1095

Venetian Window. A window characteristic of the neoclassic styles having an arched aper-

Winnow, Fig, 27: Rose IVinnow, Beauvais CaTHEDRAL ; C. 14 H .
ture, flanked by a narrow, square-leaded aperture on either side, separated by columns or pilasters. 1096

Window, Fig. bif Ehe Winduw, Beverley Minster, forkshine, c. 1220.

WINDOW BACK

Wheel Window. A large eircular window on which the radiation of tratery from the centre is mure or less flistinctly surgested. It may le eomsidered a varicty of the Fiose Window, in which the tracery is more distinetly committer to a sookelike arrangement. Also called Catherine Wheel Winduw.

Wyatt Window, In Ireland, a squareheaded Veuetian Window, or a wide window divided nto three openings by two mullions.

WINDOW BACK. The eeiling or panelling owerring unler a wintow, between the stow and the floor, ant covering the inner face of the breast (see Ireast). This is so enmmonly a pieve of panelling that the term "promelled hack" is in use.

WINDOW BAR. A. A muntin: a division of woml, lead, or iron between the panes or lights of a sash.
B. A bar of wood or iron for securing a casement or the shutters of any window when elused.
C. Same as Guarl Bar.

WINDOW BOARD. An inner sill, usually light and thin : a mere covering for the top of a dwarf wall helow the wintow opening.

WINDOW FASTENER. (See Espagnolette : Sash Fastener.)

WINDOW FRAME. The frame, loxel for sliding sash, or solid and rehated for casement, whech is set in a wall to receive and hold the wimlow.

WINDOW GUARD. Same as Guard Bar.
WINDOW LEAD. A slenter bur or rod of lead cast with grooves to receive the glass (see Came).

WINDOW LEDGE. The natow shelf formed hy the stowl on the inside, or the sill on the outside, of a window.

WINDOW LIFT. A handle secured to the lower rail of a sliding sash to facilitate the raising of the sash: commonly ealled sash lift.

WINDOW OPENER. A rod by whicle a winduw sash, otherwise inaccessible, may be opened or elosed.

WINDOW PANE. (See Pane, B.)
WINDOW POST. In franed building, one of the solid nprights between which the Window Frame is set. In the United States it is enstomary to nail together two studs to make each wiudow pust (rompare Door Post under Post).

WINDOW SASH. The sash or light frame, gencrally movable, in which the paves or lights of glass are set.

WINDOW SCREEN. A. Any device, especially if omanental, as the pierced lattice of the Hindus and Arabs, used for filling in all or a part of a window upening ; it usually replaces glass and sash or casement of any sort.
B. Any furm of elosure, of wire or other material, to prevent insects from entering, or

WIND PRESSURE

to obstruct the view of an interior from the outside.

WINDOW SEAT. A seat in the recess of a wintow between the inner jambs.

Window Seat is Alsitick Castle, NorthusBERLAND; C. 1310 .
WINDOW SHUTTER, A shutter used to darken or secure a winkow, generally panelled, and hong on each side of the aperture, outside or insite, in one or more folds. When formed of frames with upen slats, it is called in the United States a Blind.

WINDOW sILL. The bottom or sill of a winlow opening : often the woolen sill of the wintow frame, as ljstinguished from the stone or terra cotta sill of the opening.

WINDOW STOOL. (See Stool.)
WIND PORCH. A small restibule, often temprary, planned to allow the opening of the outer doors of a buileling withont admitting much eold air. (Compare Weather Door, moler Duor.)

WIND PRESSURE. The force exerted by wind upon any part of a lailding. Tbis is, gencrally, matter of incuiry and precaution ouly in the matter of high roots, or spires ; as the walls of an ordinar! luilding when built in the common way are not affectell by any winds but tomadoes or tropical hurricanes. The force of wind upon a roof is generally consitered as a horizontal force, tenting to push the roof over: but it really aets along a line normal to the sloping surface. The tables of pressure are made $u p$ in this way ; and, as observation has shown that the winds of the north temperate zone hardly exceed fifty pounds per scunre foot of a surface normal to their direetion (i.e.

WINE VAULT

vertical), the extreme pressures are given as follows by Du Bois, The Struins in liremed Structures.

Angle of roof with horizon, 5°; pressure in pounds, 6.6.
Angte of roof with horizon, 30 ; pressure in pounds, 33.1.
Angle of roof with horizon, 45°; pressure in pounds, 44.
Angle of roof with thorizon, 60°; pressure in pounds, 50.6.
WINE VAULT. Same as Wine Cellar, unter Cellar.

WING. A. A part of a building, or any frature of a builting, projecting from and sub)ordinate to the central or main part.
B. One of the folds of a double dow or sereen.

WING WALL. In bridge building, a wall carried from one side of one extrenity of the bridge proper to retain the earth of the approach. In ancient bridges in that country, in which the roadway of the bridge itself was carried $n \mathrm{n}$ a steep incline from either extremity towarl the centre, the wing walls were umecessary, or were small and low.

WINLIN, HANS.

Wire Cloth used FUR LATHING, in Fireproof CoverIN: OF A STEEL Column.
(See Erwin, I., von Stcinbach.)

WINTER GARDEN. (See (rreenhouse.)

WIPE (v.). In plumul) ing, to apply and smooth off sulder when in a semifluid condition, by wiping it over the part to be solteres with a pal of leather or eloth.

WIRE CLOTH. A fabric woven of wire, the coarser grarles being nettings used for meat safes, strainers, etc., and as lathing for fireproof plastering, amt the finer grates being of gauze used for window screens.

WIRE GAUZE. Wire cloth of fine texture.

WIRE GLASS. (See under Glass.)
WIRE LATHING. A wire netting, enarser than wire cloth, and used for lathing. (See Netallic Lath, umler Lath.)

WIRING. The process of fitting aml placing wires in buildings, as for bells. (For Wiring, Electric, see Electrical Appliances.)

WITEL, VAN. (See Vanritelli.)
WITH; WITHE A wall diviling two Hues in a chimney stack, generally composed of a single thickness of brick.

WITNESS LINE. In drawing, same as Reference Line.

WOOD

WITNESS POINT. Same as Reference J'oint.

WITTE, PIETER DE (PETER CANDID) ; painter, scmptor, and architret ; b. 1548 (at Bruges, in Belgiunn) ; 1. 16 ± 8.

Peter's father, Elio Candido, was a lelgian bronze caster associated with Jean Bologne (see Bulogne). 'The family name, de Witte (White), was translated intu Cinutido in Italy, and became Cantid in Germany. Peter ('andid appears first in $157 \because$, assuciatel with Ceorgio Vasari (see Vasari) in his deorative work in Rome anl afterward in Florence. fa 1586 he attached himself to the court of the dukes of Bavaria at Munich, and was one of the chief movers in the introluction of Italian art into Bavaria, which followed the atmission of the Jesnits in 1559. He was esperially employerl upon the extensive improvements undertaken by the Elector Maximilian I. at the lirsidenz in Mrmich. He continued the decorations of the old Residenz, and built and decorated the new palace which was added by Haximilian I. between 1607 aml 1617. In 1619 ('andirl mate designs for the decoration of the ceiling of the Goklen Hall of the Rathluars in Angsburg, which was actually executed by Mathias Kager. The designs are still in the cabinet of engravings at Mumich. He painted altarpieces in the Jesuit church of S . Mirhael, at Munich, and designed the statue of S. Mirhate on the façale of that building. In 1604 the Elector Maximilian I. established a mannfactory of tapestry, which was phaced in charge of Peter Candit.

Dr. P. J. Ree, Peter Candid sein Lehen und seine It erke; Lubke, Gofschichte der henaissance in Deutschland; Allgemeine deutsche Biomraphie; Seidet, Königliche Fesidenz in München.

WOGT, CONRAD : architect.
In 1480 he succeederl Jost Dotzinger (see Dotzinger, J.) as architect of the cathetral of Strasburg (Elsass, Germany), and held that othice until 1 484.

Gérard, Les Artistes de l'alsace.
WOLLATON HALL. In Nottinghamshire, and close to the town of Nottingham ; an Elizabethan honse, little altered, and having one feature very remarkable among English country houses. Wollaton has a lufty central tower, rising, like the donjon of a medieval strong castle, above the lower buiklings. This tower is occupied within by a great hall which is 60 feet high and about the same length. The original timber-framed roof is preserved, and the lighting of the hall is by large windows high up beneath the arches of the ronf.

WOOD. That part of the substance of the trunks and branches of exogenous trees which is inside of the bark and the soft alburnum which comes next to the bark, ant outside of the pith. Those tranks or branches in which

WOOD

there is mueh pith or soft central body hardly furnish wool, in the orlinary sense, for in most trees the pith hecomes minnortant and almost unnoticalle ly the time the dimensions are suthicient to allow off cutting for timber. By extusiom, the trunks of certain palms (emblugenous trees), when ased to replace wool in the more usial sense: they make excellent pusts, heams, hars, and the like, when used intact or nearly sn, as is common in many tropical lands. 1:3nluon (a grass), and rattan (a peciliar variety of pahm) in its many varieties, are also nsed for purposes to which their peculiar lightnosis and great comparative strength fit them well.

Wroul is to the emsidered as a solid substance capable of being cut and shaped to almost any extent without losing its strength by such tratment, providel the grair is kept continuous for a sutficiently great distance. As the fibres which give strength to the material lie ahnost altogether in the direetion of the length of the trunk or branch, and as the adherence

Fig. 1.
between these fibres in the opposite direction is limited, the workman who cuts away too much or cuts too dleeply iuto one part of the stick risks the strength of the whole, hecause he greatly increases the danger of partial splitting. A familiar example is the ordinary axe helre, which must be rived ont of the solid plank, and only carved intu its peculiar shape, with care taken to preserve intact the full strength of the stick measurel ly its smallest cross-section : axe helves which are turned or cut by machinery out of the solid are altogether untrustworthy, becanse many of them have the grain ruming diagonally across the finished helve, which therefore will break almost at a touch.

In conserquenee of these characteristice, woon, when usel for enginecring purposes and for the ordinary framing of houses, when this is to be coneealed by sheathing and plastering, is selected with a view to the straightness of the grain. There is, of course, no object in cutting away any part of the piece of timber, sill, post. stud, hrace, plate, or the like, for in the case of the engineer's work, there is no appeal to arehitectural effeet, and in the case of the ordinary frame building the construction is concealed. It is enough to see to it that the pieees which take the weight and resist the strains to which the strueture is to be exposed shall have no

WOOD
interruption in the regular run of the grain from end to end of each piece. If a piece come on the gromed which is seen to have the grain rumning diagonally across it so as to make it casily breakable, it will be rejected, or cut short and used for exceptional furposes, as for jack

Fig. 2.
rafters, or short diagonal braces. Knots are objectionable, chiefly beeause of the twisted grain which aceompanies and surrounds then. In some woods, as in the different yellow pines of the Southern states of the United States, the grain is very visible, forming narrow stripes of darker and lighter colour: and these, when parallel and nearly straight, form what is called Comb Grain, considered a mark of sound materiat.

On the other hand, what are called knees, less common in house carpentry than in shipbuilding, are eut from wood taken at the place where a branch leaves the trunk (see Knee, A; also Vol. I., col. 779). If enough of the wood be left to hold the knotted and twisted parts well together, these pieces have great strength.

In view of these requirements and limitations, the preparation of the wood for the workmen is important. Iu the illustration (Fig. 1) the piece of plank is badly cut and badly laid, because there is a strong tendeney for the whole face, which is turned toward the

Fig. 2a: A Piece of Hewn Timber which has CHECKED IN Drying.
middle of the trunk and which here is turned uppermost, to split away in large flakes. This plank would be better if laid with the other side up, but it is a poor piece of rood. In ordinary flooring the planks which show comb grain in narrow, nearly parallel, stripes, are good, and will keep their consisteney for centuries, because they are the pieces which hare been eut with their sides in the direction of the
medullary rays, as explained below ; while those in which a broad piece lies flat on the surface have no endurance, the broal picce, as in the plank in Fig. 1, splitting off' with the greatest ease, and sometimes by the mere action of shrinkage, so as first to form long splinters and then to brcak away. This is the reason why Quarter-sawed Wool is preferred (sce that term). Let Fig. 2 he the section of a trunk sawed in the nsual way ; of this only those boards or planks which lie upmo or near the middle of the trumk are gooul, becanse in the

Fig. 3.
others the tendency before spoken of, to split or separate, is very great, and also becanse the tendency of all $\log s$ is to check from drying, the clecks opening in the direction of lines radiating from the centre. Quarter-sawing (see that term ; also Claphoarl) is resorted to, therefore, as shown in Fig. 3, and the planks are taken out as nearly as possible in the direction of the possible checks. This, which gives beanty to wood used for joinery, marquetry, and the like, gives strength also to timler and phanks which are to undergo severe strains. The silver

Fig. 3a: A metrod uf Sawing by which Wider PLANKS OR BOARDS ARE GOT THAS IN FIG. 3 -BUT SEOW AND AWKWARD; LSED FOR VERY PRECIUUS WOOD.
grain, which is caused by what botanists call the medullary rays, is not often visible in soft woods ; it is more seen in hard wool trees, and most of all in oak, in which it is a special characteristic.

For ornamental work in joinery and furniture, the wood which is unfit for framing may be the best. A twisted grain, naking an untrustworthy post or joist, may be so beautiful that the piece is saved for carefnl seasoniig and for the finest cabinet work. This is especially true of reneers, which are cit out of knots, roots, and even excrescences caused by disease or injury to the trumk.

Soft wood is usually considered as that of a 1105

WOOD

certain number of coniferons trees, as whito pine, larch, fir, suruce, and hemlock, in their many varieties; but the wond of certain coniferous trees, as the Georgia pine (called also long-leafed pine- I'inus custrellis and l'inus palustris) and several other varieties, are hard, giving as much tronlle to the workman as the mut trees and the vak. Hand woud generally, however, is that of the broad leaf trees, most of which are decidnons, just as most of the coniferous trees are evergrecn.

It is so common to build with wood ly ordinary rule of thmub amd without close calculation, that the framing of walls, purtitions, roots, ffoors, and the like hardly differs at all in principle, and difters but slightly in the size of timbers used, whatever wood is to be employed. The log cabins of Russia and the solid built châlets of Switzerlaml (see Châlet; Log Honse) are indeed of soft wood, but those of the Northwestern states of America and Canada are commonly of hard word, and the treatment is nearly the same. It is noticeable, too, that while the soft lareh, so abundant in Switzerlanl, was used for the solid-built timber houses alluded to, the extremely hard oak of the Jura and Vosges mountains and of the forests which once existed in many regions of the north of France was used in the very coninplex framing of the fifteenth and sixteenth centuries. (See Pan de Bois ; Wood, Construction in, Part I.; also illustrations, Half-timbered and Honse, where Fig. Il is the simple Swiss work, and Fig. 9 the complex and elaborate French work, involving a great amount of skilled manual lahour put into the hardest wond.) It is, therefore, useless to seek any immediate influence exercised upon the architectural design by the kind of timber used. The general tendency to use sticks a little greater in either transverse climension is all that is traceable to the use of softer or weaker material.

In carpenter work wood is not often seasoned as well as it shonld be. In the United States it is hardly seasoned at all, the stnfl being ent and piled inp for a few months or wecks until an orler comes for its shipment. The seasoning needed for ordinary framing is that of the gen air, where the boards or scantling are usually piled with small strips hetween the pieces to allow the air to circulate. The ahsence of such seasoning is the great cause of the sudden settling of floors, disturbances in the equilibrium of walls, and cracks in the plastering of partitions within. For when a stick shrinks it, of course, releases to that extent the pieces which abut upon it, either at right angles to its length or diagonally, as in the case of braces ; and a whole partition, even if carefully fram=-1, may lose its integrity by the shrinking of its separate pieces.

For joinery and ormamental work of all kinds 1106
it is customary to season wood by artificial drying, a process usually described as kilu-drying. It is customary to shape the piece of wood approximately according to its future size, then to glue a piene of palaer orer each end in oriler that the drying shall not proceed more rapidly where the end grain is exposed, and finally, to put the whole iuto a chamber heated to 150 or 173° Fallr., which chamher should, if possible, be rentilated so that a slight current of air may be kept up. Wool dried in this way is, of course, rery realy to absurb moisture, and it commonly happens in our hasty building that the benefits of the thorough seasoning are lost by the bringing of the wood into a damp unfinished house, where the plastering has not yet lost its moisture. One sees a stout plank, as of oak, which has been thoroughly kiln-dried and which is so secured in a massive piece of framing that it is no longer free to expand, bent to a curve like that of a bow, with perhaps 3 inches of versed sine in a length of 2 feet, by exposure "over Sunday" in a damp building. It is, however, almost impracticable to prevent this: the owner is always urging on the specd of the work, nor is he often willing to admit that it is worth three montlls' delay to let his seasoued joinery work lie until the house is reasonably free from moisture.

As regards the kinds of wood most in use: in the United States white pine (Pinns strolus) has always been the favourite wool from the Great Lakes and the Mississippi southward and eastward, but since the great rise in the price of that wood, spruce (thies of several species) and hemlock (Abies canadensis) are used for all kinuls of framing, and white pine is reserred for inside finish; while siding, clapboards, and the like, thongh best of pine, are passable when made of spruce. Shingles have been made at different times of all the soft woods of coniferous trees, the preference being generally for cypress (Taxodium), since that wood has been cut in the Southern states. In Great Britain fir (Piums syluestris) is used, and is brought from Scandinavia, eastem Prussia, and western Russia. Larch (1 bies laix), which grows freely in the Alps and in the northern Apennines, is used freely in Switzerland and the Tyrol, where wooden building bas always prevailed. Cypress has only recently come into use in the [nited States, and that at a time when chosen wood was already in such demand and so costly that there have been but few frames built of it in the North. It is curiously clurable under circumstances which destroy most woods rapidly, that is to say, in cellars and the like, where there is dampness and especially variable quantities of moisture present in the air. Fiedwood is very soft and is fit for every purpose that
white pine is gool for. It has even certain adwantages over white pine, as in being less liable to great swelling and shrinkage. Selected qualities of redwood are brought to the East for purposes of joinery.

As to the hard woods, they are used for framing when soft wood is not easily obtainable. Thus, previous to le65, and throughout the Western states from Iowa and Wisconsin west, hickory or walnut or chestnut were used for framing, and also for flooring and siding almost exclusively. Chestnut is the most durable of the hard roods commonly in use, and as it is also less hard than oak and asb it is a farourite for some kimuls of rongh wrork ; thus, it is used for railway sleepers. and in the same manner for sleejers in cellar floors and the like. Locust, boweser, is the best of all roods for this purpose, and is almost imperishable; but it is rarely found of great size, and is scarce in most parts of the country. Black walnut was so much in fasour from $185 \overline{5}$ to 1875 that nearly all the interior finishing of costly houses. doors, trim, sileboards, and the like, were made of it, and good qualities reached a rery high price. It is now out of fashion in the Enited States, and oak has taken its place. White oak is ly far the most common, but red oak, which has a beautiful colour, is as suitable for interior finish, except where very delicate work with carsing and mimute mouldings are required. Maple and birch are always in use in a moderate way, as they are called for by persons who desire lightcoloured wood for furniture or interior fittings ; and buttermut, which is softer and has a pretty light brown colour, is used in the same way, the diflerence of cost being considerable when the work is complete. Ash, which is seldom used for delicate joinery in the United States, is in constant demand to help out work in oak; thes, if a contract is for a staircase of oak. it is very probable that the balusters will be made of white ash in the hope that the superintendent will not discover the difference. - F. S.

Bass Wood. That of the lime tree (Tilia); so called hecanse of the ase of the fibrous inner bark under the name of bass. It is not much used in framing. Its peculiar merit is in its close grain, and in its permanence when once seasoned, as it does not warp or shrink.

Bay Wood. That of the laurel tree: and as this is seldom used in building, a light red wood supposed to resemble laurel wood, and brought frou different tropical countries and usel in the United States to replace mahogany. It is softer than mahogany. and is thought by some to be a rariety of cerlar.

Brazil Wood. That of the tree Brauna or Garanna; brought from South America and used for veneer, which is of brownish red colour, and very beautiful in its reining.

WOOD BRICK

Heart Wood. The dmamen, the matured and soliel wool of the truk between the pith and the albummm. (See deftnition of Wood, above.)

Sap Wood. The albmmun; the as yet immature wood of recent growth, immediately within the bark.

Satin Wood. A brilliant yellow wood with a beatiful grain of which vencers are male for delicate furniture. It is the product of several tropieal trees belonging to different genera, and brought from India, the West Indies, and recently from Australia and New Zealami.

Teak Wood. That of the tree Tecfond; indigenous to Bumah and ncighbouring countries. It was the firourite timber for shipbuibling in the British navy, and more anciently in the tleet of the English East India Company. Il the lorests are allowed to grow min now that the shipbuilding is largely of iron, this wood might become cheap, enough for use in all parts of the world for superior joinery, as it has a very jretty light brown colour of varions shates, and is singulamy durable.

White Wood. In the United States, the woor of certain kimets of poplar, especially the tulip tree. Also, by extension, of the hass wood and other kinds of limden or lime tree. In the former sense it is the worl of greenish white colour having little visible grain, moterate softness, and considerable cudurance, which is largely used for the inner parts of well-matle furniture. The drawers, shelves, ind lining of such pieces of furniture are often composed entirely of white wood when the exterior is to be of richer coloured woors, either solid or veneered upon the white wool itself.

WOOD BRICK. A piece of wool of the dimensions of a brick, built into a brick wall to afford a nailing for turring or wood tinish.

WOOD CARVING. (See Carving; Sculpture.)

WOOD, CONSTRUCTION IN. Building with woorl, usually in solid timber, and in Emope, usually by some of the processes included muter Framing. Apart from the European methows and their results, the most important development is that found in the ancient temples of Japan. (See Japan, Architecture of; Switzerlanl, Architecture of.)

Part I. The woodwork of the Romans is only known to us indirectly through the evidences contained in painted wall decorations, in such sculptured bas-relietis as occur on the column of Trajan, and more especially through the descriptions of Vitruvius (see, also, Choisy, op. cit., Chap. III.). Their vast erections of mortar masonry in rubble and brick, the remains of which are to us the chiel visible intications of their genius in construction, bave naturally so preoccupied our minds, that we are not accustomed to regard them as equally skil-

WOOD

ful in the production of more perishable, but probably harelly less important and interesting, work in timber and carpentry. The immense domains covereal by primeval forests which were added by conquest to their Bupire, gave them an abundance of timber, wheh they knew how to shape and use in loridges ime military works of great extent; and the detailed deseriptions by Vitruvius of the construction of his own basilica of Fano show, not only that they often used woul in the construction of their entablatures and epistyles, but were lamiliar with ditticult problems of ronf framing, and knew how to make them an effertive part of an architectural scheme. We have evilence also that a large part of their cities was originally of wood construction, and that even their pulblic monnments, such as amphitheatres and bringes, were primitively of this matorial ; and the temporary woolen eentrings, upon which their immense vaults and domes of masonry were built, could not have been framed and supported without a knowledge of carpentry at least equal to that required in the construction of visible timber roofs over their unvalited halls. It is probable that the general characteristies of these roofs survived in those ol the carly Christian basilicas of Pome, which were composed of a series of massive trussed rafters of the simplest character, with little or no attempt at decoration, sometimes left open and naked, and sometimes concealed by praclled ceilings with deep cutfers and embellished with carving and colour. It is evident that the constructive character of all these roofs was fundamentally controlled by the degree of inclination of the slope, which never materially varied from that of the classic gable. This traditional low indlination of the roof was maintained with no essential variation through the Romanesque periorl, until imperative exigencies of construction which developerl in the merlizval perionl, as we shall presently note, foreed the roof to assmine a steeper pitch.

But meanwhile, in Oriental comntries and in the states of North Africa, traditions much more ancient than those of Grecce or Rome created the flat or teracel roof, which remains the characteristic form in all regions where a hot and dry elimate prevails. This form necessitated a construction of wooles posts and horizontal beams supporting terraces of curth clay, tiles, asphaltum, etc., with parapets, the external walls alone being of durable and mommental material. In Syria, Egypt, and the Barbary States, in Spain, and in the Spanish colnies of America and the tropies, this persistent type still gives to the molern, as it rlid to the ancient city, its distinctive horizontal sky lines, broken only lyy the domen, the minarets, or campaniles of its religious lonihlings, and still upon the terraced rools the houschold life, as

WOOD

anong all Oriental proples, swarms to enjoy the coolness of the extaing.

Among the most rharacterintic forms of Roman constructions in wonl which survived through the lomanespue priml, pobahly with little change, were buildings framel with heary, sumatel timbers, sentrally of wak, the

WOOD

showing in relief against the plaster filling or bartuetting of the jounels, where these were not left olen for windows or latticed casements. In the cities these buldings were ofter: framed with the suceessire sturies overhanging those helow, with sulpurts of monlded corbels. These visille timbers were frequently richly earved

Wood, Constriction in, Part I., Fig. 1: Interior Hall of Ňusted Cuurt, Kent; 13th Centyry.
From the stone pillars there start uprisht, to support purlins, and diagomal braces which belp suphort purlins and also carry
 cept for the free use of diagonal braces this construction is sery unselentific, but heary timber and thick walls earry it throngh.
interstices being filled with some form of beton or coarse white plastering. This methoil of building in wool was brought to perfection in the half-timbered houses of the Widdle Ages (see Pau de Buis). It consisted of massive horizontal beams or plates bearing the floor framing, supported at frequent intervals by rertical posts and bracel with straight or curred braces. This framing was always visible,

With mouldings and chamfers wronght in the solid. The eonspicuous panelling thus formed was infinitely raried by the disposition of eurved or arched braces. Sometimes, especially in Elizabethan houses in England, these panels were formed in a succession of trefoils and other foliatell patterns or arabesques more or less eapricious, and the plastered or rough-east spaces between the timbers were often stamped,

WOOD

while plastic, with decorations of diapers or oruamental strap work (see Parget; Parget Work). The timbers were framed with murtise and tenon, the joints being fitted together with great precision and semired by mak pins, never by spikes or bolts. The ohl towns of Europe, up to the end of the Elizabethan era in England, were composed almost exdusively of half-timbered houses, the successive stories,

WOOD

Old Hall (see Cut II., (ol. 345) in Cheshire, of ten presented lramework of claborate decomation with wide hays filled with viscmant windows. Uften these structural frames were visille in the interior, and the floors, constructed of heary squared timber, were framed to form panelfed reciling*, firemently richly earvel. The conceatment of these structural frames by phaster and patelled wainscots or

Woud, Cunstruetiox in, Part I., Fig. 2; Mhisun ue homs Roybl; biet Ló, Flence.
crowned with gables, overhanging the narrow streets. Many of these interesting structures still remain in Rouen, Lisi»ux, Bruges, Uhn, Louvain, Antwerp, Brussels, Nuremberg, and Strasburg, on the Continent, and the commties of Salop, Chester, and Statlird, in England. The gables were often decorated with deep barge boards, profisely enniched and carved, and the corbelings were freftently wrought in grotesque forms. The Elizabethan half-timbered manor house, as, for instance, Moreton
ceilings in interiors, and by plastering, tiling, or other forms of eovering on the exteriors, rarely oceured before the elose of the sixteenth century, when the era of the Renaissance introlneed new ideals of arehitecture, in which structural deeoration ceasel to play a dominant part. Tralitions of honest carpentry in visible timbering lingered among the buiblers of Northern Europe even to the end of the seventeenth century. In fact, the vital energy of the medieval spirit, which developed a true arehi-

WOOD

WOOD
tecture from construction in stone, was hardly less successfinl in creating characteristic style from wookn framing.
liy far the most hrilliant demonstration of the mentiaval spirit in wool construction is exhibited in the framing of the ruofs. In Lomanesque and mediesal architecture the construction of roofs may lee divided into two rlasess: viz, thase which were intenderl to cower stone valulting and were unseen from below ; and those which were intemted to be visible and to form an essential part of the arehitertural scheme. In the later class may be im-lukel ronfs of which the structural supports are wholly or partly conceated by flat ceilings, often pauelled in woorl, as in the hasilica of S. Maria Maggiore, at Rome.

Nost of the Fiomanesque work remaining to us reveals the prencupation of the builders to recall in the roof structure the main characteristics of Romanesque stone raulting. This was accomplished in many cases by making the tie beans massire enough to support the feet of curved braces so disposed as to give, in the succession of the trusses, an arched eflect. The various members were decorated with chamfers, chamfer stops, and mouldings wrought in the solid, not applied, ann often were treated with colours, as in the restored basilica of S . Lorenzo fuori le Mura at Rome. As the proper function of the tie beam is not to bear weight, but simply to prevent the principals from spreading, this system was unstructural and was only practicable in roofs of small span. An example of this primitive and unscientific method is exhibited in many of the cuts given under Roof. In later constructions, especially in the great halls of feulal buildings, where the span was so considerable that it became impracticable, even with the resources of the rirgin forests at command, to make the tie beam massire enough to support the arched braces, which seemed to be indispensable to the medieval buillers, they made the roof much steeper, so that the archen braces could start more properly from near the wall ends of the tie beam, thus reliering that member and giving a wider span to the arch. It is apparent that the steep roofs of the thirteeuth century owe their origin in great part to this structural condition.

The next step in the erolution of the arched truss of the Mildle Ages was evidently suggested hy the fact that the extreme steepness of the roof, by reducing the tendency of the rafters to spread, rendered less necessary the tie beam connecting the feet of the principals; accordingly, in the latter part of the fourteenth century, the builders began to cut away the central part of the tie beam, leaving the two enls in the form of short horizontal beams projecting from the top of the wall. Iuto the outer end of this beam mas framed the foot
of the principal rafter; from the inner end sprang the great arched brace, the full development of which was the principal formative element in the thuss and beneath it a smaller arched brace, starting from a corbel built into the wall below, or from a wall shaft, enabled the bean to do its inmportant work of support. This member wats often carred in the form of a winged angel bearing an escutcheon. One of the boldest and most beautiful examples of this early use of the hammer beam occurs in the nave and transepts of the cathedral of Ely; and the English carried the system of hammer beam construction to its highest development in the fifteenth century. Important specimens of this characteristic English carpentry are in the roof of Eltham Palace hall, 36 feet span ; of Hampton Court, 40 feet span, anl of Westminster Hall, 68 feet span. The latter is an example of the boldest, most elaborate, and most heatiful carpentry of the Middle Ages. (See Plate XXXVI. : Hammer Beam, under Beam.)

The rovering of stone raulting with wooden roofs for protection from the weather presenterl to the carpenters of the Middle Ages a different problem. At first the protective covering was laid directly unon the opper surface of the rault, but on account of the rapid deterioration of the masoury through the infiltration of water, it was soon found necessary to build timber roofs orer them independent of the rault. The inconrenience of constructing these roofs with tie beams, requiring the building of the walls to the lieight of the crumn of the vault, soon became apparent, and the total abolition of the tie beam in such cases and the construction of a roof frame, which should enrelop the vault, and yet be independent of it, presented to the builders a practical problem which they proceerled to solve in rarions ways. Though the various devices employed to accomplish this object in coveriug the nave raulting of the great cathedral were sometimes, from the point of riew of molern carpentry, unscientific and clumsy, the buikers generally displayed great holdness, still, and practical efficiency in the work, anl they met the constantly varying conditions of the problem with an ingenuity which molern carpentry with its greater resumrces and experiences could hardly excel.

The distinctive methous of mood construction in the Oriental countries, in Seamlinavia, Russia, Switzerland, and the Tyrol, all derived from ancient traditions, are treated under the proper geographical terms, and under Châlet; Log House.

Since the Fenaissance the principles of the king-post and queen-post truss, as briefly described under Roof, have been indefinitely expanded and arlapted to an infinite variety of uses (see Cuts 1 and 2 under Roof). Elaborate 1116

WOOD, CONSTRUTTION IN, PART 1., FIG. 3: HOU'SE AT RIETH. SOLHD BLHIDING OF ROUAREH
 MHDLE OF THE GABLE WALL DENOTES A PARTYTHON. OUTSHDE SHUTTERS SLIDE HORIZONTALLY.

WOOD

and sometimes eompliatel variations of those types have been used in the wile spans of clumbes and publio halls, of theatres, markets, railway stations, and in Mansirnl roofs. Sir

Wond, Cushtruetion in, Part I., Fig. 4.
Christopher Wren and his followers in the eighteenth century showed great skill and ingenuity in adapting the principle of the king ur queen post truss to the framing of chureh roofs, in which the visible ceilings were flat, arched, or vanlted in phaster. A chararteristic example of these alaptations may be seen in the root of the church of S . Martin's in the Fithls, Westminster, designed by Giblos, and in the roof of chl Drury Lane Theatre, built at the close of the eighteenth century. The work of Philihert de l'Onne, named below, may lue consulted for information coneerning the characteristic carpentry of the French bulders in the sixteenth ceutury, their metherl of framing domes or curvilinear roofs, with rafters hilt up, with severaj thicknesses of shaped plauk and bolted or spiked together, being especially noteworthy for simplicity and strengtin.

In modern work constructions in carpentry are rarely usen in the trusswork of wide spans, framings of iron and steel being substitutel.

Choisy, L'Art de Buttir chez les Romains; Pliilibert de lorme, Juacelles Inrentions pour lion bûtir à polits Frais, Paris, 1bbl; Gwilt's Encyclopurdia of Arhiterture; Viollet-le-Duc. Dirtionmuire : Articles Charpente. Pan de Buis; Romielet. Truité de l'Art de Butir, 8th ed. 18:38-14...., anl supplement; Bütticher, Holzurchitectur Ifos Mitthitters; Sanders. Carren Duk in Humses and Furuiture ; see also Biblingraphy of Switzerland.

WOOD

WOOD, CONSTRUCTION IN ; PART II.
The luy homse of the early settlers of Nortlo America was, with the advance of civilization. succeeded ly massive framed constructions of squared ani hewn bak timber, following, as closely is the conditions of the New World would permit, the contemporary or recent tanditiuns of the mother combtry. These constructions gatve to the old rolonial domestic architerture of Anericat an aspect of dignity and permanence, not realily secured in the lighter, less spacious, ant more economical methorls of hailding which have sime been developet. In fact, the difference between the old and new methods is larsely responsible for a distinet evolution of style. This difference resulted mainly from the discowery that increased strength of construction conld be obtained with a far smaller expenditure of material and labor: thme, in Hoor construction especially, it was foum that far greater stability could he secured by using thin planks set on edge and regularly spaced as joists and connecterl by bridging, than was obtainel by our forefathers in their laborious and costly framed constructions of leary squared and hewn girders, supporting smaller squared tim-

 TURE WF A FiAME Hoter faced with Futr İ九hes of Brickwork as described in Text.
bers mortised into then at right angles six or eight fret apart, these spacings in turn being subdivided by still lighter squared scantlings, upon which complex the wide flooring boards of our ancestral homes found at last a fitirly substantial bearing.

WOOD

When the improwial matchinery of the sawmills began econnmiatly to ronvert forest timber into heary wantlings of any alesired dimensions fin sills, wimkers, posts, plates, purlines, and truss timbers: inte stuls 2 inches ly 4 inches and \because inches by 6 inches; into planks from ? to 4 inches thick and from 6 to 14 inches wide for joists aud rafters ; into inch boards of varions witths for the covering of house frames: into thin shingles for rools or walls; into clapboards or sidings for the outer covering uf walls alone : and into light laths to form a goorl key for phastering, - the buikers were furnished with an abondance of cheap material admirably adapted to ecmomial woolen structures, suited for every comlition and suate of living, for storage and shelter of every sort, inchuling even churehes and public buidings. As the system of constructim which was presently developed from these confitions imposed practically no limit of shape or size, and was very inexpensive, it wats more elastic for the expession of any caprice of the builters, or of any prevailing whim of design, than any other system known. But on the whok, though thus permliarly sulyject to architectural aberrations, and to temporary fashions, more or less whimsical and unreasonable, it has, through the efforts of trainen? architerts, Jecome so well disciplined by its application to conditions of comfort and use and decent living, that its results may be considered as an illustration of a healthy evolution of style consistent with an infinite variety in form.

The usual specifications for this structure inclucle a sill varying from 6 by 6 iuches to 6 by 8 inches, bedded solinlly near the onter edge of the fommlation walls, bolted or related together and pinned with oak pins at the joints and angles. Girders of various dimensions accorting to serrice, corresponding with the main divisions of the plan and crossing the area of the basement or cellar, are carried uron intermediate piers, or posts of brick or wool; upon these girlers and upon the inner edge of the foundation walls bears the frouning of the first floor, composed of joists 2 inches thick, and from 8 or 10 inches to 12 or 14 inches deep, equally spaced, and stiffenel every 6 or 8 feet by a brilging composed of narrow strips of wood, nailed erosswise hetween each pair of joists in continuous lines, to distribute the floor strains and to provide against the twisting of the timber. When the distance between bearings is considerable, these joists are dressed upon their upper elige in the form of a very flat rising curve to correct the level of the floor in the case of sagging. Where stairs or chimneys are to be provided for, the necessary openings in the floor fruming are made by enclosing the open area with heavier joists, those parallel with the common joists being called trimmers and those

WOOD

at right angles being called heuders, the latter being either framed into the former, or, preferably, hang to then lyy wronght-iren stirrups.

Flush with the outer edge of the sill ans tenoned into it are vertical posts, t inches by 6 inches or 6 inches ly 8 inches, extending the whole height of the walls. These occur at the cormers, and, where the character or extent of the plan reguires, at one or more intemediate points on each wall. It there is to be a third floor, the joists of the intermediate, or sceome, floor, which is framed practically like the first, but with such modifications in detail as the plan reduires, have their outer bearings upon the top of horizontal timliers, called girts, or perhaps more properly firths, which have the thickness of the frame (4 inches or 6 inches) and a deptly of 6 inches or 8 inches; these are mortised into the posts. The girts, which rum parallel with the joists, are in the best constructions set Hatwise and flush with the upper surface of the floor framing, projecting inward to receive the nailings of the ends of the flooring boards. The posts are comected at the top by a horizontal member, called the uall plate, 4 inches by 6 inches or 6 inches by 6 inches, the principal function of which is to receive the lower end of the sloping rafters. These horizontal and rertical members of the wallframe are bracell at all their intersections by diagonal braces tenoned and treenailed.

The main skeleton of the walls being thus obtained, the open spaces hetween the posts are oceupied by smaller vertical posts, called studs, 2 inches wide, and the thickness of the frame (4 inches or 6 inches) mortised at top and bottom, regularly spacel, set edgewise, and flush with the frame ; those for the first story are set between the sill and the girt, and those fur the second, between the girt and the wall plate. Similar vertical studs form the fromes for the interior partitions, each sturl being spiked at top and bottom to horizontal pieces and stiffened at one or more intermediate points by lines of bridging, composed of short pieces of sturds cut in between the rertical members and thoroughly nailet. Apertures for doms and winlows are framed by thicker or double studs at the sides and at top and bottom, the former being trussed when they bear weight.

The third floor joists for the rool chambers are often less deep than those of the first or second. Like the other joists, they hear upon the heals of the main partitions, but at their outer ends they hear either upon the wall plate, or, if more space is required in the third story under the lower part of the slope of the rafters, they are notcherl over the upper edge of a board about 6 inches wide, let Hush into the back of the outside studs a foot or more below the wall plate; this is callerl a lerlger boord or ribbon strip; it is nailed to each stud, and

WOOD

plays a rery important part in binding and stitfening the eutire fabric.

The spacing of thoor joists and studs, except whese cross furring is used (see below), is governed by the length of the laths. These are roughly sawn strips, about $\frac{2}{8}$ or $\frac{3}{8}$ of an inch thick, $1 \frac{3}{8}$ inches wide, and 4 feet loug, set about half an inch apart, so as to afford a key for the plaster to hold by. They require each either four or fire nailings, the former calling for a spacing of joists or studs 16 inches on centres, and the latter, 12 inches on centres. They are nailed to the inner surfaces of the outsile studs and to both surfaces of the inside or partition studs, to receire the wall finish, and to the under surface of the joists, to receire the ceiling finish; but in the better class of work, cross furrings, composed of strips of $\frac{7}{8}$-inch boards, about $1 \frac{1}{2}$ inches wide, are first nailel to the under side of the joists and rafters, and at right angles to them, to corrcet irregularities of lerel, and these receive the lath nailings. The thickness of the lathing and plastering is from $\frac{3}{4}$ to $\frac{7}{8}$ of an inch. In order that the surface of the plastering may be true and level, it is worked to grounds $\frac{3}{4}$ or $\frac{\frac{7}{8}}{8}$ of an inch thick, respectirely placed at points to be corered by the interior wood finish.

Roofs are framed with rafters 2 inches wide and from 6 inches to 12 inches dcep, according to service, and generally 20 inches ou centres, having a bearing at bottom upon the wall plate, and at top, for simple constructions, against a ridge pole, which is often formed by an inch hoard ; or, if the character of the design is such as to require a roof of double slope, the upper ends of the rafters are notched to support a curb, or upper plate, 6 inches to 8 inches square, upon which rests the joists of the flat or upper roof slope. The hips are generally constructed with timber 2 inches to 4 inches thick, and somewhat deeper than the rafters.

The dormers are framed with light studs or rafters spiked to the rafters of the lower roofslope, which are doubled or increased in size at all roof openinge.

The stability of this light cagelike structure depends, not only upon the mortising together of its principal members, with thorough nailing and spiking, and pinning at all the intersections, with bracing as described, and with the effective stiffening secured br the construction of its floors, - but also upon an enrelope of rough boarding or sheathing, $\frac{7}{8}$ of an inch thick and from 6 inches to 10 inches wide, generally tongued and grooved together, which is nailed orer the entire outer surface of the wall framing, orer the upper surface of the rafters for the roof closure and of the joists for the flooring. This sheathing is sometimes applied diagonally to the surface of the frame to afford greater stiffness and stabilitr. Often the rafters, in-

WOOD

stead of being covered with close boarding, receive narrow strips, spaced so as to afford nailing for the shingles, which, by this method, hare the adrantage of rentilation from beneath, and conseqnently greater security against decay.

The exterior finish, or siding, of the walls, is composed of narrow boards, called clapboards (see Clapboard; Weather Boarl), which are sawn and planed by machinery to a thin upper edge and a thick lower edge, and nailed horizontally through the rough boarding or sheathing to the studs, orerlapping in successive regular courses, and showing from 4 inches to 6 inches to the weather; or of sidings (see Siding), which are regular courses of boards planed with a bevel at top and bottom and tongued and grooved together ; or of rettical boards nailed to horizoutal pieces cut in between the studs at each beight of 2 feet, the joints being corerel br narrow berelled battens, hollowed slightly on the under side to secure closer joints ; or of shingles showing from 4 inches to 6 inches to the weather, sonnetimes of equal widthe, and laid in patterns or shaped with tools in the form of tiles or scales.

All this exterior finish is laid orer stout weatherproof building paper, thoronghly lapped and nailed, sometimes in two or more larers, over the entire surface of the sheathing hoards. The same treatment is applied under the shingles of the roof. Sometimes the whole frante is filled in with bricks laid in mortar between the studding ; or it receires a closure of back plastering laid upon laths cut in between the studs; or a double system of lathing and plastering is used, the first being secured to the back of the studs, and the second to a system of furring pieces nailed through the first plastering and coinciding with the studs. By any of these systems a warm weatherproof house is obtained.

The mouldings of the exterior cornices, string courses, window and door frames, etc., are wrought out of boards and thin plank at the planing mills, where they are often kept in stock, and, with the assistance of furrings, can be put together so as to obtain any desired effect of solidity, or to meet any of the conventional exigencies of design. Thus most of the more important decorative projections are hollow and made of thin stock, not wrought in the solid like the timber work of medieval constrnctions. Columns, with all the appearance, but none of the realitr, of solidity, are built up with glue upon furring pieces around a hollow core in forms following classic, medieval, or any other formulas. The turning lathe contributes its share tn this phantasm of architecture, and balusters, rases, spinlles, and finials of any desired shape and in any desired quantity can be cheaply obtained at the moodworking factories.

For this characteristic system of obtainiug

WOOD

WOOD

decorative effects in wool construction some pratical advantages are reasomably claimed. In the climate of America, dry and wet by tums, a solid timber construction would not only be costly, lut would he sulject to twists, cracks, checks, and interior decay; while the better ventilated hollow ind firred ronstruction, when kept well protected by paint and by thashings of tin or zinc on its weathered parts, withstands the vicissitules of time for indefinite periots. The facilities of the planing mills have tempted the buider to many unfruitful experiments in design, to many imitations of forms never intended to be expressed in woud, and to many mspeakable inventions of more vernacular type.

When the production of nails was cheapened by machinery, and cut nails of steel and iron and mails made of wire conld be furnished of excellent quality anul at a cost much less than the old-fashoned wronght-iron nails, the laborious and comparatively expensive methol of house framing with mortise and tenon began to be supplanted by a more economical system rependent entirely upon the efficacy of nailing. This involves the complete abandonment of braces and girts and mortise joints, and the substitution of long studs extending continuously throngh two, or even more, stories from the sill to the wall plate, the second and third floor joists being luotched over thush ledger boards or ribbon strips let into the back of the studs, the whole system being secured by mails at every point of junction, ind made stable by the mailing of covering or sheathing boands over the outside of the wall, studs, and rafters, and by the nailing of floming boards over the joists. This is called Batloon Framing (whirh see).

The estabhished merchantable lengths of joists and studs exercise a marked influence over the ordinary shape and size of the balloon-framed buikding, as "cutting to waste" is repugnant to the principle of coonomy on which this system is founded. This structure, though cheap, apparently frail, and suited only to temporary or provisional purpuses, has been found by experience to be stable against ordinary wind pressure, and to afford at least as safe, as comfortable, am] as commodious a shelter as any other construction of its class iml grade. Indeed, it is clained by Western buiders that balloon framing, as it has fewer points for dislocation and no mortise holes smbject to rot, is a more rigid and permanent structure than any dependent upon girts, timber braces, and mortise framing.

In the development of these systems it must be recognized that certain new and distinct ideals of design, in strong contrast to those evolved from the half-timbered buildings of the Old World, as described in Woonl, Constrmetion in, Part I., have gradually grown ont of these peculiar eonditions of structure. Con-
spinuous among those is an irleal of neatness, a medhanical precision ind workmanlike cleanliness and siflareness of outline and smoothness of surfive, elinninating to some degree many of the pirturespue accidents of effect and mach of the suftuess and romuluess of outline, which have been derived from other conditions of material and are associated with all Ohd Wiold traditions which we have inherited and which we almire. It has been a part of the duty of the American architect in some way to elevate this new, uncompromising eondition of structure into is virtue of design.

In the wooden buitdings of the Old World, as imlicated in Part I. of this essay, the timber frame is commonly visible, and is vitally essential to their expression as works of architecture. In the wouten bnildings of the New World the frime, by a purely scientific and reasonable process, is reduced in dignity of proportion and use. As in the high commercial buikdings of modern America, the light steel frame, which dues all the work, is nevertheless necessarily conceatert under a thin protective envelope of masonry, so in the wooden buildings the light timber frame must be covered by a thin sheathing of wood. Both systems are thens deprived of the moble privilege of treating the frame as architecture, and are constrained to elevate the mere integument to this high function. Under this important limitation the wooden buildings of the United States must Ilepend for arehitectural eflect upon the disposition of masses and outline, upon fenestration, upon the wide porches, verandas, and loggias, which the conditions of elimate and of social life invite, and more especially upon the texture and colour of the surface. In the effort to obtain reasonable variety in this latter respeet, the board sheathing, instead of being covered by claphoarils, sithings, or shingles, - by each or all of these weatherings sometimes in the same building, repuiring staining or painting, and thas introdueing contrasts of artificial colour as a vital element in the derorative scheme, receives sumetimes a veneer of one thickness of brickwork, or a thin ashtar ficing of stone, baid upon a letge of the foundation, and secured to the boarling throngh its covering of sheathing paper by nails driven in the joints of the masonry ; a permanent structural colomr is thus given to the exterior, and a more effectual closure secured. This device, though of contse open to certain palpable objections as a base imitation of real masonry, a deceit, and a vain pretence, is not withont its defensible points. The veneered buitling is a comfortable buitding to live in, it dispenses with the necessity of paint, substitutes a natural or structural colour for an applied colour, it entarges the scope of design, esperially when combinet? with a second story covered with wood finish painted
or stained, and it aflords another example of the audarity with which any nes device of method, appliance, or material, which may commend itself to common sense for economical or practical reasons, is mlupted, however revolutionary may be its comseguences.

Gence Collingx. Cimular W"ork in Carpentry and Juinery。 "Practicul Treatise on Circular Howk af vingle and Irouble Curature. London. 18:W. 1 vol. sro; Rout Carpentry Practical Lessens in the Froming uy Wuad Reots fiar the
 vol. 1:ino ; John Thomas Ilurst. Elementar! Prinriphes of Carputry, 8th ed.. London, 18:2?. 1 wol. 12m. : James Newlands. The Carpenter and Jointres -hssistant. London, 1-to.

- Hexry Vas Brent.

WOODHOUSE. An outhouse in which firewuml may be stored tor use.

WOODWORKING MACHINERY. Power machinery for shaping and finishing wood. It includes sawing and turning machines of every description, planers, moulders, jointers : loring, mortising, and tenoning machines; sauders, filers, aul pulishers: machines for the manufacture of flooring, boxes, sashes, blinds, and doors, and panelling of all sorts : and combination machines called universal woodworkers, adapted for a great variety of carpenter's work, formerly done entirely by hand.

The substitution of machine labour for hand labour in every department of industry has had much to do with the increase of material prosperity during the nineteenth century. It has given to the people many things essential to their comfort and well-being, which, under the old conditions of hand labour, would have heen far out of their reach. It has giren them food for mind and body, clothing, easy transportation, and decent shelter. To the last. woodworking machinery has largely contributed in supplying them with cheap timber, cheap shingles and sidings, cheap flooring and iuterior finish, cheap sashes and doors. Thus, the same class, whose fathers a century ago lived sordidly and meanly, but picturesquely, in tbatched cottages of one or two poor rooms, with latticed casements, mud fioors, and rough walls rudely plastered or whitewashed, now finds itself decently installed in houses which, though often hard and square in ontline, basely mechanical in detail, and with but few elements of grace or beautr, at least afford them spacions. comfortable, if not luxurious. lodgment. entourage clean and decent living. and a mholesome self-respect. But while roodworking machinery in general has thus accomplished large results in increasing the sum of buman happiness, this facility of production has had a tendency to create a cheap architecture of imitation, pretence, and show - a tendency which has presented serious obstacles to the development of forms of art properly
adjusted to these difticult mechanical conditiuns: for it has beeu prored by a thousand failures that the old ideals, based upon hand labour, and upon an unscientific and prodigal use of heary timber. cannot do honest service in modern, economical wood construction.

- Hexry Vas Brext.

WORKHOUSE. A house in which work is cartich un ; especially a house in which ablebodied paupers or vagrants are compelled to work: a porhonse.

WORKING DRAWING. A detail drawinge, made either to a ratier large scale or at full size, extribiting the structure of the whole or a part of a building, so as to form a suide for the workmen in the actual construction of the object so representer].

WORKING STRENGTH. (See Strellgth.) WORKMANSHIP. i. The skill of a workman as shown in his work.

I3. The quality imparted to anything made by uan by the actual process of its making ; the character given to it hy the work put into it, apart from the excellence of its material or the value of the original conception. The workmanship oft an object may be fine, although its design, in an artistic sense, or its planning, shape, ur arangement may be rery lad. Workmauship may eren be noticeally good in a thing which is not solidy put together or likely to be permanent; this, a piece of buiding may be so badly conceived by the engineer or buidder who planned it, that it will not stand long, and vet the workmanship, as of stonecutting, joinery, and the like, way be excellent. Goorl workmanship of certain kinds can generally be had by demand backed ly willingues to spent money, especially if this is long continued: thus, no better workmanship is to be found anywhere in countries of European stock then in the house fittings, furniture, and the like, of wealtly Englishmen, that class haring been, for many years and until glite recent times, much the most freely spending class of people in Europe. Houses in London. and country houses built under the same general infiuences, fifty years ago as now, wonld show floors of such perfect level, and doors so perfectly bung that saddles might be dispensed with: it was quite common to see the carpets brought into the recess of a door and fittell together edge to edge without any break in the unifornnity of the level; the doors swinging easily. grazing the pile of the carpet. but never pressing it, and shutting perfectly true, the bolts of the latch and lock going lome without noise or shock. The decorative woodrork of the same house, that which was fitted to the house, and that which was put into morable articles alike, mould be perfectly jointed and truly worket, the mitres faultless, the mouldings worked with absolnte 1128

WORKMANSHIP

uniformity. Aml yet all this would be found in a house whose seemingly raulted roofs in the halls, etc., were the merest shams of wood and plaster, whose external roof had no gutters overhanging the walls, but shet off the water of rain and slow into lead gutters, whiels at every moment threatened the interiors of the house with the results of leakage, and whose flues threatened, and sonetimes not in vain, to allow the ignition of the woolea strueture near. This means that all the workmanship which the owner and his family and their guests were in the way of secing was very perfect, whereas that which they disregarded, belonging to a elass not greatly interested in architecture or bnilling of any sort, was negleeted, being kept in working order by constant repairs. In France, on the other hand, the building is of much greater solidity: stairs of stone, hand rails of wrought iron, floors without wood, and wholly ineombustible; nothing to shrink or settle ; the vaults of cellar or corritor, or, in a church, of the nave and aisles, all of solid masonry; and yet the sash and doors do not always fit tighttly, nor is there as uniformly neat an aspect given to interior work.

In its largest sense, workmanship ineludes selection and care of material. Thus, it is proper to say that no pieces of workmanship known to us are more perfect than fine Japanese laequers, for the boxes, trays, dwarf writingtables, and eabinets of drawers, which come within that eategory, were made with a lavish employment of time and patience in the preparation, by the father, of the wood which not he, but his sons, wouht ent up and utilize, the most extraordinary preeautions taken in the way of seasoning the wool, and eansing the drying of the varnish to go on slowly and at a measured rate. Material in this sense is not perfectly good until workmanship in a certain sense has been applied to it ; but the workmanship which the eollector knows best is that of the laying on of the external eoats of the varnish, and the staining, painting, inlaying, and applying of other materials in which the decorative design of the pieee is conveyed.

In arehiteeture, eare is to be taken not to allow gooll workmanship to be mistaken for that which merely appears delicate; thus, it is a very common fanlt in modern building to demand that brickwork shall be laid up with very thin joints - whereas every brickmason knows that thin joints mean bad work. Good workmanship is as possible, and good lutidling is far more easy, with joints $\frac{3}{4}$ of an ineh thick than with invisible ones. So, in cut stone faeing, the smooth slabs of stone set on elge which are eommonly considered neeessary to the finished look of a street front are not nearly as goorl building as if the same stone were laid upon its quarry bed, with the result that the

WREN

whole would be less uniform in eolour and less absolutely smooth in appearance; but workmanship may be equally good in either case.
-R.S.

WORKSHOP. An atelier ; a place equipped for the carrying on of any specific work, whether mechamical or artistie.

WORONICHIN, ANDREI NIKIFOROWITSCH ; architect ; h. 1760 ; d. Mareh 5, 1814 (in Saint Peterskurg).

He studied at the Acallemy of Saint Petersburg, and was sent by Catherine II. to Germany and ltaly. In 1791 he was appointel arehitect to the court of Saint Petershurg. His most important work is the chureh of Notre Dame in Kasan, Saint Petersburg. He built numerous palaces.

Seubert, hünstler-lexicon.
WORSHIP MOUND. (See Mound.)
WOTTON, SIR HENRY; poet, diplomatist, and writer on architeeture ; b. March 21, 1568 ; d. Dee. 5, 1639.

The brilliant Elizabethan poet and diplomatist represented England in Penice for twenty years. On his return to England in $152 t$ he prepared a tract on arehitceture, The Elements of Architecture, collected by ILemy Wotton, Kinight, from the Best Authors and Examples. The book seems to have been first published in 1651 in the colleetion of Wotton's miscellaneous productions, with a sketch of his life by his friend Isaak Waltun. It is based on Vitruvius and the ohd ltalian writers. It has many quaint and interesting practical suggestions. A reprint was issuect in 1901.

Builder, Nov. 24, 1883 , p. 677.
WREATH. A. A twisted band, garland, or chaplet made of flowers, fruits, leaves, or other material, or representing such material, often used in decoration.
B. The enrvel portion of the string or hand rail which follows a turn in a geometrical stair. In plan, a wreath usually follows the curve of a quarter-circle, and therefore corresponds to a portion of the surface of a vertieal cylinder.

WREN, SIR CHRISTOPHER; arehitect and astronomer; b. Oct. 20 , 163:2 (at East Knowle, Witshire, England); d. Feh. 27, 1723.

He was a student at Oxford (B.A., 1650, M.A., 1653), and afterward a fellow, and in 1660 was appointed Savilian Professor of Astronomy in that university. Ilis scientifie work was known throughout Europe. He was an original member of the Royal Society at its foundation in 1662, and was elected president of that body in 1681. Having gained a great reputation as a mathematician, he was consulted in arehitectural matters during the confused tines of the Restoration. In 1661 he was made a member of the commission in charge
of the restoration of old S. Paul's eathedral in London. The first building which Wren actually designed and superintended was the chapel of Pembroke Hall, Cambridge. He began the fine library of Triuity College, Cambridge, in 1676. His Sheldunian Theatre at

Wren, Sir Christopher: steeple of S. Mart-LE-BOW, 1677.
Oxford was opened July 9, 1669. He risited Paris in 1665 and met Bernini (see Bernini), then occupied with his design for the factade of the Louvre. Wren never visited Italy. The Great Fire of London occurred Sept. 2, 1666. Immediately afterward Wren made a plan for the reconstruction of the burned district, which

WYATT

was not followed. He also began to make designs for the reconstruction of S. Paul's cathedral, which had been burned, and in 1673 was commissioned to prepare the fine model which is now in the South Kensington Museum. This model, being in the form of a Greek cross, did not satisfy the ritualistic tendencies of the court, which required a long nave for processions. A tlesign in the form of a Latin cross was finally accepted Dlay 14, 1675. The eathedral was hegun on the site of the old cathedral, and finished in 1710 . It was paid for by a tax on the coal brought to London by sea. The " Monument " in commemoration of the Great Fire was begun by Wren in 1671. In 1675, with the assistance of the Astronomer Flamsteed, he built the observatory at Greenwich, London. About 1695 he took charge of the reconstruetion of the old Greenwich palace, and was instrumental in lhaving it transformed into a scaman's hospital. The double colonnade of coupled columns at Greenwich is one of his finest works. Wren repaired the spire of Salishury cathedral. He began the construction of Chelsea hospital in 1682 . He made a fine design for a mansoleum to Charles I. whieh was not executet. On the accession of William and 1lary in 1689 he began the enlargement of Hampton Court palace, one of his most characteristic works. In 1708 the erection of fifty new churches in London was ordered by act of Parliament. Wren actually designed fifty-three. Of these buildings ten have been recently destroyed. Among the most important of those still standing are S. Mary-le-Bow, S. Stephen, Walbrook, S. Bride, Fleet Street, S. Lawrence, Jewry, S. Michat, Cornhill, etc. He sat in Parliament for many years. There is a colleetion of his drawings in the library of All Souls' College, Oxford.

Wren, Parentalia; Loftie, Inigo Jones and Wren: Elmes, Sir Christrpher Wren; Lucy Philimine, Niv Christopher IIren; Stration, Sir Christupher ITren: Longman. Three Cathedrals of St. Peut: Macmurdo, Hren's City Churches; Claytun, Churches of Sir Christopher Wren; Taylor, Tomers and Streples of Sir Christmpher Wren; Law, Humpton Court Palace; Blomfield, Renaissance in England; Dugdale. St. Paul's Cathedral.

WROUGHT IRON. (See Metal Work.)
WYATT, JAMES ; architect; b. Aug. 3, 1748 ; 1. Sept. 5, 1813.

A brother of Sammel Wyatt (see Wyatt, S.). Wyatt was taken to Rome at the age of fourteen by Lord Bagot, ambassador to ltaly. He studied also for two years in Tenice with Visentini. In 1700 he made considerable reputation by adapting the old Pantheon in Oxford Strect, London, for dramatie performances (burned 1792). Working originally in the classic style, he afterward imitated Gothic architecture, and built in that style Fonthill Abbey, Wilt-

YBL
shire, for ${ }^{W}$. Beckford, and other important works. March 16, 1796, he was appointed surveyor general and comptroller of his Majesty's office of works, succeeding Sir William C'hambers (see Chambers), and held that office until it was dropped in 1815. He was mate a member of the Royal Acmlemy in 1785, and temporary president in 1805. He built the royal military academy of Woolwich, and restored Salisbury and Lincoln eatheitrals.

Redgrave, Dictionary of -Irtists; Arch. I'ub. Soc. Dictionary; Dict. of Vational Biography.

WYATT, JEFFREY. (See Wyatville, Sir Jeffrey.)

WYATT, SIR MATTHEW, DIGBY; architect; b. July $28,18: 0$; d. May $21,1877$.

The youngest som of Matthew Wyatt, an English barrister. In 1844-1816 he travelled on the Continent. He was secretary of the executive committee of the great exhibition of 1851 , and assisted in making the plans for it. In 1855 he was appointed surveyor of the East India Company. He was honorary secretary of the Royal Institute of British Arrhitects from 1855 to 1859. Wyatt published 10 Architect's Note-book in Spuin (London, 187:., 1 vol. 4to); Specimens of (omumental Irt Workmanship in Gold, Silcer, Iron, Broess and Bronze from the Tuelfth to the Nineteenth Centriries (London, 185.2, large folio) ; Specimens of the Geometricul Mosaic of the Middle Ages (London, 1848, folio), ete.

Arch. Pub. Soc. Dirtionary; Arery Architectural Library, Cetnlogue.

WYATT, SAMUEL ; architect; b. Sept. S, 1737 ; d. Feb. 8, 1807.

An elder brother of James Wyatt (see Wyatt, J.). In 1782 he was employed at Somerset House, London, under Sir William Chambers (see Chambers). He built numerons residences in England, and March 5, 1792, was appointed clerk of the works at Chelsea hospital (London).

Redgrave, Dictionary of Artists ; Arch. Pub. Soc. Dictionary.

WYATVILLE (WYATT) SIR JEFFREY; architect; b. Aug. 3, 1766 ; d. Feb. 18, 1840.

His name was originally Wyatt, a son of Samuel Wyatt (see Wyatt, Samuel). He exhibited at the Royal Acarlemy atter 1786 , was ereated assoeiate in 1823 , and royal academician in 1826 . From 1784 to 1799 he worked with his father and his uncle, James Wyatt (see Wyatt, J.). In 1799 he went into partnership with a builder and engaged in extensive government contracts. He enlarged Wollaton Hall, Nottinghamshire (1804), Woburn Abbey, Belfordshire (1818-1830), Chatsworth in Derbyshire, and other residenees. From 1824 until his death he was architect in eharge of Windsor Castle. He completed the quallrangle and stairease of George I11., rebuilt
the Brunswick Tower, ete. August 12, 1824, his nane was elanged to Wyatville by royal license. December 9, 15: His Illustrations of ll"indsor C'rsitle, edited by Henry Ashton, was published in 1841 (2 vols. folio). A list of his works is given in the Architectural I'ublicution Soriety's Dictionatry.

Redgrave, Dictionary of Artists; Arch. Pub. Soc. Dictionary.

WYND. In Scotland, an alley, a lane; especially a narrow alley in a town forming a passage from street to street.

X

Xaintes. (See Isenbert de Xaintes.)
XAMETE; sculptor and architect.
An inportant master working in Spain in the early sixteenth century. In 15.37 he made the candelabra of the Capilla de la Torre in the cathedral of Toletlo. He also executed the fine portal of the cloister of the cathedral of Cuença.

Bermudez, Diccionario.
XAT. A carved post in North American Indian art. (See Canada, Architecture of.)

XENAIOS ; architect.
The walls of Autiochia in Asia Minor were built under his direction when that city was founded by Selenkos in 296 в.c:

Brunn, Greschichte der !rierhischen Kïustler.
XENODOCHEUM ; XENODOCHEION.
In elassic architecture, a room or luilding devoted to the reception and accommodation of strangers or guests.

XYST : XYSTUS. In Greek and Roman architecture, a long covered portico for exereise in bad weather. In Roman villas, a garden walk or avenue planted with trees. Vitruvius ($\mathrm{V} ., 11$) says expressly that the Romans had misapplied the term in the latter sense.

Y

YALI. A Turkish summer mansion. (See Konak.)

YAMUN. The oftiodal residence of a Chinese mandarin: also, the ottiee or court where a mandarin transacts the business of the department under his care.

YARD. A. A piece of enclosed gromed of moderate size, espocially one adjoining a residence; as in the terms, front yard, dooryard, barnyard, inn yard.
B. An enclosure for labour and trattic; as, briekyarl, Woodyard, stockyarl, dockyard, railway yard, vineyard.

YBL. NIKOLAUS VON; architect; d. 1891.

A distinguished architect of Hungary. He was a pupil of Pollak in Pesth and after-

YELLOW METAL

ward of Giartner (see (iairtner) in Munich. He wat constantly engaged on important works, was raised to nohle rank, and made a member of the muner house of the Hungarian Parliament.

American Architert, Vol. XXXI., p. 1:30.
YELLOW METAL (called also Muntz's Metal.) An alloy of three parts of copper and two of zinc, malleahle when hot. It has taken the place of copprer for sheathing, becanse cheaper and more casily rolled.

YILDIZ KIOSK. (Sec under Kiosk.)
YOKE. The horizontal piece fomming the hearl of a frame for double lumg sash.

YOURT. A term sometimes applied to the permanent or winter honses of the Alaska Eskimos and Aleuts. (Sce Ighr.) Also any house or lant of the natives of Siheria. (Written also yurt, youret, yourta, jurt.)

YRIARTE, CHARLES; editor and writer on art ; 4l. April $7,1898$.

He was ellitor in chief of Le Momle Illustré in lintis, and puhlishel many important works on the Italian Renaissance, Foosence, Jenise, P'ul Jéronèse (in Less I Iotistes célebres); Matteo Civitale (I'aris, 188 (i, folio); La vie d"un putricien de I Temise an 16" Siecle (Paris, $187 t$, 8ro); (he Condottirne an $\mathrm{XI} \mathrm{I}^{\text {e }}$ siecte, Rimini (I'aris, $188=2,4 t 0$); cte.
A. Kïmpfen in Chaz. a. Bearex Arts (1898, Vol. 82).

YUAN MING YUAN. The summer palace of the emperor of China, which was phundered amb partly elestroyd, with immense destruction of precioms artistic treasures, by the French and British invarling army, 1860 .

YUCATAN, ARCHITECTURE OF. (See Mexion, Architecture of, l.)

YURT. (See Yourt.)

Z

ZACCAB. An earth used in ancient and modern times by the natives of Yucatan as stucro, plaster, etc. It is mixel with lime in phace of sand. The colom is white, and it occurs abundantly in pockets. The cement used by the ancient Mayas is said to have been composel of one part slacked lime to two parts zaccab, but it is doubtful if they understood the proress of making quicklime. (See Memoirs Peabody Muserm, Yol. I., No. 3, E. H. Thompson.) -F. S. D.

ZAHCAB. Same as Zaceab.
ZAMPIERI, DOMENICO (DOMENICHINO) ; painter anl architect ; b. 1581 (at Bolorga) ; d. 1641 (at Naples).

The celebrated painter, Domenichino, was much employed in the construction of villas. He assisted at the Tilla Negroni, Rome, and designed the Villa Belvidere at Frascati and the

ZOOPHORIC

Villa Ludovisi in liome. His most important architectural undertaking was the design of the chmech of S. Ignazio in lame (begun 1626).

Gurlitt, Geschirhto des larwekstiles in Italien; Ebes, spüt-Roruissunce.

ZANTH. LUDWIG VON; architect; b. about 1798 ; ॥. Get. 7, 1857.

He was educated at C'assel, Germany, and l'aris. After 1810 he was associated with Hittorff (see Hittonft), and in ls?3 went with him to Sicily. They published tugether A lrokitedure autique de la Nicile (Paris, 18:5, folin); and Architecture moderne de lu Sicile (Pinis, 1835, folio).

Areh. Pub. Suc, Dictiontery.

ZAPOTEC ARCHITECTURE.. (See Tzapoteco Architerture.)

ZARCELLO Y ALCAREZ, FRANCISCO; sculptor ; b. May 1:', 1707: 1. 1781.

His father, Nicolas, also a senlptor, came from Capua (Italy) to Murcia (Spain) at the end of the seventeenth contury. After making a statue for the Dominican church at Murcia, Fraucisco went to liome to study. Returning to Spain, he marle the statues of the Spanish kings which derorate the new palace, Matrid. He finally settled in Murcia, where he fumded a school.

Bermudez, Diccionario.
ZAX. An implement used for cutting and pressing slates. It is msually a kind of hatchet, with a sharp point on the pole for perforating slate to receive a nail or juin.

ZECCA. In Italian, a mint; of especial interest is that at Venice, behind the library of S. Mark and fronting on the sea : the work of Jacopo Sansovino, and built about 1536.

ZEHUTER, HEINRICH. (See Egl, Andreas.)

ZENANA. In Inlia, that part of a house in which the women are secluded ; an East Indian Haram.

ZETA. A closed or small chamber ; a room orer a church porch where documents were kept.

ZIEBLAND. GEORG FRIEDRICH; architect: b. Feb. 7, 1800; d. July 2f, 1873.

He was sent to Italy by the king of Bararia, and on his return was charged with the design and construction of the hasilica in Munich.

Raczynski, L'Art mulerne en .tllemayne.
ZIGURAT; ZIKHURAT. A stepped pyramid, as in the sacred architecture of the people of Western Asia in anticuity. (See Mesopotamia, Arehitecture of : Temple.)

ZIGZAG (adj.). Making short and sharp turns; in architecture said especially of the mondings in arched door heads and the like of Romanesque style. (Sce Bâtons Rompus.)

ZOOPHORIC. Carrying the figure of an animal.

ZOOPHORIC COLUMN

ZOÖPHORIC COLUMN (or PILLAR). A pillar supporting the figure of a beast, usially symbolical, like that which carries the Lion of S. Nark in the Piazzetta at Venice, and the similar one in the Piazza Signoria at Verona. Stueh columns were set up by the Venetian Lepublic in some, at least, of the eities subject to its rule.

ZOOPHORUS; ZOPHORUS. A representation of living things: in classical archapology, a frieze or other band or panel filled with hyrures of men amd animals; stteh as the cella frieze of the Parthenon.
zOPF STYLE. (See Pigtail and Periwig stylu.)
zOTHECA. A. A niche or alcove.
I). A living room or day room as opposed to a sleeping room or tormitory.

Z PLAN ; or Z-SHAPED PLAN. A plan composed of three wings joinel somewhat like the letter Z. Oceasionally used in hospitals to obtain eartain advantages of appect.

ZUNIAN ARCHITECTURE (pron. Zoon'. yee-an). That of the Zunii Indians of western New Mexico. The Zuniis are Pueblos, and their architecture is the same as that of the other tribes of this class. (See Adlobe; Commonal Dwelling; Kiva; Pueblo.)

ZWIRNER

ZWINGER, In ohl German, a fortress or strong place in or aljoining a (ity; also an outer court or Balley; a popmar term, from which, by extension, comes the mondern mane of several palaces, or parts of palaces, in Grman cities. That at Uresten is a very important and interesting specinen of the florid style of the eighteenth eentury:

ZWIRNER, ERNST FRIEDRICH ; arthi-
 C(llogne).

He stutied architecture in breslan in 1821, and with Schinkel (see Schinkel) in Berlin in 18.2. He devotel himself experially to the revival of Gothic architecture in Germany. In 1833 he was appointed inspector of the construction of the eathedral of Cologne, and in 1853 architect of that huilding. The completion of this work was largely due to his eflorts in interesting the people of Germany, and expecially Freidrich Wilhelm IV., king of Prussia, in it. Many leading Cerman arehitects were educated by him and assisted him in his work. Zwimer built also the castle of Herdringen (1844-1852) for the Count of Firstenberg, the church of S . Apollinaris at Jamagen, near Bomn, etc.

Seubert, Fünstler-lexicon.

BIBLIOGRAPHY

Titles of most of the books consulted in the preparation of the Dictionary. Those from which illustrations have been drawn are indicated by an asterisk.

The reader is reminded that a elassification of the titles is furnished by the separate bibliographies throughout the Dictionary.

The articles named below have been illustrated, wholly or in part, from original drawings or reproluctions of drawings.

Apartment Ilouse, drawings fumislied by author and by Messrs. II. J. Hardenbergh and Ernest Flagg.
Arch (Figs. 1 and 3), drawings furnished by autbor.
Bath Ilonse, drawing furnished by althor.
Bath 'tub, drawings furnished by author.
Brace, drawing furnished by author.
Cliff Dwelling, drawings furnished by author.
Club llouse, drawings furnished by Messrs. McKim, Mead \& White.
Figuring, drawings furnished by author.
Germany, drawings furnished by anthor.
llonse Drainage, drawings furnished by anthor.
Lath, drawings furnished by Bostwick Steel Lath Co., Niles, 1 .
Log Ilouse, drawings furnished by author.
Masonry, drawing furnished by anthor.

Mexico, drawings furnished by anthor.
Oftice Building, drawing furnished by Mr. Bruce Price.
Parallelogram of Forces, drawing furnished by anthor.
Pendentire, drawings furnished by author.
Polygon of Forces, drawing furnished by anthor.
Pot Chimney, drawing furnished by author.
Round Tower, drawing furnished by author.
Shoring, drawings furnished by anthor.
Synagogue, drawings furnished by auther.
Tenement Ilouse, drawings furnished by author.
Tipi, drawing furnished by author.
Yault, drawings furnished by anthor.
Ventilation, drawings furnished by author.
Wickyup, drawing furnished by anthor.

Abel, Lothar.
Asthetik der Gartenkunst. Vienna, 187.
Ackermann, Rulolph.
History of the L'niversity of Oxford. London, 1814.

Adam, Robert.
Ruins of the Palace of the Emperor Diocletian at spalatro in Dalmatia. 1764.

Adamy, Rudolf.

Architektonik des Muhamedanischen und Romanischen Stils : forms a part of Architektonik auf lli-torischer und Aesthetischer Grundlage. ILanover, 1883-1889.
Addy, Sidney Oldall.
The Evolution of the English House. London, 1808.

Adler, Friedrich.
Mittelalterliclie Backstein-Bauwerke des Prenssischen Staates. 2 vols. Berlin, 1898.
Die Stoa des Königs Attalos II. zu Athen. Berlin, 1875.
Advanced Building Construction. London, 1802. (Gne of Longmans' Advanced Science Manuals.)
Agincourt. Seroux d'.
Histnire de l'Art par les Monuments depuis sa Décadence au $5^{\text {me }}$ siècle jusqu'à son Renouvellement an $15^{\text {me }}$ siècle. 8 vols. in folio with 32.5 plates, but usnally bonnd in 6 vols. Finished 1820.
Aiken, Edmund.
An Essay toward a Ilistory and Description of
the Cathedral Church of S. Paul, London : in Rritton, Fine Arts of the English School.
Alian. W.
Theory of Arches. New York, 1890.
Allen, John Romilly.
Early Christian symbolism in Great Britain and Ireland before the Thirteenth Century. London, 185.
Allgemeine Banzeitung mit A bbildungen [leriodical]. V'ienna, 1836.
Allgemeine Deutsche Biographie. Leipzig, 1875 1904.

Allgemeines Künstlerlexicon. (See Füssli, J. R.) Almers, liermann.

Die altehristliche Basilika als Vorbild des l'rotestantischen Kirchenbaues. Oldenburg, 1870.

Allsop, R. Owen.
Public Baths and Wash-houses. London and New York, IS:4.
Amé, Emile.
Recherches sur les Vitraux Incolores de l'Vonne. 1854.
Les Carrelages émaillés du Moyen Âge et de la Remaissance. Paris, 1859.
American Architect and Building News [Periodical]. Boston. 1876-1884; in one form only ; 1885 to 1901 in a regular edition. and also a larger edition, with many additional plates; two such larger editions 1800-1899. Still in publication.
American Journal of Archaeology [Periodical]. 1142

BIBLIOGRAPHY

Baltimore aud New York．185．5．1－1．（Pub－ lished by Archaeological Institute of America．）
American donmal of Philology［l＇eriodical］．
American l＇ublic Health Assuciation，Trausac－ tions．
Amorini，Marcheac Antonio Bolognini．
E：logio di Sebastiano Serlio．Architetto 13olog－ nese．decticato alla l＇ontiticia Accademia di Belle Arti in Bolugna，18：23．
Anderson．Sir doln．
The strensth of Materials and Structures． Londann，les：．
Auderinon，Doseph．
Seotland in Early Christian Times ．．．Edin－ burch． 1881.
Anderson，Willian．
l＇ictorial Arts of Japan，with ．．．remarks upon the Pictorial Arts of the Chinese and horeans．Jondon，1es6．
Anderson，William J．
The Architecture of the Remaissance in Italy． London． 1090.
André．Eilouard
L＇Art des Jardins．
Traité général des Pares et des Jardins．Paris， 185.

Anguillesi，Giovanni Domenico．
Notizie storiche dei l＇alazzi e Ville appertenanti alla R．Corona di Toscana．1＇isa．1815．
Annales Archéologiques；ed．by A．N．Didron and later by E．A．Didron［l＇eriodical］．l＇aris． $184 t-1800$ ．There is a rolume of tables by Barbier de Montault．
Annali della Fabbrica del Duomo di Milano dall Origine fino al presente． 9 vols．187i－ 18ロよ．
Antiquities of Athens．（See Stuart and Revett．）
Antiquities of Ionia．Published by the Society of Dilettanti． 4 parts in 4 vols．London， 1821 ， 17！\％，1840，1851．（See lonian Antiquities． of which work the above Part 1 （dated 1821） is a new edition，much modified．）
Antoine．J．D．
Hôtel des Monnaies à Paris（plans，etc．）． Paris． 1824 ．
Appert and Henlivanx．
Verre et V＇errerie．Paris． 1804.
La V＇errerie depuis vingt ans．Paris．1895．
Archaeologia ；or Miscellaneous Tracts relating to Antiquity［l＇eriodical］．London，17io－ 1794．
Archaeological Institute of America．（See Amer－ ican Journal of Archaeology．）
Archäologische Zeitung［Periodical］．Berlin， 184：－150．
Archeografo Triestino，Raccolta di opusculi e notizie per Trieste e per 1° Istria．Trieste． 1829－1837．
Architectural Association of London．Visit to the Domed Churches of Charente．（See Visit．）
Architectural Publication society．Dictionary of Architecture． 8 vols．London（n．d．）．
Architectural Record；published quarterly．with illustrations［Periodical］．New York， 1891－．
Architectural Rerien［Periodical］．London，1896－ 1901.

Architecture and Building［Periodical］．New York．1803－．
L＇Architecture，；Journal 11ebdomadaire de la Société centrale des Architectes français ［Periodical］．Paris． 1888.
＊Architecture，Toscane ou l＇alais，Maisons．et autres Édifices de la Toscane． 1 vol．folio （п．d．）．

BIBLIOGRAPHY

Architekten und lngenieur－Verein für Niederrhein und Westialen ：Notizblatt．Cologne，1876． Archives des Missions scientifiques et littéraires； chois de liapports et Jnstructions．laris， 1850－．Continued as Noureiles Archires．
Archives ．．．Monuments historiques．（See Com－ mission．）
Archivio storico dell Arte［1＇eriodical］．Rome， 10ン？
Archivio Storico Lombardo．Giornale della So－ cietà storica Lombarda［l＇eriodical］．Mi－ lan，1874－．
Archivio V＇eneto，Nuovo［Periollical］．1871－．
Areo，Carlo d．
Delle Artie degli Artifici di Mantova．Man－ tua． 1850^{2} ．
Istoria della vita e delle opere di Giulio Pippi Romano．Mantia．1842．
Armstrong．Robert．
Chmueys for Furnaces．Fireplaces，and Steam Boilers．New lork．1883．
Armstrong，Walter．
Alfred stevens；a Biographical Study．Paris， 1881.

Arnold．Friedrich．
Der Herzogliclue Palast von L゙rbino ．．．mit erläuterndem Texte．Leipzig．105す．
＊L＇Art pour Tous，Encyclopédie de l＇art indnstriel et décoratif．Yaris．1ebl－．（Publication continued．）
L＇Art，（Beaux－irts．Archéolorie．Littérature）． Rerne inensuelle illustrée［l＇eriodical］． Paris．18it－
Artistes Belges á l｀Étranger．Les．Études Bio－ graphiques，Historiques．et Critiques．Brus－ sels． 18.57 and 1845.
Artistes Célèbres，Les．A series edited by P． Leroi．Paris（n．d．）．
Arundel Society．London．18．54－188．．Various publications．（See Ruskiu．）
Assier，Alexandre．
Les Arts et les Artistes dans 1 ancienne Capitale de la Champagne．Paris，18：6．
Comptes de l＇Eurre de l＇Eglise de Troyes． 1855.

Les Arts et les Artistes de Troies．（See Les Arts et les Artistes de l＇ancienne Capitale de la Champagne．）
＊Astrophysical Journal［Periodical］．
Athenæun．The［Periodical］．London．
Atti Memoriale della Reale Ileputazione di Storia patrice per le Provincie dell Emilia［Peri－ odical］．Nuora Serie，18：7－．
Auer und Lange．
Monuments de Vienne．
Aufleger，Otto．und Trautmann．K．
$\$ 1$ ünchener Architektur des NVIII Jahrhun－ derts．Munich． 1892.
Arery Architectural Library，Catalogue of．New York． 1895.

Babeau．Albert．
Linard Goutier et ses fils，peintres verriers． Troyes． 1888.
Le Lourre et son histoire．Paris，189J．
Babelon，Ernest．
Januel d＇Archéologie Orientale．Chaldée－ Assyrie－Perse－Syrie－Judée－l’hénicie Carthage．Paris， 1888.
Baedeker，Karl．
Palestine and Srria Handbook for Travellers． Leipziy，1876－15：14．
Bailey，John Denton．
Sanitary Engiueering ．．．Lectures before the School of Military Engineering at Chatham． 1876．London． 187.

BIBLIOGRAPHY

Baker, M. N., and lafter, (icorge IV.
Sewerage and Sewage DisposaI. Now York and London, 1893.
Baddi, Bemardino.
Memorie Concernenti la Citta di Urbino. Rome, 1227.
Baldimucci, Pilippo.
Notizit dei l'rofessore del Disegno da Cimabue in Qua. Florence, 1767.
Baldus, Edouard 1)enis.
Monunents l'rincipaux de la France. l'aris, 1875.

Baltard, Victor (Institut de France).
Notice sur Caristie. Paris, 186%.
Villa Médicis à Rome. l'aris, 1847.
Bancroft, llubert Ilowe.
Native Races of the l'acific States. 1875-1876. History of Central America. 1882-1883.
Bancroft, Robert M., and Bancroft, F. J.
Tall Chimney Construction ; a Practical Treatise on the Construction of Tall Chimney Shafts. Manchester, 1885.
Bandelier, Adolph Francis Atphonse.
Final Report of Investigations among the Indians of the Southwestern United States, 1880-1885. l'art 11. 1802.
Report of an Arelaeologieal Tour in Mexico in 1881. Boston, 1884. (See Archaeological Institute of America). P'apers Amer. Ser., 1884, Vol. 11.
Barbier de Montanlt, Xivier. Traité pratique de la Construction, le l'Ameublement et de la Décoration des Eglises avec un appendice sur le Costume Ecclésiastique. l'aris, 1878.
Bari : Nella terrà di Bari.
Ricordi di Arte Medinevale. (l'ublisherl by a eonmittee of the Turin Exposition.) Trani, 1898.

Barqui, F.
L'Architecture Moderne en France. I'aris 180鬲-1871.
Barry, Alfred.
Memoir of the Life and Works of Sir Charles Barry, Architect. London, 1870.
Banehal, Ch.
Notre-1)ame et ses l'remiers Architectes: Notices llistoriques et Antiques. l'aris, 188.

Dictionnaire des Architectes français. l'aris, 1887.

Bandecour, I'. de. Le Peintre-Graveur français continné; Ouvrage faisant suite au P'eintre-Gravenr français de II. Robert-Dumesnil. 1859.

Bauslot, Joseph Eugène Anatole de. $\dot{\text { Eghlises de Bourgs et Villages. I'aris, 18:77. }}$
Bandri, Fr. editor. Organ für Christliche Kunst, hermusgegeben und redigirt von F. Baudri. Cologne, 1851-1878.
Baukunde des Architekten unter Mitwirkung von Fachmännern der Versehiedenen Einzelgebiete, bearbeitet von den herausgebern, der Dentschen Banzeitnng und des Deutschen Bankalenders. Berlin, 1890.
Baumeister, Karl August.
Denkmäler des Klassiselien Alterthms, zur erläuterung des leebens der Grieehen und Römer in Religion, Kunst unt Sitte. Munielı and Leipzig, 1885-1888.
Bayet, C.
L'Art Byzantin. Paris, 188:. (See Bibliothergu de l'enseignement des Beanx-Arts.)
Bayles, J. C.
House and Drainage and Water Supply. New York.

BIBLIOGRAPHY

Bayley, John.
The IIistory and Antiquities of the 'Tower of London, etc. 2 pts. London, 1821-1825. 2 l ed., 1830.
Becker, Max.
Allgemeine Banknnle des Ingeniemrs. Leipzig, 18世\%.
Begule, Lucion, and Guigue, C.
Monographie de la Cathédrate de lyon. Lyons, 1880.

Beleher, John, and Macartney, Warren E.
Later Renaissance Architecture in England 1897, 1901.
Bebnke, Gustav.
Die Markthalle in Frankfurt. Berlin, 1880.
Beitrage zur limstgeschichte ['eriodical]. Leipzig, 1878-1802.
Belhonme, -
Status des peintres Vemiers de Toulouse au XV1e siècle. Toulouse, 184%,
Bellier de la Chavigherie, Emile.
Dictiomaire général des Artistes de l'Ecole framçaise depuis l'migine dos Arts du Dessin jusqu'à nos jours ; Architectes, I'eintres, sculptems. (iraveurs, et Lithographes. l'aris, 188:-1885.
Bellori, (ifovami lietro.
Le vite dei 1'ittori, scultori et Architetti Modemi. I'arte prima. Rome, 167%. A second part was left by the author, but appears not to have been published.
Beltrami, Lnea.
Soncini e 'Iorre I'allavicina. Milan, 1898.
Bramante loeta. Milan, 1884.
Bender, llermann.
Ron and Römisches Leben im Alterthum. T'iibingen, 185.
Benjamin, Samuel Greene Wheeler.
l'ersia and the lersians. 1886 .
The Story of l'ersia. 1887.
Benndori, 0 .
Travels in Asia Minor. (Nee Reisen im Siidwestlichen Kleinasien).
Benndorf, Otto, and Niemann. George.

* Reisen in Lykien und Kiarien. Viema, 1884.

Bemot, Trançois.
L'Art français sous la liévolution et l'Empire. I'aris, 1 s. 97.
Benomille, Lém.
Étude sur la Cathédrale de Beanvais; Concours pour les Fonctions d'Arehitecture Hiocésain. P'aris, 1892.
Bentham, Rev. Janes.
11 istory and Anticuities of the Cathedral Chureh of Ely, from the Foundation of the Monastery, A.r. 67: - 1751. Cambridge, 1771.
Berenson, Bernhard.
The Flurentme Painters of the Renaissance. New York, $18 \% \%$.
Central Italian Painters of the Renaissanee. New York, 1897.
The Venetian l'anters of the Renaissance. New York, 1894.
Bermūtlez, Juan Agustin Cean.
Diccionario de los Mas llustres 1rofessores de las Bellas Artes en España. Madrid, 1800.
Bernasconi, -.
Cenni intorno la vita e le opere di Antonio lizzo, architeto e senltore Veronese. Verona, 18in. Appendix, 1803.
Berry, William.
Encyelopedia Iteraldiea; or Complete 1)ictionary of Heraldry by William lierry; 18281840.

Bertolotti, A.
Artisti Lombardi a Roma nei secoli XV, XVI, 1140

BIBLIOGRAPHY

XVVIl. Studi e liecherelse negli Archivi lomasi. 188]-18! 11 .
Nuovi documenti, intorno all' architeto Antonio sangallo ed alla suat famiglia. Rome, 1892.

Bertrand. Edomard.
botules sur la Peintme et la Critique d'Art dans l'Antípuité. P'aris, 1898.
Berty, Aholphe.
fopographie historicue du vieux Paris. (louvre and the 'Tuleries form Part I.) Paris, 188i-1887.
Les Grands Architectes Français de la Renaissance, l'. leseot : I'h. de JOrme ; J. Goujon; J. Bullant; les Jn Cercean; les MéteZerau; les Chambiges . . . Paris. 1860.

* La lienaissance Monumentale en France. laris, $18 t$ l.
Beulé, Charles Eirnest.
L'Acropole l'Athentes. Paris, 1862.
Bibliothèrue de l'Licole des Chartes. l'aris.
Bibliothèput de l'Enseignement des Beaux-drts. Paris, 18:2-18! : (Dany volumes, some of which are maned separately in this list.)
Bibliothèque Internationale de l'Art. Paris, $188.3-189 \%$.
Bignt, Claarles.
liaplaël et la Fornésine. Paris, 1884.
Translated into English as: Raplizel and the Villa Farmesina, by Mary Ilealy (Dadame C. Digot). Jondon. 1884.

Billings, Robert William.

* Architectura! Illustrations and Description of the Cathedral Church at Durlam. London, 1843.

Architectural llinstrations and Account of the Temple Charch, London. London, $1 \mathrm{~s}: 36$.

* Architectural Illustrations, llistory, and 1)escription of Carlisle Cathedral. London, 1840.

Baronial and Ecelesiastical Antiquities of Scotland. 4 vols. Edinburgh, $1845-18 \mathrm{~J}_{2}$.

* llhustrations of the Architectnral Autiquities of the County of Jurham. Durham, 1846 .
Biographie Nationale, publiée par l'Acarlémie Royale des Sciences des Lettres et des Beaux-Arts de la Belgigue.
Birch, George 11.
London Chmrehes of the 17 th and 18 th Centuries: a selection of the most remarkable Ecclesiastical Buildings . . . erected . . . between 1630 and 1730 from the designs of Inigo Jones and sir Christopher Wren. Nicholas llawksmoor and James Gibbs, with IIistorical and Descriptive Accounts. London, 1896.
Birkmire, Willian II.
Architectural Lron and Steel. New York, 1891.
skeleton Construction in Buildings. New York, 18! 8.
Compound liveted Girders. New York, 1803.
Planning and Construction of lligh Office Buillings. New York, 189.3.
Blanc, Charles.
L.es Artistes de mon 'remps. Paris, 1876.
llistoire de la Renaissance en Italie. Paris, 1889.

Les Frrsques de Véronèse au Châtean de Masère prés de 'Trévise; in Gazette des Beanx Arts, second series; Paris, 1878.
Blanquart, I'Abbé.
Notice sur les Vitraux de Gisors ; première partie, les Peintres Verriers. 18st.
Blashfield-llopkins. (See Vasari.)
Bläter fiir Architektur und Kunsthandwerk [Periodical]. Berlin, 18u0-.

BIBLIOGRAPHY

Blomfield, lieginald.
A Ilistory of Remaissance Architecture in Englinul. $1500-1800$. London, 1897.
Blomfiell, li., and 'flomas, F. Inigo.
'The Formal Garden in England. London, 1892. Abridged edition, 1000.

Blondel, J. F., and Patte.
Cours d'architecture on Traité de la décoration, distribution et construction des bâtiments, etc. 1771-1778.
Bocchi-Cinelli. (See Cinelli.)
13ock, Fr.
*Rheinlands Bandenkmate des Mittelalters. Cologne and Neuss (n.d.).
Bode, Wilheln.
Italienischen Bildhauer der Renaissance. 1887. Boetticher, kar?.

* Die Tektonik der Hellenen. Berlin, 18741s si. 2 vols. octaro, and atlas.
Die Holzarchitektur des Mittelalters mit Anschluss der Schönsten in dieser Epoche lintwickelten l'rodukte der Gewerblicben Industrie. Berlin, 1850.
Bolm, Richard.
Die Jropylaeen der Akropolis zu Athen. Stuttgart, 1882.
Boisserée [Johann].
Geschichte und Beschreibung des Doms fon Köln. Munich, 1842.
Denkmale der Baukmmst von $7^{\text {ten }}$ bis zum $13^{\text {ten }}$ Jahrhundert am Niederrhein. 1842.
Boito, Camillo.
Ji Juomo di Milano. Milan, 1889.
Architettura del Medio Evo in Italia. Milan, 1880.

Architettura Cosmatesca. Milan, 1860.
Andrea Palladio. Milan, $188: 3$.
Boito, Camillo, Editor.
The Basilica of S. Mark in Venice; illustrated from the points of view of art and history; (different authors). Venice, 1888 , 1889.

Bokelberg, G., und Rowald, P.
Die staultische Markthalle zu Hannover. Ilannover, 1894.
Bolognini, Amorini Antonio.
Fite dei l'ittori ed Artifici Bolognese. Bologna, 1841-1848.
Bon, Gnstave le.
Les Monnments de l'lnde. Paris, 1803.
Les Civilisations de l'Inde. J'aris, 1887.
La Civilisation des Arabes. Paris, 1884.
Bonmar, 'lhomas.
Biographical Sketch of George Meikle Kemp. Edinburglı, 18%.
Bontemps, fr.
P'einture sur Verre an X1X Siècle. Les Secrets de cet Art sont ils lietronrés? Quclqnes Réflexions sur ce Sujet adiressées aux Savants et Artistes. Paris, 184.
Guide du Verier ; Traité Historique et Bratique de la Fabrication des Verres, Cristanx, Vitraux. 1868.
Borghini, Raffaello.
Il Riposo. Florence, 1730.
Borrmann, Richard.
Die laut- und Finnstdenkmäler von Berlin. Berlin. 189\%.
Die lieramik in der Baukunst (forms part of the lIandbuch der Architektur).
Bormmann, Riclard; Kiolb. H.; Vorlaender, \cap.
Anfnahmen littelalterlicher in Deutschland. Berlin. 1897.
Bose, Eirnest.
*Dictionnaire laisonné d'Architecture. 4 vols. Paris, 1883.

BIBLIOGRAPHY

Bottani, Giovanni.
Descrizione storica delle pitture del RegioDueale Palazzo del 'Te, Mantua, 1783.
Bottari, Giovami Gaetano.
Raccolta di Lettere sulla Pittura, Scultura ed Architettura, seritte da più Celebri Professori, etc. 175i-1768. (See Ticozzi, Stefano, for later edition.)
Bötticher, Gustav Adolf.
I er llypäthraltempel, auf Grund des Vitruvischen Zengnisses gegen L. Ross. Berlin (n.d.),

Bonchet, Jules Frédéric.
La Villa I'ia des Jardins du Vatican, Architecture te Pirro Ligorio avee une Notice sur l'Auteur de ee Monument . . . et Texte . . . par Ranul-Rochette. l'aris, 183 i.
Bourassé, l'A bbé J. J.
Les liésidences Royales et Impériales de France. Tours, 1864.
Les Cathédrales de France. Tours, 1813.
Bourgoin, Jules.
Les Arts Arabes; Architecture ... Paris, 1873.

Boutell, Charles.
Heraldry, Ilistorical and Popular. London, 186.1.

English 1Feraldry. Jondon, 187.
Boutmy, Emile.
Le l’arthénon et le Génie grec. (Originally issned as: l'hilosophie de l'Arehitecture en Grece.) Paris, 1870.
Boyden.
I'nblic Libraries, see R. I. B. A. Journal, 1809.
Boyle (Richard, Lord Burlington).
Ed. of Pralladio (Andrea), Fabbriche antiche designate da A . P'alladio date in lnceda R., Conte di Burlington. London, 1730.
Bramantino, Bartolommeo Suardi, il.
Le Rovine di Roma al Prineipio del Secolo XV'l... fotoeromo-litografate da A. della Croce, con. . . note di G. Mongeri. Milan, 1880.

Branche, Douinique.
L'Anvergne au Moyen \hat{A} ge. Paris, 1842.
Brandon, J. A., and Mrandon, J. R.
l'arish Churehes. Lomlon, 1848.
Brandt, E.
Lehrbuch der Eisen-Constructionen mit besonderer Anwendung auf den Hoelibau. Berlin, 1876.
Brasseur de Bourbourg, Charles Etienne.
Histone des Nations Civilisées du Mexique et de l'Amérique Centrale durant lu's Siècles antérieurs à Christophe Colomb. Paris, 185t-1859.
Brayley, E. W., and Neale, J. P.
IIistorical and Arelitectural Account of Henry Seventh's Chapel at Westminster. London, 1856.
llistory and Antiquities of the Albey Church of S. Peter, Westminster. 1818-1823.
Brehm, Reinhold Bernard, M.1).
Das Inka-Reich: Beitrage zurstats-und Sittens Gesehichte des Kaiserthums Tahuantinsuyu. Jena, 1885.
Brenci, Gusmano, and Lessing. Julins.
Majolika-Fliesen aus Siena 1 घ00-1550. Berlin, 1884.

Brentano, Ginseppe.
Coneorso per la Nuova Facciata del Duomo di Milano. Milan, 1888.
Breyman, (f. A.. unil Lang, II.
Allgemeine Ban Constructionenslehre mit besonderer Beziehung auf das Ilochbauwesen. Leipzig, 1881.

BIBLIOGRAPHY

Brice, Germain.
Description Nouvelle de ce qu'il y a de plus remarquable dans la Ville de l'aris. J'aris, 1687.

Brinton, 1)aniel (Garrison.
Essays of an Americanist. Ihiladelphia, 1800 .
Brinton, Selwyn.
The lienaissance in ltalian Art; three Jarts. London, 1900.
British Museum Library, Catalogue of Printed Books. London.
Britton, John.
Chronologieal 1 listory and Craphic lllustrations of Christian Architecture in England (a supplementary volume to Arehitectural Antipnities uf (rreat Britain), 1818-1826.
Cathedral Antiguities of England. 14 vols., usually boumd in 5, 1814-18.35.
History and Description of the Ancient Palace and Honse of Parliament at Westminster. 18:4-18:3.

* Architectural Antifuities of Great Britain, represented and ilhstrated... Views... of varions Aneient English Edifices, with Accomnts of Each. 5 vols. London, 1800-1821.
Picturespue Antiquities of the English Cities. London, 1836.
llistory and Antiquities of Bath Abbey Chureh, Lomlon, 1825.
Antobingraphy. London, 1849.
The Fine Arts of the English School. London, 1812.

Britton, John, and Brayley, E. W.
Memoirs of the 'Tover of London. London, 18:10.
Britton, John, and Pugin, A
Illustrations of the Public Buildings of London, etc. London, 1825-1828.
Brochure Series of Arehitectural Illustration, The [1'eriodieal]. Buston, 1895-.
Brockhaus, A. A., Publisher.
Brockhans' Konversations-lexikon. 14th edition, 16 vols. Berlin, 1892-1897.
Brown, (i. Baldwin.
1)r. U'ssing on Vitruvius, 1: I. B. A. Journal, 1809.

Brown, Glenn.
Ilealthy Foumdations for Honses (reprinted from Sanitary Engineer). New York, 1885.
History of the United States Capitol. 1900.
Browne, Jolm.
History of the Metropolitan Church of S. Peter, Fork. Lindon, 1847.
Brownell, William Crary.
French Art ; Classic and Contemporary Painting and sculpture. 1892. New edition, ill. 1901.

Brugsch, Heinrich Karl.
Geschichte Aegyptens unter den Pharaonen. Leipzig. 1877.
Egypt inder the Pharaohs. Translated by M. Brodriek. London, 1880 ; revised edition, 1891.

Brunn, Dr. Heinrich.
Ueber die Sogenannte Leukothea in der Glyptothek Sr. Majestät König Ludwig 1. l'amphlet. Munich, 1867.
Geschichte der Griechischen Künstler. Stuttgart, 1880.
Bryan, Micbael.
Dictionary of Painters and Engravers, Biographical and Critical. New Edition, revised and enlarged. edited by Rohert Edmund Graves, B.A., of the British Museum. London, 1880.

BIBLIOGRAPHY

Burge，V．A．Wallis．
Thee Mumny ；Chapters on Egyptian Funereal Irchienlogy．Cambridge， $38: 4$.
Builder［Perindical］．An Illustrated Weekly Magazine for the Architect．Engineer， Irchrologist，Constructor，Sanitary Re－ former，and Art Lover．Vol．I．London， J843；current．
＊Builder＂suries．The．The Cathedrals of Eng－ land and W゙ales．London， 1894.
Builting Construction，Notes on．London． 1875.
（lsiscl for the south Kensington Schools．）
Buillinir Jews［Periodical］．London，last－
Building Sews and Engineering Journal［Period－ ieal］．London．1857－．
Buixson．J．
I＇uvis de Chavannes；in Gazette des Beaux－ －Irts，18！）！．
Bulfinch．Ellens
Life and Letters of Charles Bulfinch，Archi－ tect，with other Family Papers．Edited by his grandelaughter．Boston，IsG6．
Bulletin Monmmental［I＇eriolical］．Paris，183t－
Bulletion dell Instituto di correspondenza archeo－ logica．Rome，1s：29－I885［folumes for＇54， ＂55，published with the Jonumenti，etc．］．
Bülau，＂Yeodor．
Les 「rois $\hat{\mathrm{A}}$ ges de l＇Architecture Gothique is．examples choisis à Ratisbonne．Paris， $1=41$ ．
Bulletino di Archeologia Cristiana［Periodical］． Jinme．I863－1889．
Bulteau．II．「．
Description de la Cathédrale de Chartres． Chartres，I850．
Monosraphie de la Cathédrale de Chartres． Chartres，1887－I888．
Yitraux de N．D．de Chartres．Chartres，－
Bunsen．Christian Karl Josias（originally Guten－ sulin and Knapp）．
＊Die basiliken des Christlichen Roms．nach ilır＂m Zusanmenhange mit Idee und Ge－ schichte der Kirchembaukunst．Munich ［pref．184：］．
Burckhar lt，Jacob．
Ciceruae，or Art Guide to Painting in 1taly． Loudon，I87\％．
Civaliz ation uf the Period of the Renaissance． I．undon．In－
Genchi hte der Itenaissance in Italien，forms Iart of Geschichte der Neueren Baukunst． （心－Burchhardt，Jacob，and Liibke．Wil－ lelm．）
Burcklardt，Jaenb，and Lübke，Wilhelm．
Geschi bte IJer Neueren Baukunst．Stuttgart， Iss $3-189 \mathrm{I}$ ．
Burckinar It．John Lewis．
＇Trasels in syria and the Holy Land．London，」ごき，
Burdeti，II nry Charles．
Hospitals and Asylums of the World．London， 1443－I893．）．
Burgoyne．Frank J．
Library Construction，Architecture，Fittings， and Furniture．London． 1897^{7}.
Burlington（Lord）．（See Buyle，Richard，Lord Burlington．）
Burr，William II．
A Comse on the Stresses in Bridge and Roof Trusses，Arched Rills，and Suspension Britres．New Iork，I893．
Burton，sir lkichard Francis．
Etruscan Rologna；a Study．London， 1876.
Butler，Alfred Joshua．
＊The Ancient Coptic Churches of Egypt．Ox－ ford，ISSt．

BIBLIOGRAPHY

Butler，Howard Crosby．
＊Scotland＇s Ruined Abbeys．New Fork and London，15y！3．
Buzonnière，Léon de．
Ilistoire Architecturale de la Ville d＇Urléans． Paris， 1849.

Cahier et Martin．
Monographie de la Cathédrale de Bourges．
Cahier，J．
Caractéristiques des Saints． 1807.
Cain，Willian C．E．
V Vonsioir Arches applied to Stone Bridges， Tunnels．Domes，and Groined Arches．I vol．New York．187！．
Callet，
Notice IIistoriulue sur la Vie ．．．et les Ourrages de fuelques Architectes français du Seizieme siecle．Paris．I8tis．
Calliat，Victor，and Leroux de Iincy，1．J．V． Eglise s．Eustache à l＇aris．I＇aris，I850．
Ilotel－de．Ville de Paris．Liège，loft．
Calvi．Girolamo Luigi．
La Fondazıone del Tempio della Certosa． Jamphlet publishesl in Milan，soti2．）
Notizie sulla Vita e sulle＂pere dei Principali Architeti．Scultori e Jittori fiorivono in Wilano durante il Gorerno de Visconti e degli sforza．Milan，185\％．
Cameron，Charles．
The Batlis of the Romans explained and illus－ tratell：with the Restorations of Palladio Corrected and Improved．London，1772．
Campbell．Colin．
Vitruvius Britanmicus．London，1517－1725．
Canéto，François．
Sainte－Marie d＇Auch．Atlas Monographique． Paris． 185%.
Canetta，Carlo．
Aristotele da Bologna，in Archivio Storico Lombardo．Anno IX．I882．
Canina．Cav．Luigi．
Ricerche sull ${ }^{\circ}$ Irchitettura dei Tempi Chris－ tiani．Rome， 1846 ．
Capronnier．（See l）escamps．）
Carderera y Solano，Valentin．
Iconografia Española；Coleccion de Retratos， Estatuas．Mausoleos y demas．．．．Madrid， I85．5－1864．
Casati．Dr．Carlo．
Leone Leoni d＇Arezzo．Scultore e Giov．Paolo Lomazzo，Pittore Milanese．Milan， 1881.
I Capi d＇Arte di Bramante nel Milanesi． Milan， 18 IU．
Cassas．Louis François．
Voyarye I’ittoresque de la Syric，de la Phénicie， de la Palestine et de la Basse Egypte．．．． Paris， 1799.
Cassina，Ferdinando．
Le Fabluriche più Cospicue di Ililano．Milan， 1840.

Castell．Robert．
Villas of the Ancients Illustrated．London，1728．
Castelazzi，Gnisepue．
Il Palazzo detto di Or San Michele．Florence， 1557.

Castiglinne，Fra．
Ricordi．Venice，1584．
Cathedrals of England and Wales，The．（See －IBuilder＂Series．）
Cattaneo，Raffaele．
L｀Architettura in Italia dal Secolo VI al Mille circa．Venice． 1888.
Architecture in Italy（translation of the above by Contessa Isabel Curtis－Cholmeley in Bermani）．London， 1890° ．

BIBLIOGRAPHY

Cavvadias. (See Lavvarlias, 1'.)
Cellesi, Bonatu.
Sui Fabbriche di Firenze. Florence, 1851.
Cellini, Benvemuto.
(Envres Complètes; translated by Leopold Leclanché. I'aris, 1sti.
Vita di Benvennto Cellini . . . del Dottor F. Tassi. Florence, 1823.
Autobingraphy ; translatetl into English by 1. A. Symondsas Autobiography of Benvenuto Cellini. London, 1887.
Century Guild Hobly Horse. The [Periodical]. Orpington, Empland. 186t-
Ceresole, Vietur.
Alessandro Vittoria; in L'Art. 1885.
Cerf. Charles.
llistoire et Description de Notre Dame de Reims. Reims, 1841.
Chabat, l'ierre.
Dietiomatre des Termes employés dans la Construction. wols. l’aris, 1881.
Chabeuf, Henri.
Dijon, Monuments et Solmenirs. Dijon, 1894.
dean de la lluerta, Antome le Doiturier, et le Tombeau de Jean sans l'cur. 1891.
Champeaux, Alfred the.
Des Fomlenrs, Cistleurs, Moleleurs en Bronze et lhoreurs, etc. I'aris, Isth.
L'Art Décoratif dans le l'ienx P'aris. P'aris, 1888.
Le Meuble. P'aris, 1688.
Champeaux et Ganchry.
les Travaux d'Art exécutés pour, Jean de France, duc de Berry, avec me Etude Biographique sur les Artistos employés par ce Prince. P'aris, $18: 4$.
Champollion-Figeac, Jean Joseph.
Monographie du l'alais de Fontainebleau. 1'aris, 18 it .
Chandler, Joseph Everett.
Colonial Architecture of Maryland, I'ennsylyania, and Virginia. Bostun, 1892.
Chandler, R ; Revett, N. ; Pars, W.
(See Ionian Antiquities.)
Cliapuy, Nicolas Marie Joseph.
S'ues l'ittoresques de la Cathédrale d'Amiens. Paris, 18:6.
Charles, 1.
Atelier de Verrier a la Ferté-Bernard à la fin du XVe siecle et an XV'e. Le Alans, 1851.
Charnay, Jésiré.
Les Anciennes Villes du Nouveau Monde; Yoyages d'Exploration an Mexique et dans
 1884.

Translated as Ancient Cities of the New Wotd by J. Comino and 11. S. Conant. London, 188%.
Le Mexinue: Impressions et Sonvenirs. (See also V'iollet-le-buc, Cités et luines.) l'aris, 1sti:3.
Charvet, fitienne fon Gabriel.
Lyon Artistique; Architectes; Notices Biographiques, et Bibliographiques avec une Trable des Edifices et la liste Chronologique des Noms. Lyons, 1899.
Architectes Lyommais. (See Charvet, Lyon Artistipue.)
Biographir d'Architectes: Less de Royers de la Valfenière Lyons, 1870.
Clateau, Lén.
Histoire et Caractères de l'Architecture en France. P'aris, 1864.
Chatean, Theodure.
Technologie dua Bâtiment, on Étude Complète des Matériaux de toute Eiplèce employés dans les Constructions. Paris, 1880.

BIBLIOGRAPHY

Cheney, Mrs. Edmah 1how Iittlelate.
Life of Christian Daniul Rauch, trawn from German Authorities. Baston, 1898.
Chemevieres-l'onintel, Charles lhiliple de.
Archives de l'Art Français. l'aris, 1851-1860.
Chesnean, brmest.
La lefuture Française au 1 ne Sièrle. l'aris, 146\%.
Le Statuaire .J. 13. Carneaux. sa Vie et son (Envre. laris, 1879 .
Chevalier, Casimis.
Le Château de Chenonctau. Tours, 1869.
Archives hoyales de Clononceau. 1864.
Chipie\%, Charles.
Histoire Critigue des Origines et de la Formation des Grdres Grees. I'aris, 1876.
Choisy, François Auguste.

* Lidrt de Batir chez les Romains. Paris, 1 sir.
llistoire de I'Arehitecture. l'aris, 1890.
* L'Art de Bâtír chez les byzantins. Paris, 188:\%.
Etudes Épigraphiøues sur V'Architecture Grecque. l'aris, 1884.
Christine de l'isan.
Le Livre des Faits et bonnes Mours du Sage foi Charles; Mémoires relatifs à l'llistoire de France. l'aris, 1sist.
Chronique des Arts et de la Curiosité, supplément à la liazette des Beanx-Arts. J'aris, $1870-$
Chrysander, Wilhelm Christian Justus.
Hist. Nichricht von Kirchen-Glocken. Rinteln, 17.55.
Church, Albert E.
Elements of Descrintive Geometry. New York, 1860.
Church, A. 11.
The Chemistry of Paints and Painting. Lonton, $18: 10$.
Cicognara, Leopoldo, conte tha.
* Le Fabbriche liun Compicue di Venezia. 2 vols. Yenice, 1815-1829.
Catalogo ragionato dei libri d' Arte e d'Antichita. Pisa, 1821.
Storia della Acultura dal suo hisorgimento in Italia . . . 2l edition. I'rato, 1823-1824.
Cicognara, Lerpoldo; Selva, G. A.; and Diedo Antonio.
Monmenti Sepolerali Cospicui . . . Turin, 1858.

Cinelli (Bocchi-Cinclli).
Belleze delle Citta di Firenze. 1072.
Cittadella, Luigi Napoleon.
Notizis relative a Fermara. Ferrara, 1804.
Claretie, Jules.
Peintres et Sculpteurs contemporains. l'remière Séric, Drtistes décédés de 1870 à 1880. l'aris, 18^{2} ?
Deuxième Firic; Artistes vivants fan Janvier, 1481. P'illis, 188.

Clark, Hush.
An hitroduction to Ileraldry. London, 1884.
Clarke, Juseph Thacher.
The llypuethral Question ; An Attempt to determine the Mode in whish the lnterior of a (irrek Temple was lighted. Cambridge, 187!.
Clausse, fiustave.
Les Aomments du Christianisme an MoyenAge; Basiliques et Mosaĭques Chrétiennes: Italie, sicile. Paris, 1803.
Clayton, John.
Tle Dimensions, Plans, Elevations, and Sections of the Parochial Churches of Sir Christopher Wren, erected in the Cities of London and Wextminster. London, 1848.

BIBLIOGRAPHY

Clemen, l'anl (editor).
Die Kunstdenkmäler der Rheinprovinz. 5 volmmes. Dusseldorf. 1898-1901.
Cockerel, C. R.
Antipuities of Athens. (See Stuart and Revett.)
Coëtlosiquet, le Comte Charles de.
Notice sur la Cathélrale de Metz. Metz. 1877.
Cothinet (l'Abbé).
Les l'eintres Verriers de 'Troyes. 1838
Cole, llenry llardy.
(See India, Architological survey.) Illuntrations of Aneient Buikings in Kashmir. London. Inti!) ;aml, Hllustrations of Buildings near Muttra and Agra. London, 1873.
Coleman, Caryl.
Christian Altars and their Accessories. Architectural Record. Vol. IV. New York, 1895.
Collignon, Maxime.
Mythologie Figurée de la Grèce. Paris, 1889. Histoire de lic scupture firctue. D'aris, 1897. Danuel d'Arehéologie Grecque. l'aris. 'Translated into English as Manual of Greek Archeology, by J. II. Wright. London, 1886.
Phidias [forms part of series Les Artistes Célèbres]. Paris (1.d.).
Collings. George.
Circular Work in Carpentry and Jomery; a l'ractical Treatise on Cireular Work of Single and Double Curvature. (See Weale's Rndimentary Series.) Londun, 1890.
Roof Carpentry, Practical Lessons in the Framing of Wood Roofs for the Use of Working Carpenters. (See Weale's Rudimentary Series.) London, 1803.
Colvin, Siduey.
Jacopo della Quereia, in Portfolio. 1883
The History of a Pavement ; in Formightly Review, Vol. 24, 18 万.⿹.
Colyer, Frederick.
Treatise on the Modern Sanitary Appliances. London.
Public Instintions; their Engineering and sanitary and other A pplianees, with the Construction of Leveral Departments. London, 188! .
Commissinu des Monuments IIistoriques.
Arehives. A vols. l'aris, 1855-18:2.
Archises. Paris (nal.). l'ublieation begun 1898 unfinished; wholly separate from the earlier publication.
Comolli, Angelo.
Bibliografia Storico-Critiea dell Arehitettura Civile ed Arte subalterne. Rome, 178817! !
Comparetti, Domenico, and Petra, Ginlio de.
La Villa Ereolanese dei Pisoni; i suoi Monumenti e la sua Biblioteca. 'Turin, 1883.
Conder, Claude lieignier: Syrian Stune-Lore. London. 1896.
Conter, Josialı.
Landseape Gardening in Japan. Tokio, 1893.
Condivi, Ascanio.
Vita di Michelangelo Buonarroti. Pisa, 1823.
Construction Moderne, La; Journal lleblomadaire lllustré [I'eriodical]. l’aris, 1st vol., 1885, current.
Contarini, Domenico.
The Basilica of S. Mark in V'enice, translated by F. Horne Rosembers.
Corfield, William Henry.
Sanitary Construction of Dwellings. 1880.
Cornelius, Carl.
Jacopu deila Quercia. Ilalle, 1896
Corner, James M., and Soderholtz. E. E. Examples of Domestic Colonial Architecture in Maryland and Virginia. Boston, 1892.

BIBLIOGRAPHY

Examples of Domestic and Colonial Arehitecture in New England. Boston, 1891.
Corroyer, Edonard.
Description de l'Abbaye du Monts. Michel. Partis, 187 T.
L'Architeeture Gothique. Paris.
L'Arehitecture Romaine. l'aris.
(See Bibliothèque de l'enseignement des BeauxArts.)
Coste, I'ascal.
Honuments modernes de la Perse. J'aris, [18in]-1867.
Couchaud, A .
Choix I'Erlises Byzantines en Grèce. Paris, 18:7, 1842.
Courajod, Lonis.
Alexandre Lenoir, son Journal, et le Musée des Monuments Framȩais. Paris, 1878.
Leçons professées à l'Ecole du Louvre.

1. Origines de liart Roman et Gothipue.
2. Origines de la Renaissance. l'aris, 1890 , 1901.

Cousin de Contamine.
Eloge lle Constou, sculpteur ordinaire du Roy. Paris, 1787.
Coussemaker, E. de.
Vitraux l'eints et Ineolores des Églises de la Flantire Alaritime. Lille, 1860.
Crane, Edward A., and Soderholtz, E. E.
Examples of Colonial Arehitecture in South Carolina and Georgia. Berlin.
Cresy, Blward.
Practical Treatise on Bridge-Building and on the Equilibrimm of Vaults and Arehes, with the ... Life and Selections from the Works of Rennie. Lomdon, 1839.
Cresy, Mrs. Viliza Taylor.
Lives of Celebrated Arehitects, Aneient and Monlem, trauslated from the ltalian. (See Milizia, Francesco.)
Crosnier (L'Abbé).
Yoeabulaire les Symboles et Attributs. Tome Xly. du Bullet in Monumental.
Crowe. J. A, and Caralcaselle, G. B.
A New listory of lainting in lialy. 8 vols. London, 1864-186f.
A llistory of lainting in North ltaly. London, 1871.

The Early Flemish Painters. London, 2 d ed. 187: ; : 1 d ed. $187!$.
Titian. His Life and Times. London. 1877.
Raphael, His Life and Works. 2 vols. London, 1882-1885.
Crowninshiell, Frederie.
Mural l'ainting. New York and Boston. 1887.
Crystal Palace. The Fine Arts Courts. London, 1854.

Cummings, Thomas Seir.
Historical Ammals of the National deademy of Design. New York, 1-6.
Cunningham, Sir Alexander.
Mahabodi, or the Great Buddhist Temple at Budiha-Gayâ. Loudon, 1842.
Commingham, Sir Alexander (compiler). (See
1ndia, Archæologieal Survey lieports, 1871.)
Cunningham, Allan.
Lives of the Most Eminent British Painters, Seulptors, and Arehitects. London, 18301833.

Life of Inigo Jones.
Curtis, William Eleroy.
Capitals of Spanish America. New Vork, 1888.
Curtins, Ernst, and Idler, Friedrich.
Olympia; die Ergebnisse der von dem Dentschen Reich veranstalteten Ausgrabung. Berlin, 1890.

BIBLIOGRAPHY

Curzon, 1Ion. Robert.
Visits to Monasteries in the Levant. London, I 849.
Cussans, John E.
Handbook of Heraldry. London, 188 .
Cyclopedia of American Biography (Appleton).
Dahl, Jolan Christian Clausen.
Denkmale ciner sehr Ausgebildeten Holzbaukunst aus den Frihhesten Jahrhumderten in den immeren Landschafteu Norwegens. Dresten, $18: 37$.
Daly, César.
Funérailles de Félix Duban, Architecte du Gouvernement. I'aris, $18 \% 1$.
Daniell, A. E.
London City Churches. New York, 1896.
Danti, Ignatio.
Vita di Jacopo Barozzi da Vignola : in lBarozzi da Vignola; Le due Regole della Prosjettiva pratica. Rome, 1583.
Darcel, Alfred.
Les Autels de l'istoia et de Florence ; in Gazette des Beaux-Arts, 188\%.
Daremberg. Ch., and singlio, Edm.
Dictionnaire des Antiquités Grecques et Romaines. Paris, 1873-. Not yet complete.
D'Argenville, Antoine Joseph. (See Dezallier.)
Darmstadt Handbuch. (See Handbuch der Arcbitektur.)
Dartein, F. de.

* Etude sur 1’Architecture Lombarde. Paris, 186:\%-1882.
Daun, Berthold.
Adam Kiraft und die Kiunstler seiner Zeit ; ein Beitrag zur Kunstgeschichte Nurnbergs. Berlin, 1897.
Davie, W. Galsworthy.
Architectural Studies in France. London, 1877.

Deck, Joseph Théodore. La Faïence. laris. 1887.
Decloux and Doury.

* Histoire de la Sainte Chapelle du Palais. l'aris, 18f\%.
De Forest. Lockwood.
Indian irchitecture and Ornament. Boston, 168%.
Indian Domestic Architecture.
Delrasse, Alphonse; Lechat. Henri.
Epilaure, Restauration et Description. Paris, 180%
Degen, Lurlwig.
Der Bau der Krankenhäuser. Munich, 186 .
Dehio, Geors, unt Bezold, Gustav.
Die Kirchliche Baukunst des Abendlandes. stuttgart, 1887^{-}
Dehli, Arne, and Chamberlin, George.
Norman Monuments of I'alermo and Environs ; a Study. Boston, 1893.
Delaporte, Louis Marie Joseph.
Voyage an Cambodge; l'Architecture klimer. 1880.

Delisle, Dom Joseph.
Histoire de l'Ancienne Abbaye de Saint Mihiel. Nancy, 1758.
Delisle, Leopold Victor.
Le Cabinet des Manuscrits de la Bibliothèque Impériale (Nationale). 1'aris. 1865.
De l'Orme, l'lilibert.
Nouvelle Invention pour bien battir et à petits frais. Paris, 1501,1056 , or 1506 . Included in Euvres d'Architecture. 2 vols. l'aris, 102 t , or Rouen, f ti48.
Demidoff, Anatoli Nikolaivich, Knyaz San Donato. Voyage l'ittoresque et Archéologique en Rus-

BIBLIOGRAPHY

sie; Dessins faits d'apres Nature, et Litho graphiés par André Durand et Laffet. Paris, 1840-1847.
Dennis, (ieorge.
The Citics and Cemeteries of Etruria. 2 vols. London. 1878-1883.
Denton, Joln Bailey.
Farm Homesteads of England. London, 186i4. Department of Agriculture, WFashington, D. C.

Circulars.
De Quincy. (See Quatremère de Quiney.)
lescamps, Ilenri l'lilibert Vialentin, and Le Maistre d'Anstaing. J.
Les Vitraux de la Cathélrale de Tournai. dessinés par J. 13. Capronnier et mis sur jhierre par J. de liegliel. Betussels, 1848.
Description de leseypte, 1an:1813. 25 vols (2d edition, [821-18:31). [The great work on Esypt resulting from Bonaparte's Expedition.]
Deshaisnes.
Histoire de l'Art dans la Flandre, l'Artois et le Hainault, avant le NV^{e} Siècle. Lille, istis.
Desiardins, Gustave Adolphe.
Itistoire de la Cathédrale de Beaurais. l'aris, 186.5.

Desjardins. J. J. Abel.
La Vie et l'CEuvre de Jean Bologne. Paris, 1883.

Destailleur, Ilippolyte.
Notice sur quelques Artistes français. Paris, 184%.
Detcheverry, Arnaud.
Histoire des Theátres de Bordeaux, depuis leur Grigine dans cette Ville jusqu'a nos Jours. Bordeaux, 1860-1880.
Detzel, II.
Christliche Ikonographie. Freiburg, 1806.
Deutsche Bauzeitung; Verkündigungsblatt des Verbandes deutscher Architekten- und In-genieur-Vereine. Berlin, 1867.
Deutsches Archaeologisches Institut; A thenische Abtheilung. (I'revious to 1886 known as Dentsches Archaeologisches Institut in Athen.)
Mitheilungen. Athens, 1876-
Deutsches Bauhandbuch.
Berlin. (New edition published about 1894.)
Deville, Jean Achille.
Revue des Architectes de la Cathédrale de Kouen, jusqu*a la fin du NV゚Te Siècle. Rouen. 1848.
Comptes des dépenses de la Construction du Château de Gailion. Paris, 1851.
Tombeaux de la Cathédrale de Runen. Paris, 1881.

Devillez. Barthélemy Adolphe.
Eléments de Constructions Civiles, Art de Bâtir, Composition des Edifices. Paris, 188.

Dezallier l'Argenville, Antoine Nicolas.
Vie des Fameux Sculpteurs depuis la Renaissance des Arts, arec la lescriptions de leurs Ourrages. Paris, 1788.
Dictionary, The of Architectnre; issued by the Architectural Publication Society. London (n.d.).

Dictionary of National Biography. Vidited by Leslie Stephen. by him and by Sidney Lee, and by Sidney Lee. Gt vols., I885-1900. (3) vols. supplementary, 1901.)

Dictionary of l'ainters and lingravers. biographical and critical. (See Bryan, Michael.)
Dictionmaire Critique. J'aris, 18i?. (Nee Jal, A.)
Dictionnaire de loimeublement et de la Décoration. (See Havard. Henry.)

BIBLIOGRAPHY

Dictomaire des Antípuités elneétiennes. (See Martigny, dusph Alexanlre.) Paris, 1860. Dictionnaire les. Architectes français. l'aris, Is:̈ン. (See Lanee, Adn!plec.)
Dictionnaite des seulptenrs français. J'aris, 1898. (see Lami, Manislas.)
Dictionnaire Ilistorique doArchitecture. lamis, 18:30. (See Quatremere de (qumey, A. ('.) Didot, Ambrowe liamin.

Etule sur Jean Comsin. l'aris, 1892.
Die Mittelalterlichen Baudenkmaler Niedersachsems. Hanower, Asint.
Dietrichson, Dr. L., und Munthe, J!.
Dic Ilolzbaukunst Norwerens in Vergangenheit und Gegenwitt. Berlin, 1s.9.3. Dresien (11.11.).

Dieulatoy, Marcel Auguste.
LiArt antique de la Perse, Achéménides, Parthes. saswaniles. paris, leat.
Dilettanti, society of.
Unedited antiquities of Attica, comprising the architeetural remains uf Elensis, Rhamms, sumbm, and Thoricns, by the soeiety of the Dilettanti [Forms a wd supplement to Stuart and lievett; ef. Cockerell ot al., muler Stuart and Revett.]
Antiquities of Ionia, (Sce Antiquities.)
Ionian Intiquities. (see Ionian.)
Dilke, Lady:
French Prainters of the bighteenth Century. Lonlon. 189:9.
Frenelo Arehitects and Soulptors of the Eighteenth Century. Lomdon, 1900.
Diseorso per l'lnanguazime del Nommento a Michele sammicheli, eretur in Verona li i Giugno, lsit [per G. Cammzoni], e publieazione di suoi Scritti Inediti e di Altri Jocmmenti Tratti dal l . archivio fienerale di Venezia [da A. Bertoldi]. Veroua, 18.4.
Dohme, Robert.
Barock- und Rocoeo-Arenitektur. Berlin, 1802.
Gesehichte der Deutschen batkunst. Berlin, 188.

Die Masken Sterbender Krieger im llofe dps ehemaligen Zenghauses zu Berlin won Andreas Schlinter: text ion Dr. I. II. Dome. Berlin (n.d.).
Dohme Series. (See Kunst und Kiunstler des Mittelalters und der Neuzeit.)
Dollman, F. T.. and Jobbins, J. R.
Examples of Aneient Domestic Architecture. London, 156l-6is.

* Domestic Arehitecture in England. Some Account of. 3 vols. in $4 . \quad$ (Vol. I. by Dawson Turner, the others "by the etitor of the Glnssary of Architecture.") (oxford, 1851-185!
lunati.
Elogio di Baldassare Peruzzi. Siena, 1870.
D olitle, Justus.
Social Life of the Chinese ; with some Account uf their Relismos, Govermental, Bulucathonal. and lousiness Customs and Opinions. New York. lefit.
Du Cereean, Jaegues Anlrouct.
Les plas excellents Bastiments de France. Paris, 15:9. Reprinted. Ines
Dublin Builder, The. A monthly journal deroted to architecture, engineering, and sanitary improvement, rols. 1-8. (Contimed as The Irish Builder.) Dublin, 1859-1866.
Dubois, A. Iay.
The Strains of Framed Structures, with momerous Practical Applieations to Cranes bridge, Roof, and suspension Trusses -

BIBLIOGRAPHY

Braced Arches - l'ivot and Draw SpansContinuous Girders, ete. New York, 1892. Duchesne, Itean.

Notice historiçue sur la vie et les ouvrages de Jules Hardonin-Mansart. Reprinted from Magazin Encylopédique. I 80 厄̄.
Dugrdale, sir Willian.
Momasticon Angheanum; a History of the Abhies and wher Monasteries, flospitals, and Churches in lingland and Wales. Loudon, 1sit-1sina.
llistory of Sit. Piul's Cathedral in London.

Dumesnil, Antoine Jules.
llistoire des Plus Cèèbres Amateurs Français. laris. 18.06-18.5.
Dumont. A. L.
Discuurs prononcés aux funérailles de M. le Barun Busio. l'aris, 18tis.

1) umaven, bilwin Richard Windham Quin, Earl of. Notes on hrish Arehiteeture. Loudon, 1875187.

Dupascquier. Louis.
Monographie de Notre Dame de Brou. Paris, 1812.

Duplais. Léonie.
Etude sur les Anguier (Français et Miche]), Célébres siculpteurs du 1ie siècle . . . 2e ed.
Duppa, lichard.
Life and Literary Works of Michelangelo Buonarroti. Loudon, IG06.
Durand. J. N. L.
Notiee Historique sur la vie et les Ourrages d'Antome Rondelet. 1835.
Durantus, William.
The Symbolism of Churehes and Churcb Ormaments. New York, 1818.
Durelli. Gaetano e Franceseo.

* La Certosa di l’avia descritta . . . Milan, 1sim.
Durm, Josef.
Constructive and Jolychrome Details der Griechischen bankunst. Berlin, lesu.
Die Baukunst der Etrusker . . . der Römer ; in Handbuch der Architektur.
Darny, dean Victor.
Histoire les Romains depuis les Temps les I'lus Reculés jusqu'a la Mort de Themdose. i vals.. $18.6-188.5$, and later editions.
Histoire de la Grece ancienue. 1862 .
Duserel.
Recherches llistoriques sur les Ouvrages exécutés dans la ville d'Aniens, par less Matres de l'(Finvere ete. Amiens, 18.58.

1) 1 -ienx, Louis Étieme.

Le château de Versailles. Versailles. I881.
Les Artistes Français à lo Etranger. 18.0.
Duthilleul, llipuolite liomain Joseph.
Elnge de Jean lonlogne. Donai. 1820.
Dyer, Innis
Studies of the fonds in Greece at certain Sanctharies recently excavated. London and New York, 18! 1 .

Eastlake, C. I,
A history of the Gothic Revival. London and New York, 18:2.
Ebe. Gustar.
Die Spat-Renaissance; Kunst-Geschichte rler Fıuppaisehen Länder von der mitte des 16. bis zum ende des 18. Jahrhunderts. Berlin. 1896.
Die Schmuckfomen der Monumentalbauten. Leipzig. I896.
Ecclesiologist, The. Published by the Cambridge Camden Society. Cambridge, 184:-1868.

BIBLIOGRAPHY

Edhem-P'acha.
L'Arehtecture ottomane; ourrage autorisé jar iradé-impériale. Constantinople, 187\%. Also in German.
Edwarels, Miss Amelia Blamenorl.
Egyjutian Archaedogy (translation of Masperu's Archatologie Egyptimne). London, 188.

Eggers,
De Origine et Nomine Campanarum. Jena, 1684.

Eggers, Hartwig liarl Friedrich.
Christian Daniel Ranch. (Esdited and contimued by K. F. 1'. Eggers.) Berlin, Isis1887.

Ehret, George.
Twenty-five years of Brewing, with an lllustrated History of American Beer. New York, 1891.
Eitelberger von Edelberg, Rudolph von, und lleider, G. A., und Ilieser, Joseph, comjilers.
Mittelalterliche Kunstdenkmale des Oesterreichischen Kaiserstaates. Stuttgart, 15.\%, Isto.
Elis, Carl.
Her Dom zu Halberstadt. Berlin, 1883.
Elnes, James.
Sir Christopher Wren and his Times, with sketches and anecdotes of . . . distingnished personages in the seventeenth century. London, 1852.
Emerson, William Ralph.
The Architecture and Fimniture of the Spanish Colonies during the seventeenth and eighteeuth Centuries. Boston (n.d.).
Emulation (L^{\prime}): Publication Mensuelle de la Société Centrale d'Architecture de Belgique [Periodical]. Brussels, 1891-1893.
Encyclopedia of Architecture. (See Gwilt, Joseph.)
Encyclopédie d'Architecture et des arts qui s'y rattachent. Paris, 1 strs.

* Eucyclopédie d'Architecture. Journal Mensuel. laris, 185]-1862. [1'eriodical.]
Encyclopédie de l'Architecture et de la Construction. Paris (n.d.). (See Planat.)
Encyclopédie des Travaux I'ublics. C. Lechalas, editor. Paris, 18.93.
Engineering Record [Periodical], New York. (Formerly the Sanitary Fingineer.)
Enlart, C.
Origines Françaises de l'Architecture Gothique en ltalie. P'aris, 1894.
Ephrussi, Charles.
Albrecht Dürer et ses Dessins. Paris, 188I.
Paul Bandry, sa Vie et son (Eurre. Daris, 1878.

Ennouf de Verclives, A. A., and Alphand, T. C. l'Art des Jardins. Paris, 1868.
Ernst, Leopold, and Oscher, L.
Baudenkmale des Mittelalters in Erzherzogthum Oesterreich; Algemeine Banzeitung (about 80 pols.).
Essenwein, August.
Die romanische und rie gothische Bankunst (forms part of IIandbuch der Arclitektur ; only flarts l. and II., military and domestic buililing). Darmstarlt, 18×9-18:\%.
Ethnology, Bureau of American. (See United States.)
Evans, Edward Payson.
Animal symbolism in Ecclesiastical Architecture. 1890.
Evelyn, John.
Diary. London, 1818.

BIBLIOGRAPHY

Eyriès, fustave.
Claâteanx llistoricues de France. I'oitiers, 188%

Fabricius, M. I'
Le Kremlin de Moscon. Esquisses et Tableaux, autretois et atgourd'bui. Moscow, lis\%.
Fabriczy. C. von.
Ginliano da Maiano arehiteto del Duomo di Faenza; in Archivio Storico dell' Arte, vol. 3 (18911 .
Filiplo Irmelleschi. Stuttgart, 1898.
Facco de Lagarda, l'rofessor Eduardo, and Sacconi, Conte Giuseppe.
Loreto, Monografia Storicu-Artistica. Rome, 1895.

Fagan, Louis.
The Works of Correggio at l'arma. London, 1873.

Fah, Dr: Rudolf.
Grundriss der Geschichte der Bildeneu Künste. Freiburg im Breisgau, 18%.
Fahne, Anton.
Diplomatische Beitrage zur Geschichte der Bammeister des Kölner Domes und der bei diesem werke thätig gewesenen künstler. Culogue, 184:3.
Falda, Giovanni Battista.
Le Fontane di Roma. Rome, 1650.
Falkener, Edwasd.
Ephesus and the Temple of Diana. London, $186: 2$.
Fantozzi, Federigo.
Nhova Guida di Firenze. 1844.
Farish. -
Isometrical l'erspective. Cambridge, I820.
Farrar, Joseph.
Baths and Bathing. Bristol (Eng.) and Lon(lon, 1890 .
Farrow, Frederic Richart.
The Recent Development of Vienna; in R. I. B. A., Transactions, 1887-1888.

Fauré, 1 .
Thérrie des Proportions en Architecture, d' après l'analyse des monuments. l'aris, 1893.

Feasey, Ilenry John.

* IVestminster Abbey historically described. Londlon, 1899.
Félibien. André.
Des principes de l'Architecture de la Sculpture et de la Jeinture. l'aris, $16 i=6$. (Chapitre X.JI, principany modes d'assemblages usités à cette époque pour le verre blanc.)
Entretiens sur les Vijes et les Ouvrages des plus excellents Peintres, anciens et modernes, avec la Vie des Architectes. Paris, llis.0-88.
Mémoires pour servir à l'histoire des Maisons Royales et Bâtiments de France. Paris, 1874.

Fellows, Charles.
A Journal written . . . in Asia Minor. London, 1839.
An Acconnt of Discoveries in Lycia. London, 1841.

Lycia, Caria, Lydia, illustrated by G. Scharf. London, 1847. I'art I., all publisherl.
Fergus. Andrew.
The Sewage Question, with Remarks and lixperiments showing the Inefficiency of Water Traps. Glasgow, Edinburgh. printed 1874.
Fergusson, James.
History of the Modern Styles of Architecture. 21 ed. Lonton. 187.3.
The History of Indian and Eastem Architecture. London, 18 iti.

BIBLIOGRAPHY

Rude Stone Monuments in all Countries ; their Age and Lises. Londun, 1872
Illustrations of the liock-cut 'Temples of India. 1,ontlon, 18.5.
l'icturesque llhstrations of Ancient Architecture in Ilindostan. London. 1848.
A llistory of Architecture in all Conntries. Bd enl. adited by R. l'. Spiers. 5 wols. London, 1876, 18:1, 18:0.' ('this includes The llistory of Jadern Architecture, which is edited by Robert Kerr, and 'lhe llistory of ludian and Eastern Architecture, as above.)
Palaces of Ninevelı and Persepolis Restored. London, 1851.
Fergusson, James, and Burgess, James.
Cave Temples in India. London, 1880.
Fermelhuis, -.
Eloge Funèbre ale Coyserox Sculpteur du Roy, prononcé à l'Académie. J'aris, 1T:1.
Ferrari, laigi.
l’alladio e V'enezia. Venice, 1880.
Ferree, Barr.
The Chronology of the Cathedral Churches of France. New York, 1894.
Ferrero, Ermanno.
L'Arche d'Auguste à Suse. Turin, 1901.
Ferrey. Benjamin.
Recollections of A. N. Welby Pugin and his father, Augustus Pugin, with notices of their Works; with an appendix by E. S. purcell. London, 1861.
Fewkes. Jesse Walker.
Preliminary Account of an Expedition to the Cliff V'illages of the lied loock Conntry and the 'Tusayan Ruins of Siknatki and Arvatobi, Arizona, in 16:9\%; in Smithsonian Institution Annual Report, 188.
Preliminary Accomt of an Expedition to the Pueblo Ruins near Winslow, Arizona, in 1s: P . Smithsonian Institution Ammal Report for 1806.
A l'retiminary Account of Archæological Field Work in Arizona, 18:\%. Smithsonian Institution Anmal lieport for 189^{-}.
Archeological Expedition to Arizona in 1895. llhustrated, 82 plo. 4 maps. United states Bureau of American Ethology Annual Report. Washington, I.C., 1895.
Fillon, Benjamin, and Rochebrune, (). Ga de.
Poitou et Vendée. Fontenay-le-Comte, 18621865.

Firmin-1)idot, Ambroise.
(Eurres choisies de , Iean Consin. Paris, 1872.
Flandin, Eugène Napoléon et Coste, X. P.
Voyage en Perse pendant les Années 1840 et 1841. entrepris par orlre de M. le Ministre des Affaires Etrangères d'après les instructions dressées par l'lnstitut. Paris, 184318.3.

Fletcher, Banister.
Quantities, a Text-book for Surveyors, in Tabulated Form. London. 1880.
Dilapidations; a Text-book for Architects and Surveyors, in Tabulatetl Form. Londun, $18: 1$.
Fletcher, Banister, and Fletcleer, Banister F.
A llistory of Architecture. London and New York, 189\%.
Folchi. Clemente.
Discorso . . . in Encomio . . . del Commendatore Llijgi Canina.
Folwell, Amory l'rescott.
Water Supply Engineering; the Designing, Construction, and Maintenance of Water Supply Systems, both City and Irrigation. New Tork, 1800.

BIBLIOGRAPHY

Ford, Richard.
A llandbook for Travellers in Spain. London, 188:.
(This, or a modification of it, published as Murray's Ilandbook for Spain.)
Förster, Ernst.

* Denkmale Deutscher Baukumst, Bildnerei und Malerei von Einführung des Christenthums bis anf die neueste Zeit. Leipzig, 1855-1869.
Translated into French as: Monnments d'Architecture de Sculpture et de l'einture de Allemagne; by W. and E. de Suckau. Paris, 1866.
Fourcaud, L. de.
François Rude; in Gazette des Beaux-Arts 1888-1890.
Funmier, A.
La Verrerie de Portieux (Lorraine). Paris, 1886.

Fournier, Édouard.
Paris à travers les Âges; aspects successifs des Honuments et Quartiers historiques de P'aris depuis le Xille siècle jusiu'a nos jours. Texte par MM. L, Fournjer, A. de Montaighon, etc. Paris, Mesnil (Eure), 1875.
Frazer. J. G.

* l'ausanias's Description of Greece. Translated with a commentary by J. G. Frazer. 6 vols. London and New York, 1898.
Frcitag, Joseph Kendall.
Architectural Engineering; with special reference to High Building Construction. New York, $189 \overline{0}$.
French, Henry F.
Farm Drainage. The I'rinciples and Effects of Draining Land, etc. New York, 1879.
Frev, Kiarl.
Loggia dei Lanzi zu Florence. Berlin, 1885.
Friederichs, liarl Heinrich F. W.
Der loryphores des Polyklet. Berlin, 1863.
Friedlaender, Julins.
Gottfried scbatow, anfsätze und briefe nebst einem verzeichniss Seiner Werke Disseldorf, 1864.
Friedmann.
Entwurfe für den lban von Ilallen Markten und Lagerhaïsen.
Friedrich, Karl.
Augustin Hirsvogel als Toepfer. Nuremberg, 1885.

Die Essenbeinreliefs an der kianzel des Doms zu Aachen. Nuremberg, 1883.
Fritsch, K. E. O.
Denkmaler Dentscher Renaissauce. Berlin, 1891.

Froebel, Julius.
Seven Years' Travel in Central America, Nortl2ern Mexico, and the far West of the Lnited States. With illustrations. [Translated from the German.]
Frontinus, Sextus Julius.
De Acpaxductilus I'rbis Romæ, Libri 1I. Tramslated into English as: 'The Two Books on the Water Supply of the City of Rome of Sextus Julins Frontinus. A Photographic Reproduction. Explanatory chapters by Clemens IIerschel. Boston, 1809.
Frothingham, A. L., Jr. Notes on Roman Artists of the Middle Ages; in American Journal of Archaeology, Vols. V., V'i., 1888-1890.
Finentes, Don Manuel Atanasio.
Gnia historico-descriptira, administratira, judicial y de domicilio de Lima. Lima, 1860.
Fumagalli, Carlo.
11 Castello di Malpaga. Milan, 1894.

BIBLIOGRAPHY

Fumi, Luigi.
1] Duomo di Orvieto e i suoi restauri . . . Rome, 1s:91.
Furtwängler, Adolf.
Meisterwerke der Griechischen l'lastik ; Kunstgeschichtliche untersuchungen. Leipsic, 1893.

Translated as: Masterpiece of Greek Sculptnre. A series of Essays on the llistory of Art. Edited by Lugénie sellers. With 19 full page plates and 200 text illustrations. New York, 1895.
Füssli, Johann Rudolf.
Allgemeines kiunstlerlexicon; oder Nurze Nachricht von dem Leben und den Werken der Alahler, Bildhauer. Bammeister, Kupferstecher. Zurich, 17:9-1821.

Gailuaband, Jules.

* Moauments Anciens et Modernes. Paris, 1849-18:5.
* L'Art dans ses diverses branches. Paris, 1803.
* L'Architecture du $V^{\text {me }}$ au IVII me siécle et les Arts qui en dependent. Paris, 18.8.
Galland, feorg.
Geschichte der holländischen Baukunst und Bildnerei im Zeitalter der Renaissance, der nationalen Blite und des Klassicismus. Frankfurt a. M., 18!0.
Galton. Sir Douglas Strutt.
Healthy Hospitals: Observations on Some Points connected with llospital Construction. Oxford, 18\%3.
Galvani, 1)r. F. A.
Il Re d' Armi di Sebenico. Venice, 1884.
Gandon, James. Jr.
Life of James Gandon . . . prepared for publication by Th. J. Mulvany. Dublin, $18+6$.
Gardner, Ernest Arthur.
A llandbook of Greek Sculpture. London, $18 \% 7$.
Gardiner, l'ercy.
sculptured Tombs of Hellas. London, 1896.
New Chapters in Greek 1listory; Historical Results of recent Excarations in Greece and Asia Minor. New York, 1892.
The Types of Greek Coins; an Archæological Essay. Cambridge, 1883.
Garnier. Charles.
Michel-Ange, architecte (first published in the Gazette des Beaux-Arts).
Le Nouvel Opéra de l’aris. Paris. 187-j-1881.
Garnier. E.
Voyages dans I'1lindoustan, l'1ndo-Chine. le Sindby, à Lahore, à Caboul et dans 1^{1} Afghanistan. Tours, 1857.
Garmeci, liaffaele.
Storia rella Arte cristiana nei primi otto secoli della chiesa . . . 1'rato, 187:3-1881.
Gasset, Alphonse.
Les Coupoles dorient et doceident. I’aris, 1889.

Gatty, Alfred.
The Bell, its Origin, 17istory, and Uses. London, 1847.
Gaucherel, Léon.

* Exemples de Décoration Appliqués à l'Architecture et à la l'einture. 1st pt.; 2 d pt . never published. Paris, 185.
Gandari. Iules.
Fuumlations ; translated by L. F. Vernon Harcourt. New York, 1891.
Gauthier, Martin Pierre.
Les plus beanx Édifices de la Ville de Gênes et de ses Environs. 1'aris, 1830-1832.

BIBLIOGRAPHY

Gavard, Jacrues Dominique Charles. Galeries historiyues de Versailles. P'aris, 1838.
Gaye, Joham Wilhelm.
Carteggio inedito d' arteggio dei secoli 14, 1516 . Florence, 18:! - 1841 .
Gazette des Beaux-Arts [Periodical]. 1'aris, 18.09 and following years.
Gejer, Franz, und (Garz, 1 .
Denkmale Romanischer Baukunst am Khein. Frankfurt an Main, 184t-1817.
Gelis-Didot, 1 .
La Peinture décorative en France du NJe an NVTe siècle. l'aris (n.d.).
La l'einture décorative en lrance du XVIe au NVI1re siècle. I'aris.
Genevay, Antoine.
Le Sityle Louis X1V., Ch. Lebrun, ses Cuvres, etc. Paris, 1886.
Genouillac, H. Gourdon de. L'Art héraludigue. Paris.
Genuys, Charles.
Construction Maçonnerie. Paris, $188{ }^{\circ}$.

* "Georgian Period, "The," being measured Drawings of Colonial Work. American Architect and Building News Co. (8 parts published, 1901.)
Gérard, Charles.
Les Artistes de l'Alsace pendant le MoyenÂge. Colmar, 1872-187:).
Gerhard, William Paul.
Disposal of llousehold Waste. New York, 1890.

Ilouse Drainage and Sanitary llumbing. New York, 1890.
Sanitary Engineering of Buildings. New York, 1899.

Recent I'ractice in the Sanitary Drainage of Buildings. 1890.
Sanitary llonse Inspection. 188.j-1887.
Entwaesserungs-Anlagen amerikanischer Gebaüde [an extra number (Fortschritte No. 10) of the llandbuch der Architektur]. Stuttgart, 1897.
IIans Eutwaesserungen, eine banhygienische skizze.
German Architectural Pocket Library Deutsche Batetechnische Tascbenbibliothek. Leipzig, $188^{-}-$.
Gerspach, Edouard.
L'Art de la Verrerie. Paris, 1885.
La llosaïque. l'aris. 18:3., (Forms part of Bibliothéque de l'enseignement des BeauxArts.)
Gessert, -
Geschichte der Glasmalerei. Stnttgart and Tübingen, 18:9.
Geymuller, baron lleinrich von.
Les p'rojets primitifs purr la Basilique de S . Pierre de Rome par Bramante, Raphaël Sanzio, etc. Paris, 1-80.
Documents inédits sur les Manuscrits et les œurres d'architecture de la famille des San Gallo; in Mémoires de la societé nationale des Antiguaires de Framer. 1884.
Les du Cercean. I'aris and London, 1887.
Raffaello Sanzio come architetto, cun l' aiuto di nuovi docnmenti. Milan, 1884.
Documents inédits sur les thermes d'\grippa, le l'anthén et les thermes de Diuclétien. Lausanne, 1883.
Geymilller-Stegmann.
1)ie Architektur der Renaissance in Toscana (originally supported by the Gesellschaft San Giorgio in Florence), parts $1-3$;i; ; $1885-$ 1896. Four more parts, completing the work, had not appeared Angnst, 1!01.

BIBLIOGRAPHY

Giannuizzi, l'ietro.
(iiorgio da Sebenico, Architetto e scultore rissuto mel stcolo XV . ; in Archivio Storico dell Arte, 18:94.
Gilbert, A. I'. M.
Description historiçue de J`Eglise Cathédrale de Notre Datue de Clartres. Chartres; Paris, 18:4. Description historique de J'Église Cathédrale de Notre Dame d`Amiens. Amiens, $1 \boxed{3} 3$.
Gillespie, Willian Mitchell.
Elements of Perpendicular Projection. 1897.
Gintriez, Charles.
Françuis Rude ; in lisirt [Periodical] for 15N1.
Giovanelli, Conte [3enedetto dei.
Vita di Alessaudro Vittoria, scultore trentino. Trent, 1858.
Girard. Paul.
La l'einture Antique. Paris, 1892.
Girandet. Eugène.
Les artistes Tourangeaux. Notes et documents inedits. Tours, 1885.
Girault de l'rangey.
Essai sur l`. Irchitecture des Arabes. 1842.
Gisors, Alphonse de.
Le Palais du Luxembourg. Paris, 1847.
Gladbach. Ernst.

* Les Constructions en Bois de Ja Suisse. Paris, 1570.

Die schweizer Holzstyle. Zurich, 1882.

* Glossary (A) of Terms used in Grecian, Roman, Italian, and Gothic Architecture. Oxford, 18.50.

Gnoli, Domenico.
La Cancelleria ed altri Palazzi attribute a Bramante ; in Archivio Storico dell' Arte, 1892.

Le upere di Mino da Fiesole in Roma; in Archivio Storico dell` Arte, Yol. I1., 1889.
Gomez, Camillo A.
Historia de la Anerica Central Guatemale, T'ipogratia Nacional. 1895-1897.
Goncourt, Edmond et Jules de.
L'Art de la dix-huitième siècle. Paris, 187.
Gonse, Louis.
L'Art Gotbique: L’Architecture, La Peinture, La Sculpture, le Décor. P’aris, 1890.
La sculpture Irançaise. Paris, 189..
Gonzati. Bernardo.
Basilica di Sant' Antonio di Padora. Padua, $1852,1853$.
Goodyear, William Henry.
The (irammar of the Lotus. New York, 1890.

Gorringe, l.t.Commander Henry II., U. S. N.
Egyptian Obelisks ... (illustrated). New York, 1882.
Gosset, Alphonse.
Les Coupoles d'Orient et d'Occident. Paris, 1881.

Gotch, John . Ilfred.
Complete Account of the buildings erected in Northaruptonshire by Sir Thomas Treshau 15:5-1645. Korthampton. 1883.
Gotch. John Alfred, and Brown. Walter Talbot.
Architecture of the Renaissance in England. London. 1594.
Gotti, Aurelio.
Vita di Nichelangelo Buonarroti. Florence, 1575.

Gouffê, Jules.
Le Livre de Cuisine. Paris, 18 fi .
Gourlier, Charles I'ierre ; Biet, Léon Marie Dieudonné ; and others.
Choix d'édifices publics. Paris, 1825-1850.

BIBLIOGRAPHY

Goze, A .

Nouvelle description de la Cathédrale d'Amiens, suivie des descriptions du beffroi et de l’Hótel-de-Ville par M. H. Duserel. Amiens, 1 | 145 |
| :---: |

Grand Dictionnaire Universel. (See Larousse, P.) I'aris. 1 stitio.
Grande Encyclopédie, La ; Inventaire Raisonné des Sciences. des Lettres, et des Arts . . . sous la direction de 11. Berthelot, and others. l'aris, n.d. (unfinished, 1901).
Crandidier, IPLilippe André.
Essais historiques et topographiques sur l'Église Cathédrale de strasbourg. Strasburg, 1872.
Grandmaison, 1)e.
Documents inedits pour servir à l'histoire des arts en Touraine. (Généalogie des Pinaigrier.) Tours, $18: 0$.
Granet, Jean Joseph.
Histoire de l'llôtel Royal des Invalides. l'aris, 1736.
Grangaret de Lagrange.
Les Arabes en Espagne. Paris, 1824.
Gravina, Domenico Benedetto.
11 Duomo di $\$ lonreale. P'alermo, 1859.
Gregorovius, Ferdinand.
Geschichte der Stadt Rom in Alittelalter rom V bis zum XVI Jahrbundert. Stnttgart, 1874.
Griffin, Sir Lepel.
Famons Monuments of Central India. London (n.d.).
Griggs, William.
India; l'hotographs and Drawings of Historical Buildings. London, 1806.
Grimm, Hermann.
Das Leben Michelangelo's. Berlin, 1879; llanover, 18ti0-1863.
Translated by F. E. Bunnett as Life of Michael Angelo. London, $186 \overline{5}$.
Grothe, Hermann.
Katechismus der Wäscherei, Reinigung und Bleicherei. 21 ed . (with 41 illustrations). 1.eipzig, 1884.

Grüneisen, liarl you, and Mauch, F. E.
L'm's Kunstleben im Nittelalter. L'lm, 1840.
Gruner, L.
" Lo Scaffale" or Presses in the Sacristy of S. Maria Grazie at Milan. London, $186 \hat{0} 0$.

Terracotta Architecture of North ltaly. London, 1865.
Specimens of Ornamental Art, selected from the best Models of the Classical Epochs. London. 1850.
Gruyer, François Anatole.
Essai sur Jes Fresques de Raphaël au Vatican. Paris. 1859.
Gsell-Fels, 1)r. Theodor.
Ober-Italien und die Riviera. 6th ed. Leipzig, 1808
Mittel-Italien. 4 th ed. 1886.
Rom und die Campagna. Eth ed. 1901.
L'nter-Italien und Sizilien. 3d ed. Leipzig, 1869.
(This is the current edition of the Italian volumes of Meyer's Reisebücher.)
Gualdns, I'aolns.
Vita di Andrea Palladio, first poblished in Montenari. Teatro Olimpico di Palladio. थd ed. 1749 . (See Montenari.)
Guastavino, R.
Lssay on the Theory and llistory of Cohesive Construction. Boston, 1893.
Guasti, Cesare.
La Cupola di Santa Maria del Fiore, illustrata con i documenti del archivio, dell' opera secolari. Florence, 1887.

BIBLIOGRAPHY

Santa Maria del Fointe. La Construzione della chiesa e (lel Campanile. Forence, 1857.
11 I'ergano di Donstello del duomo del l'rato. Florence, 1887.
Guerber (I ; Abbé).
Essai sur les V'itraux de la Cathédrale de Strasvourg. Sitrinhurg, lsts.
Guhl, Ermst, und Koner, W'ilhelm W'eh.
Das Leben der Griechen und Romer nach antiken bildwerken dargestellt. Berlin, 1882.

Guicenudini, Lolovico.
Description de touts les l'ais-Bas. Antwerp, $155^{\circ} 2$.
Guidicini, (iluseppe.
Cuse Miribili di Bologna. Bologna, 1808.
Guiffrey, Jules Marie Josepll.
Comptes des Batiments sous Louis XIV. et sous Lomis XV. Jaris, 1879.
Guilbert, lierre (Abbi).
Description historicue des Château, Bourg et Furest de Fontaineblean . . Daris, 1731.
Guilhermy, Roch Françuis Marie Nolasıue, Baron de, et Viollet-le-Duc.
Description de Notre Dane de Paris. Paris, 18.36.

Guilmarkl. Désiré.
Les Maitres ()rnementistes. Paris, 1880-1881.
Guzzarli, Giuseppe, and Davia, Marchese V.
Le sculture delle Jorte della Basilica di San Petronio. Bulogna, 1834.
Gurlitt, Cormelius.
Die Baukunst Frankreichs. Dresden (n.ct.).
(ieschichte des barockstiles in ltalien... Stuttgart, 1887.
Geschichte des Barockstiles und des Rococo in Deutsehland. Berlin, 1899.
Gntensohn, Johamn Gottfried, und Knapp, J. M.
Denkmale der Christlichen Religion. Rome, 182.

Published later as Die Basiliken tes christlichen Roms. (See Bunsen, C. Ji. J.)
Gwilt, Joseph ; P'ipworth Wyatt.
Encyclopedia of Architecture. London, 1881.

Hafner (Docteur).
les chefs-d'renvre de la Peinture suisse sur Verre, publiés par la société llhistoire et d'antiquite de Winterthur, plotographiés d'apres les peintures orjginales sur verre, existantes en differents lieux. Berlin, 18! $)^{2}$.
Ilalsted, Byrom Daviu.
Barn Plans and Outbuildings. New Vork, 188o.
Hamerton, Philip Gilbert.
The Monnt and Autın, Boston, 1897.
Manilton, William Richard.
Memorandun on the Subject of the Earl of Elgin's I'ursuits in Greece. London, 1815.
Hamlin, A. I). F.
A Text-book of the Mistory of Architecture. New York, London, and Bombay, 1896.
Hampel, II.
1)ie Moclerne Teppichgärtnerei. Berlin, I8801887.

Handbook for Use in Private and l’nblic Laundries. Incluting descriptive accounts of modern machinery and appliances for latandry work. I Iy the editor of 'The Lamulty Journal. With numerous illustrations. Lomion.

* Handbuch der Architektur ; about 35 volumes published. 1883 to 190$]$; there is mo uniformity of size except of the page. The volumes of Dr. Josef Durm, lie IBankunst

BIBLIOGRAPHY

der Gricehen, Die [Bankunst (ler Etrusker . . . der límer, and those by Dr. Ausust von Essenwein an Medieval Jrt (though this sulnject is fir from completes) lave been referred to in the toxt. Inirmstadt.
IIäntke, Berthold, and Miillor, Ingust.
Des Miinster m liern. Bern, 1894.
Inardmin, Nichel.
Livre de tous les Plans, I'rodils at Élévations du Châtean de Clagny. I'uris, lfisu.
IIarlwick, 'Ilmuas.
Memoir of the Life of Sir William Chambers. Lomblon, 1825-1802.
Itarforl, John Scandrett.
Life of Michael Angelo Juonarroti, with translations of many of his I'oems and Letters. London, 1857.
IIarrison, Frederie,
Anmals of an Ohd Manor lfonse, Sutton Place, Guildford. Lonton and New York, 18! 3.
IIarrison, Miss Jane Ellen.
Mythology and Monuments of Ancient A theus. 1890.

Hart, Mrs, Ernest.
l'icturescfue lBuma, l'ast and Present. London and I'hiladelphia, 18!7.
Ulartwide J .
Die Iuflage von Lustgebieten und Blumengärten. Weimar, 18 il.
IIasenauer, Fard, Freiherr von.
Das li. K゙. Hofburgtheater in Wien.
Ilassler, Konrad Dietrich.
Clims Kimstgeschichte in Nittelalter. Stuttgart, 1864.
Haswell, Charles H.
Mechanics" and Engineers' Pocket Book of Tables, Rules, and Formulas, etc. New York, 1891.

Mauk, G.
Die subjective Perspective und die horizontalen Curven des Dorischen Styls. Stuttgart, 187%
laupt.
Backstein Bauten der Renaissance. Frankfurt a. M., 18!19.
Haussmann, Georges Eugène.
Mémoires. laris, 18:90-1893.
Havari, llemry.

* La France Artistique et Monumentale. 6 vols. 4to. Paris (11.d.).
L'(Buvre de 1'. V'. Galland. J'aris, 1895.
* Dictionnaire de l" Ameublement et de la Jécoration. Itepuis le li弓e siècle jusqu'à nos joms. Piris, 18ธ7-18 1 .
Heaton, Jolin Ilelim (editor).
Furniture and Decoration in England. London, 1889-1892.
IIeidelbers, liax!.
Jie Ornementik des Mittelalters ; translated into French as Les oruements du Moyen$\hat{\text { Age. Nuremberg. } 18: 88-1855 .}$
lleideloff, Karl A lexander von.
Die Bauhiitte des Mittelalters in Dentschland. Nuremberq, 1844.
Heiteloff, Liarl Jlexander, und Miiller, Friedrich. 1)ie Kunst des Mittelalters in Schwaben. Stuttgart, 18.).
IIeiss, Iloiss.
Les Mérlailleurs de la Reuaissance; Francesco Laurana, Pietro da Milano. I'aris, 1882.
Heiss, I'lilipp.
Die Bierbranerei mit besonterer Beriicksichtigung der dickmaisch Branerei. MLunich, 1853.

Helbig, Farl Friedrich Wolfgang.
Die Italiker in der l'nelnene. Leipzig, 1879.

BIBLIOGRAPHY

llelms, Jacob.
The Churches of Sallingland. Copenhagen, 1884, and following years.
libe Dom-Kirke. Copenhagen, 1870.
Hennicke, Julius.
Mittheilungen uber Markthallen in Deutschland, England. Frankreich, Belgien und latien. Berlin, 1881.
Menzen, W'ilhelm.
Zu den Fälschungen des Pirro Ligorio (in Commentationes Philologe in Honorem Themdori Mommseni . ..). Berlin and Leipzig, 1877.
Herberger, -
Die altesten Glas gemälde im Dom zu Augsburg. Aughburg, letio.
Herdman, William Gawin.
A Treatise on the Curvilinear Perspective of Nature. London (n.d.).
IJerluison, lemri.
Actes le l'État Civil d'Artistes français, Peintres irraveurs, Architectes, etc. Extraits des légistres de l'Hôtel de Ville de Paris. (Gréans, 187:3-1880.
Artistes ortérmais. Orléans, 1863.
Herreta, Antonio de.
The Creneral History of the Vast Continent and Islands of America. Translated into English by Captain John Stevens. London, 172:-1726.
Herschel, Clemens.
See Frontinus.
Hittorff, 1. Ignace.
Notice sur la Vie et les Curres de Sir Charles Barry. l'aris, 1860.
Restitution du Temple d'Empédocle à Sélinonte; l'Architecture polychrome chez les Grecs. Paris, 1851.
Hittorff. and Zanth, l.
Architecture antique de la Sicile. Paris, 1827 (never completed).
Architecture moderne de la Sicile. 1835.
Hochstetter, J.
Schweizerische Architektur . . . Erste Abtheilung. Ilolzbauten des Berner Oberlaudes aufsenommen von C. Weinbrenner and J. Durm. Wfte. 1-6. Cartsruhe, 1857-1858.
Hoffbauer, Joseph llubert Isidor (editor).
Paris à travers les $\hat{\mathrm{A}}$ ges. Paris, 188 o.
Holbein, IIans le jeune.
Photographs of Drawings for Glass, by Braun.
Holiday, llenry.
Stained Glass as an Art. London, 1896.
Holl. Elias.
Die Selbstbiographie des Elias Holl, Baumessters der Stadt Augsburg, 1573-1646; hrsg. von Dr. Cluistian Meyer . . . Augsburg, 1873.

Holm, C. F.: Hansen, Heinrich; etc.
Danske Mindesmaerker. Copenhagen, 1869.
Holmes, IV. II.
Archreological Sturlies among the Ancient Cities of Hexico, ("hicago, 1895.
Holtzinger, Dr: Meinrich.
U'ber den Ursprung und die Bendeutung der Doppelchöre. leipzig, 1882.
Honecourt or tlonnecourt.
see Villard and IViiars.
Hope, E. W.
Slaughter Houses, an article in 5th and 6th Amual Reports, Massachusetts State Board of Health.
Slaughter Houses, article in Stevenson and Murphy Treatise, (which see).
Hope, Sir Theodore Cracraft.
Architecture at Ahmedabad, the capital of

BIBLIOGRAPHY

Gonzerat (with architectural note by J. Fergusson). London, 1866.
Hotzen, Adelbert.
Jas Kaiserlaus zu Goslar. Halle, 1872.
lloward, lames Q.
Ilistory of Americau Architects of the National Capitol, in International Review, Vol. I., 18 it.
lliibsch, Heinrich.
Die altchristlicben Kirchen. Carlsrube, 18621863.

Hucher, Eugene.
Calyues des Vitraux Peints de la Cathédrale du Mans. Le Mans and Paris, 1864.
llughes, John Arthur.
Garden Architectnre and Landscape Gardening. London, 1886.
Huillaril-13réholles, Jean Louis.
Recherches sur les Monuments et l'llistoire des Normands et de la Maison de Souabe dans l'Italie méridionale. Paris, 1844.
Humann, K. and luchstein, O.
Reisen in Kleinasien und nord Syrien. Berlin, 1890.

Humboldt, Alex. von.
l'ersonal Narrative of Travels to the Equinoctial Regions of America during the years of 1709-1804. Translated and edited by Thomasina Ross. London, 1852-1853.
Hunter. .Joseph.
On the Death of Queen Eleanor of Castille . . . in Archreologia, 1842.
Murst, Iohn Thomas.
Elementary Principles of Carpentry. London, 18%.
Husenbeth, Rev. Frederick Charles.
Emblems of Saints, by which they are distinguished in W orks of Art. London, 1860.
Hluss, G. M.
Rational Building. Translated from article "Construction" in Viollet-le-Duc's Dictiomaire Raisonnée de l'Architecture Française. New York. 1895.
Husson. Jean Christophe Armand.
Étude sur les Hopitaux. Paris, 1862.
Hutchinson, Thomas Joseph, M.D.
Two Years in Peru, with Exploration of its Antiquities. London, 1873.

Immerzeel, C. H.
De Levens en Werken der Hollandsche en Vlaamsche Kunstschilders. Beeldhonwers Graveurs en Bouwmeester's . . . Austerdam, 184:-1843.
India, Archæological survey of.
Cunninghan, llope, and others, forming an extensive series.
Ingres. Jean Dominique Auguste.
Vitranx de la Chapelle Saint-Ferdinand (planches). 1845
Inkersley, Thomas.
Inguiry into the Chronological Succession of the Styles of Romanesque and Pointed Architecture in France with notice of some of the . . . buikings on which it is founded. London, 1850 .
International Monthly [Periodical]. New York, afterwards Burlington, 1898-.
International Review [Periodical]. New York, 1874-.
Iuventaire général des (Euvres d'Art apartenant à la ville de Paris dressé par le Service des Beaux-Arts; Edifices religieux. Paris, 1878-1886.
Inventaire général des Richesses d'Art de la France.

BIBLIOGRAPHY

laris, Monmments. Religienx, 1siti-1888.
Paris, Nlonuments C'ivils, 187! -18s!?. Published by Ministère de l'Instruction P'ublique et des Beaux-Arts (Frauce).
Ionian Autiquities ; published with permission of the society of Dilettanti by R. Chandler, N. Revett, W. l'ars. (See Antipuities of Ionia.) London, IT69.
Irish Builder, The, and Engineering Record, Vol. IK. etc. (See the Dublin Buikler.) Dublin, 18(i7-.
Isabelle. M. E.

* Les Édifices circulaires et les Domes. Paris, 15%.
l'arallèle des salles rondes de l'ltalie. Paris, 1 stio.
Isham, Norman M., and Brown, Albert F.
Early Rhode Island llouses. l'rovidence, R. 1., 1595.

Early Conneeticut Houses. łrovidence, 1900.
Jackson, Thomas Graham.
Dalmatia, the Quarnero and Istria, with Cettigne in Montenegro and the Island of Grado. Oxforl, 1887.
Modem Gothic Architecture. London, 1873.
Jacob, Lt.-Col. Sammel Swinton.
Jeypore Portfolio of Architeetural Details. London, 1890.
Jacobsthal. Johann Eduard.
sud-italienisebe Fliesen-()rnamente ; Originalanfnahmen. Berlin, lsst.
Jahrbueh der kunsthistoriseher: Sammłnngen des Desterreichisehen Kaiserhauses. [Annual rolumes.] 21 vols. V'iemna, IN8:
Jahrbuch der Föniglich Preussisehen Kunstsammlungen. Berlin, 1884)-. (Fonr parts forming a large volume are published each year.)
Jał, A.
Dictiomaire critique de Biographie et dHistoire. Paris, 1872.
Janitsehek, Dr: Hubert.
Leone Battista Alberti's Kleinere kiunst. Vienna, 187\%. - In R. Eitelberger von Edelberg ; Guellenschriften für Kiuntgeschichte.
Japan Society. London (Ens.)
Transactions and Proceedings. London, 1899.
Jenkins, R. C.
Herahlry, English and Foreign. London, 1880.
Jevons, Frank Byron. 'Iranslatel by sclırader, U. Prehistoric Antiquities of the Aryan Peoples: a Manual of Comparative Philology and the Earliest Culture. New York, Isio.
Joanne, Paul.
Itinéraire général de la France. Alany volumes. Paris, different dates.
Guides à l'Étranger. Many volumes. Paris, lifferent dates.
Johansen, P.
Copenhagen, in Blätter für Arehitektur und kunst Ilandwerk for Aug. 1, 1895.
Johnson, Robert J.
Specimens of Early French Architecture. New-castle-on-Tyne, 1814.
Johuson's U'niversal Cyclopedia.
New York. 1893-1895 (a second and much revised edition).
Jolimont, François Gabriel T. B. de.
Les I'rincipaux Édifiees de la Ville de Rouen en 1525. dessinés à cette époque sm les plans d'un 35. ... appelé, Le lirre des Fontaines. . . . lionen, 1845.
Nomments les plus remarguables de la Ville de lionen. l'aris, 1822.
Joly. Iules de.
Mlans, Coupes, Élévations et Dêtails de la Res-

BIBLIOGRAPHY

tauration de la Chambre des Députés. Taris, 1840.
Jomard, Edme Francois.
Description de l'Egypte, Antiguités (forms part of the great work, Description de l'Egypte, which see).
Jones, 11. stuart.
Select Passares from Ancient Writers illustrative of the Ilistory of Greek sculpture. London and New York, 1895.
Jones, Inigo.
Designs, consisting of Plans ... for P'ublic and Private Buildings. published by 11°. Kent with some additional Iesiqus. London, 1727.
London Churches of the 1ith and 18th Centuries. London, 1896.
Jones, wiven.
'lhe Grammar of Ornament. London, 1856. (A smaller ellition. London, 186.5.)
Allambra Court in the Crystal Palace . . . London, 1854.
Jopling. -.
Practice of Isometrical Perspective. London, 183.5

Jonffroy d'Vscharannes.
Armorial universel, précédé d'un Traité complet de la science dn l3azon, et suivi d’un supplément. P'aris, 584-1818.
Jouin, Henri.
Charles Lehrm et les Arts sons Louis XIV. Paris, 10s?
Antoine Coyserox, sa Vie et son Eurre. Paris, 188.3.
Davill d'Angers; in Revue des Arts décoratifs. Jourdain-Dnval.

Portail de la Cathélrate d'Amiens; in Bulletiu Monumental.
Journal of Hellenie studies. The.
London, 1880 (pubfication contimed).
Junghändel, Max, und Gurlitt. Cornelius.
Baukunst spaniens. Inesden, Is! 1 -1893.
Justi, Carl.
Djego Velasquez and his Times. London, issi. (Translation from the German by A. S. Keane.)

Kabierske. Dr.
Das Hallenschwimmbad in Breslau. Ibreslan (Germany), 1899.
Kaiserlich Deutsches Archaeologisches Institute Antike Denkmaler. Berlin, 1891-.
Kandler, Pietro.
Cemni al forestiere che visita Pola. Trieste, 184.5

Cemni al forestiere che visita l'arenzo. Trieste, 1845.
[MSS. cited in Jackson's Dalmatia.]
Kane, Jantes.
New System of Public Baths. London (n.d.).
Kautmann, A.
Der Gartenbau im Mittełalter und während der Perinde der lenaissance. Berlin, Is\%2.
Kayradias. P .
Fouilles d’Épidaure. Athens, 1801.
Keane, Marcus.
Tow ras and Temples of Ancient Ireland. Dub$\operatorname{lin}, 1647$.
Kempf, Rudolph, and Buff. Dr. A.
Alt-Aucsburg: Eine Sammhung Arehitectonischer und Kunstgewerblicher Motive. Berlin. 1898.
Kent, William.
Strength of Materials. (Reprinted from Van Nostrand's Engineering Magazine.) New York, 189.

BIBLIOGRAPHY

Kerr, Robert.
The (ientheman's House, or llow to Jlan English liesidences. Lomdon, Ievis.
Kidler, F. E.
Architects' and Builders' Pocket Book. New Y゙ork. Many editions.

* Building Construction and Superintendence. New Fork, letis, lesat. l'art I, Mamors Work. Bd. ed. l’art II. ("arpenter"s Work. ©d. ed.
King. Richard John.
lianllooks if the Catherlrals of England. Lomblong, oxford, 1-tit-l8si.
King. Thumas 11.
* The Stuly-book of Mediaeval Architecture and Art. London, lsox.
kingsborough (Lord).
Antiquities of Mesico. 9 vols. folio. London, 18.31-1845.

Kip. Johannes.
Brittannia Illustrata; or Views of all the Kings? Palaces. several seats of the Nobility and Gentry ; all the Cathedrals of England and Mrales. London. $1 i_{2}{ }^{-}$.
líprianor, Valérian.
Histoire l'ittores fue de l'Architecture en Russie. st. Petersbury. leff.
Kitchin. George William.
Life of Pope Jius II.. as illustrated by Pinturicchio's frescoes in the I'iccolomini Library at Siena. Arundel society. London. 18 © 1.
Klasen. Ludwig.
Grundriss vorbilder ron Gebäuden aller art. Leipzig, $18=4$.
Klinger. J. H.
Die Bade-Instalt. Vienna and Leipsic, 1891.
K̈nackinss. Kunstler Monographien. [Separate bingraphies of artists]. Leipzig, various dates.
Kinigbt. Charles.
London. London. 1841-1844.
Old England, the Pictorial Museum of Regal, Ecclesiastical. . . . and l'opular Antiquities. London. 1845.
Pictorial Half Hours of London Topography. London, 185.
Koch, Julius, and Seitz, Fritz.
Das Heidelberger Schloss. . . Darmstadt, 1801.
Koldwwey. Robert. and Puchstein. Otto.
Die Griechischen Tempel in Cnteritalien und Sicilien. Berlin, 1809.
Kramm. Christiaan.
De Levens en Werken der flollandsche en Vlaamsche Kunstschilder's . . . Amsterdan. 185i-1854.
Krätschell, Johannes.
Karl Friedrich Schinkel in seinem Verhältniss zur cuthischen Baukunst. Berlin. 1802.
Krell. Paul Friedrich.
Geschichte des Dorischen Styls. Stuttgart, 1-00.
Krenser. Johann P'eter Balthasar.
ber christliche Kirchenbau. Bonn. 18 abl.
Krouse, Louise B.
Reading List on Library Buildings.
Surcestive Plans for the New York Public Library Competition.
Kugler. F. T.
Yommersche Kunstgeschichte Nach den erhaltenon Monumenten dargestelit. in Gerellschaft fur Pommersche Geschichte. Etc. in Baltiache studien. Jabrg. 8. Heft. 1. Stettin, 142.
Kleineschriften und Studien zur Kunstgeschichte. Stuttgart. 18.30, 1854.

BIBLIOGRAPHY

Handbuch der Runstgeschichte. Stuttgart, 1542. Ilandbook of Painting. 'The German, Flemish, and butch schools, based on the handbook (f Kingler remmelled by the late 1)r. Waagen and thoroughly revised and in part rewritten by the late sir Joseph Crowe. London, 1098.

Kuhn, Uswald.
Krankeuhälser ; forms part of Handbuch der Architektur, l'art IV.
Kumlien. H. J.
stensta llerrgàrder och Villor af Svenska Arkitekter. stockholm.
אunkel,
Glasimacherkunst. Nuremberg, 1-5).
Kunstchronik, wokenschrift für kunst und Kunstgewerbe. [supplement to Zeit.chrift der Bildenden kunst. A periodical in course of publication.] Berlin.
Kunsthronjik. bitgerrsen ter aanmoediging en rerspreiding der schoone Runsten [Periodical]. The Harue and Levden, 1841. etc.
Kunstler Monographien.
See Knackfuss liunstler Monorraphien.
Kunst und Kunstler des Mittelalters und der Seuzeit. Bingraphien und Charakteristiken. R. Dohme (editor). Leipzig. lisi.j, etc.

Kutschmann. Theodor.
Romanische Baukunst und Ormamentik in Deutschland. Berlin and New lork.

Labarte. Jules.
Le Palais Impérial de Constantinople. et ses abords, sainte-sophie, le Forum Augustéon et l'Hippodrome tels qu'ils existaient au dixième siè cle. Paris. lebl.
Laborde. Leon, Marquis de.
Les Contes des Bâtiments du Roi. 1:28-1571, suivi de documents. P'aris, 18it-1880.
Les Dues de Bourgogne. Paris, 18.50.
La Renaissance des Arts à la Cour de France. Paris. 18001-18.5.
Yersailles, ancien et moderne. Paris, 1841.
Les Archives de la France pendant la Rérolution. Paris, 1863 .
Docmments inédits ou peu connus sur l'llistoire et les Antiquités d'Athènes. Paris. 1854.
Laborde. Léon. Marquis de, and Linant de Bellefonds. M.A.
Vorage de l'Arabie P'érée . . . Paris, 18.30.
Lachner. Carl.
Geschichte der Holzbaukunst in Deutschland. Leipzig. 1887.
Lacroix, Paul.
Peinture sur Verre : in Volume V. of Le MoyenÂge et de la Renaissance. l'aris. 1848.
La Farge. John.
The American Art of Glass. New York, 1893.

La Faye de l'Hôpital. Pierre de.
Description archéoloqique et bistorique de la cathédrale de Clermont. Clermont-Ferrand, latio.
Lagrange. Léon Marius.
Pierre P'uget, Peintre. Sculpteur. Architecte. l'aris. 1stis.
Laloux, Victor; Monceaux. Paul.
Restanration dolympie. Taris. 1880.
L'- Architecture Grecque. Paris, 188.
Lambert (1 - 1 bbé $)$.
Hlistoire littéraire du Regne de Louis XIV. Paris. 1751.
Lambert, Indré.
Madonna di San Biagio. près Montepulciano. bâtie par Antonio di San Gallo de 1518 à 1526. Stuttgart. 1594.

BIBLIOGRAPHY

Lambert, Ambe. et liychner, Alfred.
L'Architecture en suisse anx différentes Eporgues. Bisle, 188:3.
Lami, Stanislas.
Dictionnaire des siculptenrs frangis de l'école française du Moyen-Âge an liegne de Lonis XII. Paris. 1818.

Lance, dolphe Etieme.
Dictiomaire cles Arehitectes Français. I'aris, 187.

Lanciani, Rodolfo.
Aneient Rome in the Light of Fiecent Discoveries ; with one humdred illustrations. BusIon and New York. Cambridere, I889.
Pagan and Christian Rome. Irofusely illustrited. Boston and New lork. Cambridge, $180: 3$.
The Rhins and Excavations of Anrient Lome. Bnston and New York. Cambridge, 1897.
The Destruction of Aneient Rome; a Sketch of the llistory of the Nonmments. New York; London, 1899.
Forma l'bis Roma, consilio et antoritate regise adalemise byereorm formam dimensus est et ad modulum I: lon delineavit. (l'lans of the city.) Milan, completed 1901.

Lanck, léopold.
Traité pratique de la Construetion Moderne et Deseription du Matérie! employé par les Constricturs. layis, 1nit.
Lanckorónski, K. ; Niemam, G. ; and Petersen, E.
stälte Pamphyliens mul l'isidiens. V'ienna and I'ragne, $18!0,18!2$.
Lane, Edward William.
An Account of the Janners and Customs of the Mndern Egyptians. Lomdon, 1830.
Lange, Wralther.
Das antike mriechish-römische Wohnhans. Leipzis, 18 \%.
Langhome, John and W'illiam.
INIntareh's Lives. See I'lutarch.
Langlois, Hyacinthe.
Essai sur la Peinture sur Verre. Roueu, $18{ }^{2} 2$.
La Normanlie Illustrée; Monuments, Sites et Costumes de la stine-1nférieure, de l'Lure, du Calvados, de lorme et de la Manche, dessinés d'après Nature par F. Ienoist . . . texte par h. Burdeanx et A. Bosiquet. sons la direction de A. Pottier pour la Haute Normandie. Nantes, 1852.
Lanzi, A bate 1anigi Antonio.
Sturia pittorica della Italia dal Risorgimento delle Belle Arti fin presmal tine del XVII secolo, edizione terza . . . aeerescinta dall' Anton. Bassano, 1899.
La Quérière, Eustache de.
Notice historique et leseriptive sur l'ancien Hôtel de Ville, le Beffroi, et la Grosse Horloge de Romen . . . Ronen, 1864.
Larousse, Pierre.
Grand Dictionnaire Universel dn $\mathrm{XI} \mathrm{N}^{e}$ Siècle. Paris, 1866.
Lasinio, Giovami I'aolo.
Le tre Porte del Battistero di San Giovanni di Firenze. Florence, 1821.
Laslett. 'Thomas.

* Timber and Timber Trees. London, 1875.

Laspeyres, P'aul.
Die Banwerke der Renaissance in Umbrien. Berlin, 18 菏.

* Die Kirchen der Renaissance in Mittel-Italien. Berlin and Stuttgart, 1882.
Lassus, A. B. A., and Quielıerat, Jules. See Villard de llomecourt.

BIBLIOGRAPHY

Lassus and Viollet-le-Dne.
Monographie de Nutre Iname de Paris. Paris (n.1.).

Lasteyrie, Ferdimand de.
Histoire de lat Pinture sur Verre, d'apres les Monuments français. l'aris, 1843.
Lathan, Baldwin.
Sanitary Fingineering ; a Guide to the eunstruetion of Works of scwerage and House 1)rainage, etc. Lomokn, 1873.

Laurière, Jules de.
Observations sur les Dessins de Giuliann de San Gallo in Mémoires de la société National des Anticuaires de France. 1884.
Law, Emest Philip Alphonso.
Ilistory of llampton Court l'alace. London, 185.5-1888.

Layard, Austen 11.
Discoveries in the linins of Nineveh and Babylon; with travels in Ammona ind Kurdis.

Nineveh and its Remains. Lomdnn, 1849.
Monmments of Ninevel (two series), I849 and 1853.

Lazare, Lonis.
lictionnaire des rues de J'aris, ete. l'aris, 1844.
Leake, William Martin.
Travels in Northern Greece. London, 1885.
Researches in Gretce. London, 1814.
The Topography of Athens. Lomedon, 1821.
Travels in the Morea. Lonton, 18:3.
Pelnpomesiaca (smpllementary to Travels in the Morea). Londen, 1846 .
Le Bris, Guy.
Les Constrnctions Métalliques; Bibliothèque des sciences et de l'industrie. l'aris, I8!4.
Lechevallier-Chevignard, Edmond. Les Styles Français. l'aris, 1802.
Leeny de la Marche, Albert.
Extraits des Comptes et Mémoriaux din roi René. Paris, 1873.
Le Wéricher, Élwnard.
Mont St. Michel, Avranches et Mortain. 1852; in La Normanlie 1llnstreé.
Le Iléricher, et Bauet, G.
Wistoire et description du Mont Saint-Michel. (atil, 1848.
Lelant, John.
Itherary; to which is prefixed The New Year"s Gift. Oxford, 1710-1712.
Lenoir, Albert.
Statistique Mommentale de l’aris. 2 vols. folio, 1 rol. Hto. laris, 1867.

* Arehitecture Monastiqne, in 3 parts. Paris, 1852-1856.
Lenoir, M. A.
Traité Historique de la l'einture sur Verre, et description de vitraux anciens ct modernes, pour servir à l'histoire de l'art en France. 1856.

Lenormant, François.
La Grande-frece. Paysages et Histoire. 8, vols. P'aris, 1884.
Lepage, Ilemi.
Archivesde Nancy ; oudocuments inédits relatifs à l'histoire re cette ville, etc. Nancy, 1865. l'alais tueal de Naney. Nancy, $18: 11$.
Lernux de Liney, A. J. V.
Recherches IIistoripues sur le lomt Notre Dame (Paris), in liblinthèpue de l'Eeole des Chartes. $2 \boldsymbol{d}$ series, Vol. 2 .
Lessing. Otto.
Schloss Ansbach ; Barock- mund roccocn-dekorationen ans dem 18. Jahrhmulert, mit erlänterndem vorwort. Berlin, 1892.
Supplement. Berlin, 1893.

BIBLIOGRAPHY

Le Strange. Guy. l'alestine under the Moslems. London, 1890.
Letaronilly, P. M.

* Editices de Rome moderne. I vol. text. 3 vols plates. l'aris, INo.
Le Vatican et la Basilique de S. Pierre de lame, monographie mise en ordre et complétée par A. simil. laris. In=e.
Lethaby, W. R.
Leadwork, Old and Ornamental. and for the most part English. London and New York. $18!3$.
Architecture. Mysticism. and Myth. New York. 18! 2.
Lethaby. W. R., and Swainson, Harold.
The Churcl of Sancta Sop,hia. Constantinople ; a study of Byzantine Building, London. 1844.

Levi. Cesare Aucristo.

* I Campanili di Venezia. Venice, 1890.

Le Vieil, Pierre.
L'Art de la Peinture sur Verre, in Arts et Métiers de l'Académie. Paris, liry.
Léry, Edmond.
Itistoire de la Peinture sur Verre en Europe. Brussels, 1860.
Letris, Thomas llayter.
The Iloly Places of Jerusalem. London. 1888 Lerbold. Ludwig.

Das Rathhaus der Stadt Augsburg. Berlin.

Licht, IIugo.
Architektur Deutschlands. Berlin, 1882.
Architektur Berlins. Berlin. 18\%̄.
Lindemann, A.
Die Markthallen Berlins. Thre baulichen Anlagen und Betriebseinrichtungen. Berlin. 1899.
Lodge. Olizer J.
Lightning Conductors and Lightning Guards. London and New York, 1edz.
Loftie, W. J.
Inigo Jones and Wren. or the Rise and Decline of Modern A rchitecture in England. New York, 1803.
History of London. London. IEQ4.
Loftus. Sir William Kiennetl.
Travels and Researches. in Chaldea and Susiana. London, 18.j̄.
Lohde. Ludwig.
Die Architektonik der Hellenen nach C. Bötticher's Tektonik der Hellenen. Berlin, $1 \approx 62$.
Loiseleur, Jules.
Résidences royales des bords de la Loire. Paris. 14%.
Longfellow, W. P. P.
The Column and the Arch. New York, 1800.
Longfellow, W. P. I'. (editor).
A Crclopedia of Works of Architecture in lalr. Greece, and the Levant. New York, $189 . \overline{5}$
Longman, F. S. A.
A History of the Three Catherlrals dedicated to \therefore Paul in London. London. 18:\%.
Loudon. John Claudius (editor).
See Repton. Humphry (1:02-1818). Landscape Gardening and Landscape Architecture.
Lowell, Percival.
Chosön. the Land of the Morning Calm ; a Sketch of Kiorea. Boston, 1566.
Lowth, Robert.
Life of William of Wrkeham. London. 1:5̌. Löwr. Emanuel.

Inschriften Griechischer Bildhauer mit facsimiles. Leipzig, 1885.

BIBLIOGRAPHY

Lysipp und seine Stellung in der Griechischen 1'lastik. Ilamburg, 1891.
Löษy. J.
Wien ror 150 Jahren. Vienna, 1890.
Liibke. Wilhelm.
Die Mittelalterliche Kunst in Westfalen. Leipzig, 1833.
Vorschule zur Geschichte der Kirchenbankunst des Mittelalters.
Introduction to Peter Vischer, Werke. Nuremberg. 1s-i5.
Geschichte der Renaissance in Deutschland. stuttgart. 188?.
Lübker, Friedrich.
Reallexikon des Classischen Alterthums. Leipzig. 187π.
Lucianus (Lacian) of Samosata.
دídoror-Dialogues. No complete English translation; one partial by Franklin. London, $1: 81$.
Lucioli. G. (See Sanmichele, Michele.)
Lüdecke, Carl.
Das Rathhaus zu Breslau. Berlin and Breslau, 1868.
Luschan, F.
Travels in Asia Minor. (See Reisen im S. W. Kleinasien.)
Lussantr, I.
Éloge d'Antoine, Jacques Denis. Paris. 1801.
Notice historique sur le défunt Antoine, architecte. Paris. 1804.
Luthmer, Ferdinand.
Sammlung ron Innenräumen. Möbeln und Gerathen im Louis-Seize und Empire-Stil. Frankfurt am Main, 1897.
Lützow, Carl F. A. von.
Die Meisterverke der Kirchenbankunst. Leipzig, 181.
Luzi. Lodovico.
11 Duomo di Orrieto, descritto ed illustrato. Florence, 1866°.

Maccari, Enrico.
11 Palazzo di Caprarola. Rome. 18:6.
Macgibbon. David.
The Architecture of Provence and the Riviera. Edinburgh, 1888.
Macgibbon, Darid, and Ross. Thomas.
Castellated and Domestic Architecture of Scotland frous the 12 th th the 18 th century. Edinburgh, 185-1-184.2.
The Ecclesiastical Architecture of Scotland. Edinburgh, 1896.
Macklin, Herbert W.
Monumental Brasses. London, 1890.
Macmurdo. Arthur Heggate.
Wren's City Churches. Sunnsside, (Kient, England). 1883.
Magne, Lucien.
L'(Ěurre des Peintres Verriers français par M. lucien Magne; Verrières des Monuments élevés par les Montmorencs: Montmorency-Écouen-Chantilly. Paris. 1885.
Magrini. Antonio.
Memorie intorno la rita e le opere di Andrea Palladio. Padua, 1845.
A Magyar Mérnok Egyles Heti Ertesitöje. Budapest.
A Maģar Mérnok (-Épitész) - Egyesiulet Közïnze . . Szerkeszté szily Kâlmản [Krusper Istrản. Ambrozorics Béla, and others]. Budapest. 1867-1891.
Malagola, Carlo.
See, - Atti e memoriale Reale Deputazione di Storia patria per le provincie dell Emilia.

BIBLIOGRAPHY

Malaspina di Samnazaro, Luigi, Marguis.
Meumorie Storiche delle Fabbriche della Cattedrale di Iavia. Milan, 1816.
Malcolm, Sir Johm.
Sketches in Persia. London, 1827.
Mallay, A.

* Essai sur les Églises Romance, et Romanobyzantines, ifu département du foy-teDome. Moulins, 1841.
Mallet, L'Abbé J.
Cours il'Archéologie Religieuse.
Architecture, with illustrations.
Mobilipr, with illustrations. J'aris, 1887.
Mancini, Girolamo.
Vita di Leon Battista Alberti. Florence, 1882.
Manetti, Antonio.
"Vita di Filippo di Ser Brumelleseo:" manuscript first published by Moreni at Forence in 1812: republished at Berlin in 1887 by C. Frey in his sammlung ansgewaehlter Biographien Yasaris; again by Holtzinger in his "Filippo Brunellesco die Antonio di Tuceio Manetti," and again by Milanesi in his "opere istoriche di Antonio Manetti." Florence.
Mangin, Arthur.
Les Jardins. Histoire et Description. Tours, 1857.

Maniago. Prabio di (count).
Storia delle Belle Arti Friulane . . . Edizione seconda . . . accresciuta. Uiline, 1823.
Maquet, Auguste Inles.
Paris sous louis XIV; Momments et Vnes. l'aris, 188%.
Marchanl et les Abhés Rourassé et Manceau. Verrières du Chopur de l'Éslise métropolitaine de Tours. Tours, 1848.
Marchese, Vincenzo Fortunato.
Memorie dei piu insirni Pittori, Scultori e Architetti Domenicani. Florence, 184518415.

Marggraff, Hugo. Moderne stadtbälder. Berlin, 1882.
Mariette, Pierre Jean.
Abecedario, et autres notes inélites de cet amateur sur les Arts et les Artistes. D'aris, 1851-1859.
Marimmean, Claude Charles.
Douze lettres de Victor Louis, architecte du roi de Pologne et du due de Chartres. 1776-1777. l'aris, 1858.
Victor Louis . . . sat Vie, ses Travaux et sa Correspondence. 1731-18t0. Burdeanx, 1881.

Marklam, Clements Robert.
Ilistory of l'eru. London, 1803.
Marot, Jean, and Marot, Daniel.
L'Arehitecture française ; on Recneil des I'lans, Elévations. Coupes et Profils des Eglises, Palais, Hôtels et Maisons . . . de Paris et de France . . . Paris, 1827.
Marquand, Allan.
Ilmonting della Robbias in Italy ; in American Journal of Archacology.
Marguez, Pietro Ginseppe. Della ville di Plinio il giovane. Rome, 1700.
Marsanx (L’Abbé L.).
Vitraux de l'Église Saint Martin de Groslay. Paris, 1889.
Martha, Jules.

* Manuel d'arclıéologie Étrusque et Romaine. 1884.

L'Art Étrusque: illustré de 4 Planches en conlenrs et de 400 Gravures dans le Texte, d'après les Originanx, on d'après les Documents les plus Authentiques. Paris, 1889.

BIBLIOGRAPHY

Martigny, Josepli Alexandre.
Dictiomaire des Antiquités Chrétiennes contenant . . I. Ftude des Mours et Coutumes des premiers Chretiens . . . II. Etnde des Monuments Figurés . . . III. Vêtements et Meubles, etc. Paris, 1565.

Martinow, Alexis.
Auciens Monmments des Environs de Moscou. 1889.

Marzo, Gioacchino di.
1 Gagini e la scultura in Sicilia. I'alermo, 1880-188\%.
Maspero, G.
L'Arehéologie Égyptienne. P'aris, 1887.
Massachusetts state Board of Ifealth: Annual Reports.
Massari e Vermiglioli.
Le Scultore di Nicolo e Giovanni da l'isa e di Arnolfo Fiorentino . . . lia fontana di Perugia. Perngia, 18:3.
Mau, August.
*Pompeii, its Life and Art. Translated by Francis W. Kelsey. New York and London, 1899.
Mauch, Johann Matthäus von.
Vergleichende darstellong der architectonischen ordnungen der Griechen und liömer . . . P'otsdam, 1832.
Mavor, William Fordyce.
New Description it Blenheim. 1789. (Many subsequent editions.)
Mayeux, Henri.
La Composition décorative. Paris, 1885.
Mazois, Charles François.
Les linines de ''ompéi. Paris, 18:4-1838.
Mazzanti, Riccardo, ant Badia, Jodoco del.
Raccolta delle Migliori Fabliche antiche e moderne di Firenze; text by del Badia. Florence, 1876.
Mediaval Towns. A Series by Different Anthors. Lobdon, 1899-1!61.
Mélanges d'Archéologie et d'Histoire ['eriodical]. 1884-.
Melani, Alfredo.
Architettura Italiana. I. Architettura I'elasgica, Etrusca, Italo-Greca, Romana. 11. Architettura Medievale del linascimento, del Cinquecento, del seieento, del Settecento, e Moderna. Milan, js8-.
Manuale di Scultura Italiana Antica e Moderna. Milan.
Andrea Palladio, sa vie et son œuyre, in 1'Art. 1890.

Méloizes, Albert de.
Les Vitraux de la Cathérrale de Bourges, postérieurs au XIIte siècle. Bourges.
Mély, F. de.
Etuiles inconographiques sur les Vitraux du XIfe sieqe de la Cathedrale de Chartres. Bruges, 1888. (Extrait de l'Art ('hrétien.)
Mémoires de la Société National des Antiguaires de France. (See Soeiété nationale [royale] des antiquaires de France.)
Mémoires Relatifs à l'histoire de France. Jaris, 18.4.

Ménard, lené.
L'Art en Alsace-Lorraine. Paris, 1876.
Merrifield, Mrs, Mary Philadephia.
Ancient Practice of l'ainting in Oil, Miniature, Mosaic. and on Glass, retc. London, 1849.
Merrill, George P.
Stomes for Building and Decorations. New Fork, 1891.
Merriman, Mansfield.
L: Lements of Sanitary Eugineering. New York, 1898.

BIBLIOGRAPHY

Merson, Oliver.
Les Vitraux. Paris. 1895.
Dlertens. Franz, and Lohde, Ludwig.
Die grinndung des Cölner Domes und der erste Dombammeister, in \%eitschrift für Bauwesent.
Messager des Sciences historiques ; on, Archives des arts et de la bibliographie de Belgique [1'eriodical]. Ghent, I82:3-1886.
Messmer, doseph Anton.
['ber den utsprume, die Entwickelung und Bedeutung der Basilika in der Christlichen Bamkunst. Laipzig, 1854.
Meyer, Jlfred Gothohl.
Das Venezianische Grabdenkmal der Frührenaissance, in Jabrbuch der Kiöniglich l'reussischen limstsammlungen. 1889.
Meyer, Christian (editor). (Sce lloll, Elias.)
Mever (publisher).
Konversatinns-Lexikon. Leipzig and Vienna, seremal editions.
Italian Guide-Bnoks. (See Gsell-Fels.)
Michaelis, Alolf Theodor Friedrich.
Der I'arthenon. Leipzig, 1870-1871.
Michelanrelo's l'lan zun Capitol, in Zeitschrift für bildende kunst.
Michand (l'ableé).
Notice sur l'Eglise de Saint Nicolas de Chatil-lon-sur-Neine, son Origine, son Architecture, ses Verriers. 13ijon. 1870.
Nichel, Emil.
Rubens, sa Vie, son (Euvre et son Temps. laris, I8??.
Michel, Nicolas Leopold.
lievueil des Fondations et Établissements faits par le Roi de l'ologne, duc de Lorraine et de Bar. Lunéville, 1762.
Michon, Jean Hippolyte.
Statistique Monumentale de la Charente. Paris, 1844.

Middleton, George Alexander Thomas.
Strains in Structures: a Text-book for Students. London, IS89.
Middleton, J. H.
The Remains of Ancient Rome. 2 Fols. (many editions: first published as Ancient Rome in 1585).
Nignaty, Matame.
I.e Corrège. laris, 1881.

Milanesi, Gaetano.
Documenti per la storia dell arte Senese. Siena, 18.54-1554.

Lettere di Michelangelo Buonarroti, con i ricordi e documenti artistici. Siena, 1875.
Milanesi, Gaetaro (editor). (See Vasari.)
Milizia, Francesco.
Le Vite dei pin celebri Architettid’ogni Nazione e d' ogni '「empo. Rome, 1768. Later editions take the title Memorie degli Architetti antichi e moderne.
Translated into English by Mrs. Edmard Cresp as: The Lives of Celebrated Architects, Ancient and Morlern. London, 1826 .
Memorie derli Architeti antichi e moderne. (Title of later editions of lee Vite dei piò celebri Irchitetti d'ogni Nazione e d'ogni 'Tempo.)
Millar. Alexaniter 1 H.
Historical Castles and Mansions of Scotland ; Perthshire and Farfarshire. London, 1890.
Miller, J. B.
Flements of Descriptive Geonetry. London, 1878.

Millin, A. L.
Antiqnités Nationales ou Recueil des Monuments pour servir à l’histoire général et

BIBLIOGRAPHY

particulière de l'empire français. Paris, 17!0-17!8.
Dilman, Itemy lIart, D. D.
Annals of S. l'aul's Cathedral. London, 1868.
Milner, llenry Ermest.
l'he Art and l'actice of Landscape Gardening. Lontlon, 1840.
Minutoli, . Ilexander. freileer ron.
Der Dom zu 1 rontheim und die mittelalterliche christliche Baukunst der Scandinavischen Normannen. Berlin, 185\%.
Niteliell, Lucy M.
A llistory of Ancient Sculpture. New Iork, 188.).

Mithoff, II. Wilh. H.
Kunstlenkmale nnd Alterthumer im Hannoverschen. llanover, 1871.
Mittelalterliche liunstdenkmale des Oesterreichischen liaiserstaates. Stuttgart, 1858. (See Fitelberger von Edelberg.)
Mittheilungen des Heilelberger Schlosses. 1800.
Noberly, George llerbert.
life of William of Wykeham. Winchester, 1857.

Iloisè, Filippo.
Santa Cloce di Firenze : illustrazione storicoartistica, con note e copiosi lucumenti inediti. Florence, 18t5.
Nolinier, Clarles Louis Emile.
Benvenuto Cellinj. Paris, 1894. Forms part of series. Les Artistes Célèbres.
Molinier, Charles Louis Marie Emile, and Cavallncei, C. .J.
Les della Robbia. 1884.
Moller, Georg.
Denkmäler der deutschen Bankunst. \&. verschönerte, rerbesserte Autlage, 2 vols. folio. Frankfurt a. M., Is.i.
Molmenti, lompen Gherarilo.
Tiepoln et la Villa Valmarana. Venice, 1880.
Monfalcon. Jean Baptiste.
Histoire Monumentale de la ville de Lyon. l'aris, $1 s(6)$.
Mongeri, Ginseppe. (See Bramantino, Bartolommeo Snardi.)
Moniteur des Architectes, Le: revue mensuelle de l'art architectural ancien et moderne [Periodical]. Paris, 1866-180\%.
Monroe. ITarriet.
John Welborn Root, A Stndy of lis Life and W'ork. Boston, $18!16$.
Montaiglon, Anatole le Courle de.
Sur l'ancienne statue équestre ourrage de Daniello Ricciarelli et de Biard le fils. Paris. 1851.
Montenari, Giovanni.
Del Teatro Oimpico di Andrea Palladio in Vicenza. 1'adua, 1749.
Montfaucon, Bernard de.
L. Intiquité Expliquée et Representée en Figures. Paris. F19.
Montferraml, A. Ricard de.
foglise Cathédrale de Saint-1satc ; description architectural . . et historique de ce monnment . . . Saint l'etersburg, 1845.
Montigny, A. H. V. Grandjean de, et Famin, d.
Architerture Toscane; on lalais, Maisons, et autres Eidifices de la Toscane. laris, 1815.

Monmmente des Mittelalters und der Renaissance aus dem Saechsischen Erzgebirge. 1)resden and Leipzig.
Moore, Charles llerbert.
Development and Claracter of Gothic Architecture. $\underline{2}^{2} \mathrm{ncl}$ ed. rewritten and enlarged. New Iork and London, 1899.

BIBLIOGRAPHY

Morelli, Giovanni.
ltalian lainters; critical stulies of their works. London, 1892. Vol. l., the Borghese and Doria-Pamphili galleries in Rome. Vol. Il., the galleries of Munich and Dresden. London. 1893.
Morgan, lewis Henry.
Houses and House Life of the American Aborigines. Gengraphical and Geological survey of the Rocky Mountain liegion. Contributions to North American Rithnology. Washington, 1). C., 187\%.
Morrona, Alessandroda.
I'isa antica e moderna. Pisa, 1821 .
Moschini, Giovanni Antonio.
Guida per la Città di Venezia. Venice, 1815.

Mosler. 11.
Sansovino und seine Werke. Leipzig. (n.d.).
Mothes, Oscar.
Die Jankunst des Mittelalters in Italien. Jena, I 884.
Die Basilikenform bei den Christen. Leipzig, 1859.

Mouhot, Henri.
Travels in the Central larts of Indo-China, Cambodia, and Lans during the years 1838 , 18:9, and 1860. London, 1864.
Moutié, Augnste.
Notre-1)ame de la Roche. Paris, 1862.
Mowat, William and Alexander.
A Treatise on Stairbuilding and Handrailing. London, 1901.
Müller. Franz llubert.
Beiträge zur tellschen Kunst- und Geschichtskunde dureh Kiunstdenkmale. Leipzig and barmstadt, 18:3.
Müller-Walde, I'anl.
Leonardo da Vinci, Lebenskizze und Forschungen. Munich, 1889.
Mulvany, Thomas J. (editor). (See Gandon.)
Munch. P. A., and Schirmer, 17. E.
Throndhjems doukirke [The Cathedral of Throndheim]. Title-page and text in Norwegian and English. Christiania, 18:9.
Müntz, Eugène.
La Renaissance en Italie et en France à l'époque de Cluarles VIII. Paris, 1885.
Histoire de l’Art pendant la Renaissance. 3 vols. l’aris, 1889-1891.
Florence et la Toscane. Paris, 1897.
Les i’récurseurs de la Renaissance. Paris and London, 188\%.
Guide de l'Ecole Nationale des Beaux-Arts. Paris, 18:9.
Histoire de la Tapisscrie en Italie, en Allemagne, en Angleterre, en Espagne, en Danemark, en Hongrie, en lologne, en Russie, et en Turquie. l’aris, 1889.
Raphaël, sa V'ie, son (Euvre et son Temps . . laris. 1881. Nouvelle édition, entièrement refondue. Paris, 1886. Translated into English as: Raphael, his Life, Works, and Times . . . Mlustrated . . . Edited by Walter Armstrong. London, 1882 [1881].
Giuliano da san Gallo et les monuments du midi de France au XVe siècle, in Mémoires de la Sociêté Nationale des Antiquaires de France. 1884.
Murphy, James Cavanah.
Arabian Antiquities of Spain. London, 1813.
Murray, A. S.
A History of Greek Sculpture from the Earliest Times down to the Age of Pleidias. London, 1880.

BIBLIOGRAPHY

A llistory of Greek sculpture under Jheidias and his successors. London, 188%.
Handbook of Greek Archæology. New York, 1822.

Musée, Le, de Sculpture comparée du l’alais du Trocadérn. l'iris.
Myne, liev, Rubert scott.
Master Masons to the Crown of Scotland and their Works. lidinburgh, 1593.
Myskovsky, Viktor.
Lunstlenkmale des Bittelalters und den Renaissance in Ungarn. Vienna, 1885.

Nadaillac, Jean François.
l'rehistoric Ameriea; translated by N. D'Anvers. New York, 1884.
Nagler, Georg Caspar.
Allgemeines Künstler-Lexikon; 22 vols. 31 u nich, 1835-1852.
Nagler-Meyer.
Allgemeines Künstler-Lexikon. Leipzig, 1872 and following years. (This is a second enlarged and revised edition of Nagler. It is far from being complete.)
Nardini Hespotti Mosjignotti, Aristide.
Il Campanile di Santa Maria del Fiore. Leghorn, 188\%.
Filippo di Ser Brunellesco e la Cupola del Duomo di Firenze. Leghorn, 1885.
Giovanni di Lapo (ihino, il fuomo del 1360. Appendix to his Jilippo di Fer Brunellesco di Firenze.
Narjoux. Félix.
Notes de Voyage d'un Architecte dans le nordnuest de l'Europe. Paris, 1876.

* Histoire d'une Ferme. P'aris, 188?.
laris; Monmments ćlevés par la Ville $1850-$ 1880. Paris, 1880-188:3.

Nash. Joseph.
Mansions of Fngland in the Olden Time. Lunton, 188!-184!.
Architecture of the \$iddle Ages drawn from Nature. Londun, 18:38.
Natalis. Rondot.
Peintres sur Verre de Troyes, du XIV et du NVe siècle. Nogent-le-Rotrou. 1887.
Neale. John Yreston.
The llistory and Antiquities of Westminster Abbey and llenry the Seventh's Chapel. london, 1855.
Views of the Seats of Noblemen and Gentlemen in England, Wales, scotland, and Ireland. London, 1818-18.3.
Neckelmann, Fred. Skjold, and Meldahl, F.
Denkmaeler der Renaissance in Dänemark. Berlin, 1888.
Neitner, T.
Gärmerisches Skizzenbuch. Berlin, 1883.
Nesbitt, Alex.
Glass. South Kensington Handbooks. 1888.
Nesfield, William Eden.

* Specimens of Nedirval Architecture. London, 1862.
Neudörffer, Johann,
Naehrichten von den Vornehmsten Kunstlern und Werklenten . . N Nuremberg, $18: 8$.
Neuwirth, Josef.
Die Wochenrechnungen des l'rager Dombaues. Prague, 1890.
Nevill, Ralph.
Old Cottage and Domestic Architecture in Southmest Surrey. Guildford, 1841.
Newlands, James.
Carpenter and Joiner's Assistant . . . A ...Treatise on ... Materials and ... Framing . . . Glasgow, 1860.

BIBLIOGRAPHY

Newton, C. T., and Pnllan, R. P.
A Mistory of Diseoveries at Halicarnassus. Cnidus, and l3ranchidic. London, 1803.
Newton, M. 1.
Travels and Discoveries in the Levant. London. 1865.
Nicolai, F .
Beschreibung der Königlichen Residenzstädte Berlin und Potsdam. Berlin, 1786.
Nicoletti, A bate Giuselpe.
Illustrazione della Chiesa e Scuola di S. Rocco. Venice, $184 \mathbf{j}^{\circ}$.
Niedermayer, Andreas.
Kunstler und Kunstwerke der stadt Regensburg ; ein beitrag zur Kinstgeschichte Altbayerns. Landstrut, 1857.
Niemann, G.
Travels in Asia Minor. (See Reisen im S. W. Kleinasien.)
Niemann, Georg, and Feldegg, Ferd. v.
Theophilos Hansen und seine Werke. Vienna, 1893.

Nineteenth Century [l'eriodical], London.
Nispi-Lanli, Ciro.
Le Terme ed il Pantheon. 2d ed. Rome, 1883.

Storia dell' antichissima Città di Sutri . . . Colla descrizione de' suoi Monumenti Massime della Anfiteatro Etrusco, etc. Rome, 1887.

Nissen, Heinrich.
Pompejanische Studien zur Städte Funde des Alterthums. Leipzig, 187\%.
Noback, Gustar.
Bier, Malz, sowie Maschinen und Apparat fuir Branerein und Malzerein. Vienna, 18it.
Nodier, J. C. A. ; Taylor. l. J. S., baron ; Cailleux, A. A. de.

Voyages pittoresques et romantiques dans l'ancienne France. Paris. 1 S20 (1878.
Nöhring, J.. und Löwis of Menar, C. von.
Die Städtische Profanarchitektur der Gothik, der Renaissance und des Barocco in Riga, Revel und Narsa. Lubeck, 1802.
Normand, Charles l'ierre Joseph.
Nouveau Parallèle des Ordre d'Architecture des Grecs. des Romains et des Auteurs Modernes. Paris. 1819.
Translated into German by J. M. Mauch, as: Vergleichende Darstellung der Architechtonischen Ordnungen der Griechen und Römer. P’otsdam, 18%.
Norton, Charles Eliot.
Historical Studies of Church-building in the Niddle Ages. New York, 1880.
Urkunden zur Geschichte des Doms ran Siena. In Jahrbuch für Kunst-wissenschaft, 1873.
Nouvelle Biographie Générale depuis les temps les plus reculés jusqu"à nos jours. Published originally as Biographie Universelle. Paris, completed about 18 fif .

* Nourelles Annales de la Construction [Periodical]. Paris.
Nouvelles Archives de ${ }^{1}$ Art Français; recueil de documents inédits publiés par la Société de 1’Histoire de l'Art français. 1872-1885.
Nourelles Archives des Missions scientifiques. (Hee Archives des Missions scientifiques.)

Ocagne, Maurice, d^{*}.
Cours de Géométrie Descriptive et de Géométrie Infinitesimale. Paris, 1896.
Odrzywolski, Slawomir.
Die Renaissance in Polen, kunstdenkmale des NVI. und NYH. Jahrhunderts. Vienna, 1899. Title also in Polish.

BIBLIOGRAPHY

Oettingen, Wolfgang von.
Uber das Leben und Werke des Antonio Averlino. Leipzig, 18×8.
Okely, W. Sebastian.
Development of Christiau Architecture in ltaly. London, 1860.
Ongania, Ferdinando (editor).
La Basilica di San Nlarco in Venezia... Venice, 1881-1888. (See Boito.)
Raccolta delle Vere da Pozzo in Venezia. 1889.
Oppert, Franz.
llospitals, 1 nfirmaries, and Dispensaries. London, 1867.
Orlandi, Pellegrino Antonio.
Ahecedario Pittorico, nel quale . . . sono descritte le patrie. i maestri, ed i tempi, nei quali fiorirono, circa quattro mila. Bologna, 1 104.
Orti, G. G. conte di Manara.
Dei Lavori Architettonici di Fra Giocondo in Yerona. Verona, 1853.
Osten, Friedrich.
Die Bauwerke in der Lombardei. Frankfort, 1817.

Osthoff, George, and Schmitt, Eduard.
Schłachthöfe und Viehmärkte: Märkte für Lebensmittel, Getreide, Pferde, und Hornwieh. Darmstadt, 1891.
(Forms part of Handbuch der Architektur, 1891.)

Die Bader und Bade-Anstalten der Neuzeit, unter besonderer Berüsichtigung der Schwimm-, Wannen-, Douche-, Dampf-, und Heisseluft-Bäder. Leipzig, 185 -.
Otte, Ileinrich.
Handbuch der Kirchlichen Kunst-Archäologie. Leipzig, 1868.
Geschichte der Romanischen Baukunst. Leipzig, 18.4.
Ottin, L.
L'Art de faire un Vitrail. Paris, 1892.
Le Vitrail ; son Histoire, ses Manifestations a travers les Ages et les l'enples. Paris (n.d.).
Ouseley, Sir William.
Travels in Yarious Countries of the East, more particularly Persia. Loudon, 1819, 1821, 18.3.

Epitome of the Ancient History of Persia extracted from the Jehan Ara of Ahmad el Kazwini, the author of the Nigâristâu. London, 1799.
Orerbeck, Johannes.
Die Antiken Schriftquellen zur Geschichte der bildenden Künste bei den Griechen. Leipzig, 1868.
Geschichte der Griechischen Plastik. Leipzig, 188.?.

1'ompeii in seinen Gebäuden Alterthümern und Kunstwerken. 3d ed. Leipzig, $18 i \overline{0}$.

Pagrave, Venanzio de ; e Casati. Carlo.
Vita di Cesare Cesariano. Milan. 1870.
Palestine Exploration Fund. London, 1869-. Varions publications.
Paley, Frederick Apthorpe.
Ilmstrations of Baptismal Fonts by Thomas Combe. London, 1844.
Palladio, Andrea.
Le Fabbriche e i Disegni, raccolti ed illustrati da O. B. Scamozzi. V'icenza, 17:6-1783, 1786.

Palustre, L.
La Renaissance en France. 3 rols. 1885 and previous years (all published).
L'Architecture de la Renaissance. Paris, 1892. Paoletti, l'ietro.

L'Architettura e la Scultura del Rinascimento

BIBLIOGRAPHY

in Venezia; ricerche storico-artistiche. Venice, 1803.
Papworth, IV yatt.
John B. 1'alporth; a Brief Record of his Life and Works. London, 1879.
Paravicini, 'Tito V'espasiano.
Dic Renaissance-Srchitektur der Lombardei. (Translated into (ierman by R. Kuppel. 'Title-page also in ltalian and French.) Dresden, 1877-1878.
Parcerisa, F. I.
Recnerdos y bellezas de España . . . Fn laminas dibujadas del natural y litugrafiadas por F . I. l'arcerisi.

Paris tans sa Splendeur, Monuments, Vues, Scènes llistoriques, description I Bessins et Lithographes par l’hilipue Benoist, texte par MM. Audiganne . . . l'aris, $18 t i l$.
Paris, l'ierre.
La sculpture Antique. P'aris, 1889.
Parker, dohn llemry (imblisher).
Glossary of Architecture. (hee Glossary.)
Domestic Architecture of the Middle Ages. (See Domestic.)
Parthey, Ginstav Friedrich Constantin.
Wenzel llollar. Berlin, $18: 35$.
Parvillée, L .
L'Architecture et Décoration Turques an $\mathrm{XV}^{\text {e }}$ siècle. l'aris, 1874.
Passavant, .I. I).
liaphael von Urbino und sein Vater Giovanni Santi. Leipzig, 183:.
Passerimi, Luisi.
Gli Alberti di Firenze. Florence, 1870.
La Bibliografia di Michelangelo Bnonarroti e gli incisori delle sur opere. Florence, 1875.
Pattison, Mrs. Mark.
Henaissance of Ayt in France. London, 1879.
Paulus, Dr. Baluard.
Die Kumst und Alterthmms-Denkmale im Königreich Würtemberg. stuttgart, J893.

* Die Cisterzienzer-Abtei Maulbromn. Stuttgart, 1879.
Panly-Wissowa.
Panly's Real-Fncyclopaidie der Classischen Altertumswissenschaft. Ed. by Gerrg Wissowa. 4 vols. issued, A-Cor. Stuttgart, 1894-1900.
(The original work by Pauly was completed in (3 vols. in 1852.)
Pausanias.
* Description of Greece. Translated with a Commentary by J. A. Frazer. 6 vols. London, $18: 98$.
Peabody Museum of American Archæology and Ethnolngy. Harvard University Itemoirs. Cambridge, 18:97-1898-.
Pegge, Samue] (the elder).
The Life of Robert Grosseteste, Bishop of Lincoln . . . with an aceonnt of the Bishop's Works and an Appendix. London, 1893.
Pelcel, Frantisek Martin.
Abbildungen Bohnischer und Mährischer Gelehrten und Künstler. Prague, 17731777.

Pelletier, Pierre.
Les Verriers dans le Lyonnais et le Forez. Paris, 1886.
Penanrun, David de ; Rnux, I. F.; Delaire, E. A.
Les Architectes Eleves de l'Eole des BeanxArts. Paris, 1895.
Penuethorne, John.
The Geometry and Optics of Ancient Architecture. London and Eilinburgh, I878.
Penrose, F. C.
An Investigation of the Principles of Athenian

BIBLIOGRAPHY

Architecture (Society of Dilettanti). London ant New York, 1888.
l'ératé, André.
L'Archéologie Chrétienne. J'aris, 1892.
P'érau, Gabriel Louls Calabre.
Description historique the l'llotel Royal des Invalides . . l'aris, loett.
Jercier, Charles, ind Fontaine, P. F. I.
Palais, Maisms, et auters Editices modernes clessinés it lome. Jaris, 1708.
l'erdreatl (L'Ablé).
Guide du V'ivitem et du P'élerin à l'Eglise SaintEtienne du Mont. Paris.
Perger, Anton, Ritter von.
Der 1 bom zus. Stephan in Wien. Trieste, 1854.
Perkins, Charles C.
Historical Handbook of Italian sculpture. Lon(lon, 188:).
Tuscan senlptors, their lives, Works, and Times. London, 1 s64.
Italian Senlptors, 1868.
Gliberti et son Ecole. l'aris (n.d.).
Perrault, Charles.
Les Hommes illustres qui ont parn en France pendant ce siècle. I'aris, 1896.
l'errot, fienrges, et Chipiez, Ch.

* Histoire de l'Art danis l'Antiquitée, vols. issued l'aris 1882-1898. I. L'ÉEypte. II. Chablée et Assyrie. [1]. Phénicie et Cypre. IV. Judée, Sardaigne, Syrie, Calpadoce. V. Jerse, Phrygie, Lydie et Carie, lycie. V1. La Grèce primitive, l'art Mycénien. VII. Grèce de l'épopée, Grèce archailnue. Translated into English muter different titles, the translations having different degrees of merit.
Perry, Walter Copland.
Greek and Roman sculpture. London and New York, 1882.
Petersen, E.
*'Travels in Asia Minor: (See Reisen im S. W. Kleinasien.)

Die Kunst des I'heidias am Parthenon und zu Olympia. Berlin, Isi.3.
I'etersen, Eugen Adolf Hermann ; and Domazewski, Alfred von ; and Cadderini, Guglielmo.
Die Marcus-Kate auf liazza Colonna in Rom. Munich, 18%.
Petit, Victor.
Châte:ux de la Vallée de la Loire. Paris, 1861.
l'etits Edifices historiques recueillis par A. Raguenet [Periodical]. I'aris, 1891-[1894].
Petrie, George.
Ecclesiastical Architecture of Ireland anterior to the Anglo-Norman luvasion. Dublin, 1845.

Ietrie, W. M. Flinders.
History of Egypt during the XV'l. and XVHIl. dynasties. 1 ,ondon, 180 .
Egyptian Decorative Art. New York and Londom, 16.95.
Ten Yuars' Digging in Egypt. New York, Chicagn, London, 1892.
I'fnor, líndolphe.
Monographie dn Châtean d'Anet. Paris, 1867.
Mongraphie du Château de Ileidelberg. J'aris, 1859.

Le Château de Vaux-le-V'iconte. P'aris, 1880.
Histoire et Guide artistique au J'alais de Fontaineblean; préface par Anatole France. Paris, J88!)
Pfnor, Rodolphe, et Champollion-Figeac.
Monographie du Palais de Fontainebleau. Paris, 18fi?.
Phillorick, Edward s.
American Sanitary Engincering (in the Sani-

BIBLIOGRAPHY

tary Engineering; now Engineering Record). New Yurk. 1 sus.
Dispusil of Sewage in Suburban liesidences. New York, 1s~.
Philbrick, Pliletus H.
Beams and (iirders; l'ractical Formulas for their Resistanere. New York, 1886.
Plilimore, Lucy:
Sir Christopher Wren; his Family and his Times; with Original Letters and a Discourse on Architecture, hitherto unpublished. l.ondon, 1s8:).
lhipison, Esmma.
Choir stalls and their Carvings. London, 18!6. l'ingeron, lean c'laude.

Vies des Architectes anciens et modernes... 'l'ratuites de l'Italien (of T. Milizia) et murichies de notes. l'aris, 1761.
Piolin. Dam, l'anl 1.
Histoire de l'Église du Nans (l'église du Mans durant la lévolution . . . complément de l'histoice). Le Mans, 1851-il.
Planat, Paul (ellitor).
Encychopedie de l'Architecture et de la Construction. l'aris (n.d.).
1'lanché, J. R.
The l'ursuivant of Arms ; or Ileraldry founded upen Fact. . . . Sil ed. London [pref. 187:3].
Plarr, Victor (i, Men and Women of the Time. 1 the erl. London, $18 \% 5$.
Platt, Charles Adams
Italian Gardens. New York. 1804.
Plinius [secundus], Caius (Pliny the Elder).
llisturia Naturalis. Enslish translation by IIolland. London, 1601.
Pliny the Eller. translated by K. Jex-Blake.
The Elder lliny's Chapters on the History of Art (text and translation on opposite pages, notes by Sellers and Crliclis). London, 1896.
Plon, Fugène.
Benveunto Cellini. Paris, 188:3.
Leone Leoni et Pompeo Leoni. 1886.
Plutarch's Lives. 'Translated from the original Greek, with nutes critical and historical. by John and Willian Langhorne. London, 1i:n; New York, 18:2 (many other editions).
Plutarch's Lives : the translation called Dryden's, corrected from the Greek and revised by A. 11. Clough. Boston. 1859.

Pontani. C.
Opere architettoniche di IRaffaello Sanzio. Rome, 184.
Pontremoli, Emmanuel, and Colliguon. Maxime.
Pergame, Restauration et Description. Paris, 1900.

Poole, George λ yliffe.
Hlistory of Ecclesiastical Architecture in England. London, 1848.
Poole. William Frederick.
Notes on Library Construction; the Organization and Management of Libraries; and other papers, chiefly in the publications of the [.. s. laurean of Education.
Popp. Justus, an! Bülau. Theodor.
Die Architektur des Mittelalters in Regensburg. Katisbon, 18:39.
Les trois Iges de l'Architecture Gothique. son origine, sa thénrie. demontrés et représentés par les exemples choisis à Ratisbonne . . . tr. de l`Allemand. Paris, It4].
Porter, Dwight.
The Removal of Roof Water from Buildines, reprinted in American Architect, Aug. 31, 1889.

BIBLIOGRAPHY

Porter, Josias Leslie.
Five Years in Damascus. London, 1855.
Portfolio, The.
Monographs on Artistic subjects. London, 1894,-.
Post, l'ieter.
Les Ourrages d'Architecture. Leyden, 1715.
l'ottier, E., and Reiuascl, S.
École Française d'Athènes. Recherches archéologiques. etc. l'aris, 1887, and other dates. louvourville, Albert de.

L'Art Ando-Chine. Paris, 189t.
Powell. George T.
Foundations and Foundation Walls for all Classes of Buildings. New V"ork, 1889.
l'rentice, Andrew N.

* Renaissance Architecture and Ornament in spain; a series of examples selected from the purest works executed between the years 150 0 -15tio. London (n.d.).
Prescott, William H.
Conquest of Peru. Boston, 1847, and many sulsequent editions.
I'ressel, Friedrich.
L'h und sem Münster. Ulm, 18:7.
Presulin, Emil.
I'ompeii ; die neuesten Ausgrabungen. Leipzig. 188\%.
Price, John.
Historical and Topographical Account of Leominster and its Vicinity, with au Appendix. Ludlow, 1795.

Historical Account of the City of Hereford. with some reuarks on the river Wye. Hereford, 1 RMU.
Prime, William Cowper.
Pottery and Porcelain of all Times and Nations. With tables of Factory and Artist's Marks for the use of Collectors. New York, 1878.
Prior, EdwardS.
A Ilistory of Gothic Art in England. London, 1900.

Prisse d'..Jrennes.
Histoire de l'Art Égyptien. Paris. 1878.
L'Art Arabe d'apres les Monuments du Kaire depuis le V'He siècle jusqu'a la tin du NVII'. Paris, 18 i7.
I'rocopius of Cæsarea.
De Edificiis Justiniani.
[English Translation of the Buildings of Justinian. Translated by Colonel sir C. W. Wilson and Professor Hayter Lewis. London, 1888.]

Promis, Carlo.
Gli Ingegneri e gli Scrittori Militari Bolognese del XV e N V1 secolo. Turin, 1863.
Pugin. Angustus Charles.
Specimens of Gothic Architecture. Loudon, 1821-18:3.
Pugin. A. Welby.
The 1'resent state of Ecclesiastical Architecture in England. London, 1843.
Pugin, A. N. W., and Le Keux. Henry.
specimens of the Architectural Antiquities of Normandy. 1827.
Pungileoni. Luigi.
Memoria intorno alla Vita ed alle Opere di Donato o Donnino Bramante. Rome, 1836.
Puttrich, Ludwig.
Denkmale der Baukunst des Mittelalters in Sachsen. t vols. Leiprig, 1844-1850.

Quantin. Albert Narie Jérôme (publisher).
Biblinthèque de l'enseignement des BeauxArts; about 30 vols., many of which have special reference here.

BIBLIOGRAPHY

（Publishing－house continued as Librairies－Im primeries Rénnies．）
Quast，Alexander Ferdinand von．
Das Erechtheion zu Athen．Berlin， $18 t^{2}$ ．
Die lintwicklung des christlichen Kirchenbanes． Berlin， 1858.
C̈ber Form，Eimrichtung und Ausschmuckung． Berlin， 1853.
Die alt－christlichen Bauwerke fon Ravenna． Berlin， 1842.
Denkmailer der Baukunst in Ermland．
Quatremère de Quincy，Anteine C＇lu＇ysostome．
Dictionnaire d＇Architecture，in I＇Fncychopédie Méthodique．Faris，17！
Dictionnaire listorigue d＇Architecture．D＇aris， $18: 2$.
Histoire des Vies et des ouvrages des plus célè－ bres Architectes du N゙も゙ siècle juscu＂ti la fin lu XV11le．
Canova et ses ouvrages．Paris， 1834.
Notice Ilistorique sur la vie et les ouvrages de M．Gondouin．Paris， 18 lif．
Notice Ilistorique sur la vie et les ouvrages de M．Chalgrin．Paris，I8：I．
Quilter，llarry．
Life of Giotto．London， 1880.
Quincy，Josiah．
Municipal llistory of the Town and City of Boston during two centuries from Sept．17， 1630，to Sept．17，1830．Boston，185：．

Raczynski，Atanazy（count）．
llistoire de l＇Art Moderne en Allemagne． Paris，1836－1811．
Raggi， 1 reste．
Della Vita e delle Opere di Luigi Canina． Casal－Monferrato， 1857.
Rahn，Johanı lindolf．
Ueber den Irsprung und die Entwickelung des Christlichen Central－und liuppelbaues． leipzig， 1866.
Ramée，Daniel．
Histoire générale de l＇Architecture．Paris， 1860.

Rām Rāj．
Essiy on the Architecture of the lindus． London，1834．（oriental Translation Fund of Great Britain and Ireland．）
Ramsay，William．
A Manual of Roman Antiquities．Revised and partly rewritten by Rodolfo Lanciani．New York， 1895.
Ramsay，W．M．
A study of Phrygian Art．Reprinted from the Journal of Hellenic Studies．
Raoul－Rochette，Désiré．
Notice Historique sur lirro Iigorio in Jules Bnuchet，La Villa lia， 1837.
Raschdorff，J．C．
Toscana．Berlin，1888．（1n Palast－architek－ tur von Ober－Italien und＇T＇oseana，Vol．＂．）
Ravioli，Camillo．
Notizie sui Lavori d＇Architettura militare， sugli scritte o Discgni editi ed inediti dei Nove da San Gallo．Rome， 1863.
Rawlinson，I＇rofessor，The Rev．George．
The Five Great Monarchies of the Eastern World．New York， 1881.
The Sixth Great Oriental Monarehy ；or the Geograplyy，History，and Autiquities of Parthia．New York． 187%.
The Seventh Great Oriental Monarchy ；or the Geography，History，and Antiquities of the Sassanian or new Persian limpire．New York， 1882.

BIBLIOGRAPHY

Rayet，O．
Monmments de I＇Art Δ ntípue．l＇aris， 1881.
Rayet，Olivier，at Collignom，Maxime．
llistoire de la Céramigue Greçue．l＇aris， 1858．
Reber，Franz．
Geschiclite der Baukunst im Slterthum．Leip zig， 1886.
＊inutsgeschichte des Mittelalters．Leipzig， 1886.

Translation of the abore by d．T．Clarke，His－ tory of Mcrliexal Art．New Vork， 1887
Réclus，Jean Jacpues Eilisér．
The Earth and its luhabitants．Felited by E． G．Ravenstein．London， 1878 ，cete．
Redgrave，samuel．
Dictionary of Artists of the Engelish School． London， 1874.
A Century of lainters of the English School． London， 2 l ed．， 1890 ．A first and fuller edition exists．
Redtenbacher，liutolf．
Balitassare Piruzzi und seine Wrerke．（See Mitheilungen aus der Simmmlung Architek－ tonischer Handzeichnungen in der Galleria der Uffizien zu F゙lorenz．Carlsruhe，1875．）
Architektur der italienischen Renaissance． Frankfurt a．M．，188f．
Reichensperger，August．
Zur Characteristik des Baumeister Jriedrich， Freiherr von Schmidt．Dusseldorf， 1891.
Reid，Ilenry．
A I＇ractical Treatise on Natural and Artifieial Concrete．London，185\％．
Reid，John．
Turkey and the Turks；or the Ottoman Em－ pire． 1840.
Remhardt，Rubert．
Genua．（lu l＇alast－Architektur von Ober－ Italien und＇Toscana vom XV．bis XVII． Jahrliundert．）l3erlin， 188 （j．
Reisen im Südwestlichen Kileinasien．
＊Vol．I．by Benndorf，U．，and Niemann，G． Vienna， 1884.
Vol．11．by letersen，E．，and ron Luschan， \mathbf{F} ． Viema， 1804.
Remusat，Jean l＇ierre Abel．
Nouveaux Mélanges Asiatiques，ou Recueil de morceaux de critique et de mémoires relatifs aux Religions，aux sciences aux Contumes， à l＇Histoire et à la Géographie des Nations Orientales．P＇aris，1829．
Renan，Joseph Ernest．
Mission de Plénicie．Paris，1864．
Rennie，Sir Joln．
Autobiography． 1875.
Renouvier，Jules．
llistoire de l＇Art pendant la Révolution．Jaris， 18tib．
Renouvier，Jules，et Ricard．Ad．
Des Maitres de Jierre de Montpellier，et des autres artistes gothiques de Montpellier． Montpellier， 1844.
Renwick，dames．
Life of Count Rumford（in Jared Sparks， Library of American Biography；second series）．l Boston，18\％．
Repton，llumphry．
Landscape Gardening and Landscape drehitec－ ture，being his entire works on these sub－ jects．New edition with an ．．．introduction ．．．a biographical notice ．．．and a copi－ ous ．．．index，by J．C．Loudon ．．． $1.0 n-$ dow， 1840.
Restaurations des Monuments Antiques．par les architectes pensionnaires de l＇Académie de

BIBLIOGRAPHY

France a l lome, depuis $1 / 88$ jusqu'a nos jours. A series. Thermax, 'Trajan Col., etc. (Thermes de Caracalla. 1825; Thermes de Dioclétien, $14+1$; 'Thermes de Titus, 18711872.) P'aris, 18 ス̄̈-1890.

Reumont, Alfred von.
Lorenzo dei Medici, il Magnifico. Leipzig, 1874.

Réunion des sociérés des Beaux-Arts des Départements, published by Ministère de l'Instruction publique des Beaux-Arts. Vol. 14, of $1!00$.
Réroil, Henry.
Architecture Romane du midi de la France. l'aris, 1873.
Revue Archéolorique, ou Recueil de Documents et de Mémoires relatifs à l"étude des Monuments et à la Philologie de l'Antiquité et du Moyen Age, publice par les principaux Archeologues français et Etrangers, etc. [Periodical]. l’aris, 3 series; 1844-1883.
Revue de l'Art Chrétien; recueil mensuel darchéologie religieuse, dirigé par M. l'abbé J. Carblet. 17 tom. [Periodical]. Paris, Amiens, Tournai, Arras, 185i-18it.
Revue des Arts décoratifs [Periodical]. 18111880.

Revue générale de l'Architecture et des Travaux publics; journal des architectes, des ingénieurs, des archéologues, des industriels et des propriétaires. Sous la direction de C. Daly, architecte [Periodical]. Paris, 1840-.
Rerue [niverselle des Arts [Periodical]. Paris; Brussels, $1850-1866$.
Rermond, Marcel.
La sainte Cécile de Stéphane Maderna (in Gazette des Beaux-Arts. 1872).
Lorenzo Ghiberti (in Gazette des Beaux-Arts, 18:16).
La Sculpture Florentime (4 parts, each of a separate epoch). Florence, 1898-1890.
Les della Robbia. Florence, 1897.
Rhys, Emest.
Sir Frederick Leighton. 4to, 1895 (3d edition, 8 so. 1900 , entitled Frederick, Lord Leighton, His Life and Works).
R. I. B. A. (See Royal Institute of British Architects.)
Ricci, Amico.
Storia dell Architettura in Italia. Modena, 1857-1859.
Ricci, Corrado.
Antonio Allegri da Correggio; his Life, his Friends. and his Time. London and New York, 189%.
Riccio, 11 inieri.
Gli Artisti ed artifici che Iavarono Castel Nuoro. Naples, 1 sif.
Richardson, George.
The New V'itruvius Britannicus, consisting of plans and elevations of modern buildings \ldots in Great Britain, etc. London, 18021808.

Richter, Jean Paul.
Der Ursprung der abendländischen Kirchengebäude. Vienna, 1878.
The Literary Works of Leonardo da Vinci. London, 1is8:3.
Rickmann, Fr. W. J.
Die Domkirche zu Ratzeburg. Ratzeburg, 1881.
Rickman, John (editor). (See Telford. Thomas.)
Rickman, Thomas.
An Attempt to discriminate the Styles of Architecture in England from the Conquest to the Reformation. London, 1817. 1819.

BIBLIOGRAPHY

Ricordi di Architettura [Periodical]. Florence, 1878-180.3.
Ridolfi. Carlo.
Le 'llaraviglio dell' Arte overo le vite de gl' illustri l'ittori Veneti. Venice, 1648.
Rigato, Audrea (editor).
Usservazioni sopra Andrea Palladio. Padua, 1811.

Rikliter, Fedor.
1'amyatniki dremyavo russkavo zodchestva ... Moscow, 1850.
Translated into English as: Monuments of Ancient Russian Architecture . . 1850.
Riley, J. W.
Building Construction for Beginners. London and New York, 1899.
Robb, Russell.
Electric Wiring, for the use of Architects, Underwriters, and the Owners of Buildings. New Y"ork and London, 1846.
Robert-Dumesnil, A. P. F.
Le P'eintre-graveur Français. Paris. 18551871.

Robertson. Alexander.
A History of S. Mark's Church, Venice. Nerr York, 1898.
Robertson, T. S.
The l'rogress of Art in English Church Architecture. London, 1897.
Robinson, John Beverly.
Principles of Architectural Composition; an Attempt to order and phrase Ideas which have hitherto been only felt by the Instinctive Taste of Designers. New York, 1899.

Robinson. J. C.
Italian Sculpture of the Middle Ages and Period of the lieviral of Art. London, 1853.

Robinson, Robert.
The 11istory of Baptism, etc. London, 1790.
Robinson, William, F. L. S.
Garden Design and Architect's Gardens. London, 189.
Parks, Promenades, and Gardens of Paris. London, 1569.
Robinson, William.
The English Flower Garden; Style, Position and Arrangement. London, 1884, 1893.

Robuchon, Jules César.
Paysages et llonuments du Poitou photographiés . . . avec notices publiées sous les auspices de la Société des Antiquaires de l'Ouest. Paris, 1884-1895.
Rocchi, E.
Baccio Pontelli e la Rocca d'Ostia, in Archinio Storico dell' Arte. 1898.
Rogers, W. G.
Remarks upon Grinling Gibhons, in R. I. B. A. Papers. 1866-1867.
Rohault de Flemry, Charles.
La Messe ; études archéologiques sur ses monuments, continuées par son fils (G. Rohault de Fleury). 8 vols. Paris, 1883-1889.
Rohault de Fleury, Georges.

* La Toscane an Moyen-Âge; architecture civile et militaire. J'aris, 1870-1873.
Le Latran an Moren-Åge. Paris, $18 \frac{17}{}$.
* Les Monuments de l'ise au Moyen-Âge. Paris, 1866.
Romstorfer, Carl A.
* Die Moldauisch-Byzantinische Baukunst. Ronchini, Amadeo.

1 due Vignole Modena, 1860 [incomplete]. Vienna, 1896.

BIBLIOGRAPHY

Rondelet, Antisine.
Essai historique sur le l'ont de Rialto. l'aris, 1837.

Rondelet, Jean.
'Traité théorique et pratique de l'Art de Bâtir. liaris, $18: 38-1855^{5}$. supplément par (i. A. Bholet. l'aris, 1855-1868.
Ronzani-Lucioli.
(Sice Sammiehele, Miehele.)
Rosenterg, Marc.
Quelten zur Geschichte des lleilelberger schlosses. Heidelberg, 188\%.
Rosengarter, A.
Die Arehitektonisehen Stylarten. Brunswick, 1814.
Ross, Ludwig; Schanbert, Eduard ; and Hansen, Christian.
Die Akroplis von Athen. Berlin, 1836.
Rossi, Gio. Battista de.
Musaici Cristiani saggi dei l'avimenti delle Chiese di Roma anteriori al secolo XV. liome, 1882.
Delle alte famiglie di Marmorarii Romani, in Bulletino di Archeologia Cliristiana, 187. (Vol. V1.)
Roulliet, A .
Michel Coloube et son Cuvre. Tours, 1884.
Roussel, Pierre Désiré.
Histoire et Description du Château d'Anet. P'aris, 1875.
Rouyer, Jean Eugene, and Dareel, A.
L'Art Arehitectural en France depuis François 1 justu'a Louis SXIV. I'aris, 1863-1816.
Royal Asiatic Soeiety of Great Britain and Ireland, Reports and Transactions.
Royal Institute of the British Architects, 'Transactions. 18:30-18!2 [Periodical]. Journal of proceedings, $1885-1894$.
Kalentar, 1886 and the following years.
Sessional papers, 1875 and the following years. Papers by 11. W. Brewer on Central and southern Germany. 1867-1868.
Rubens. Sir l'eter l'aul.
P'alazzi di Genova, con le loro piante ed alzati. Antwerp, $16: 2$.

Rudde, -

Monuments de Bruges. 1824.
Ruggieri, Ferdinando.
Studio d'Architettura Civile sopra gli ornamente di porte e finestre, colle misure, piante...e profile, tratte da alcune fabbriche insigni di Firenzi . . . Florence, 1722-1728.
Runge, G.
Die öffentliche Badeanstadt in Bremen. Bremen, 1878.
Runge, 1.
Der Glockenthurm des 1)ons zu Florenz, nebst entwurf zur West-Façade des Jous. Berlin, 185.3.

Rupin, Ernest.
1'Abbaye et les Cloitres de Moissac. Paris, 1897.

Ruprich-Robert, V.

* L'Architecture Normande, aux XIe et X11e siécles. P'aris, 1885-1887.
L'Église et le Monastère du Val-de-Grâce. Paris 1875.
Rusca, Luigi.
Recueil iles Dessins de differens batimens construits à Saint-1'étersbourg; translation of Raceolta dei disegni di diverse fabhriehe costrutte in P'ietroburgo. St. Petersburg, 1810.

Ruskin, John.

* The Stones of Venice. 3 vols. London, 1859.

BIBLIOGRAPHY

Seven Lamps of Architecture. 1849. (New edition, Sumyside (Kent, Engłand). 1880.)
Giotto and his works in ladua, published by the Arundel siveiety. Limidon, 185I860. (In three parts, collected into one vol., 1877.)
Rymer, Thomas.
Fodera conventiones, littere et enjuscunque generis acta publica inter reges anglix et alios quuswis imperatores reges ab ingressu Gulielmi 1. in Angliam A.s. 1066 ad nostra usyue tempora .aceurantibus. Aclamo Clarke, F. llolbrook, and J. Caliy. 3 vols. in t, 15 pl. Frblin. (Gt. Br. Record Com.) Loudon, 1816-18:30.

Sacken, Edward, Baron von.
Katechismus der lleraldik. 4th ed. Leipzig, 1885.

Sahagun, Bernardino de.
11 istoria Cieneral de las Cosas de Nueva Бspaũa. Mexico, 1829-1830.
Saint Paul, Anthyme.
Histoire Monumentale de la France. Paris, 1888.

Salazaro, Demetrio.
Studi sui Momumenti della Italia Meridionale thal $1 \mathrm{Y}^{\mathrm{o}}$ al $\mathrm{X} 11^{\circ}$ secolo. 2 vols. Naples, 1877.

L' Arte Romana al Medio Fivo ; appendice agli studi sui Momumenti della Italia Meridionale dal $1 \mathrm{~V}^{\circ}$ al $\mathrm{X} 11^{\circ}$ secolo. Naples, 1881.
Salva, -
Elogio di Michele Sammicheli. Rome, 1814.
Salvisberg, l'aul.
Die deutsche Kriegs-A rehitektur von der Urzeit bis anf die Renaissance in his Kunsthistorische Stulien ; 1left 3-4. Stuttgart, 1887.
Salzenberg, W.

* Alt-ehristliche Baudenkmale fon Constantinopel vom 5. bis 12. Jahrhundert . . . Berlin, 1854.
Sandby, Wiltiam.
The IIstory of the Royal Academy of Arts from its foundation in 1768 to the present time, with biographical notices of all the members. London, 1862.
Sanders. Wiltiam Bliss.
Examples of carved Oak Wood-Work in the Houses and Furniture of the 16 th and 17 th Centuries. London, 1883.
Sanitary Engineer [Periodical]. New York. (Now the Engineering Record.)
Sammichele, [Sammicheli] Michele.
Le Fabbriche Civile Ecelesiastiche e Militari, disegnate ed incise da F. Ronzani e G. Lncioli, con testo . . . da F. Zanotto. Genoa (n.d.).

Another ed. Venice, $18 \% 2$.
Sansovino, Francesco.
Isovino, Franceseo.
Venetia Citta nobilissima et Singolare. Venice, 16 tis .
Sant' Ambrogio, IJiego.
Castiglione Olona. Milan, 1894.
Lıdi Vecchio, S. Bastiano. Milan, 1895.
11 Castello di I'andino. Milan, 1895.
Gra Car. Carpiano Vigano-Certosino e Selvanesco. Milan, 1894.
Negative ed Eliotipie di Calzolari and Ferrario. 1) Tempio della 13.A Vergine Incoronata di Lodi. Milan, I892.
Sarre, Friedrich.
Denkmäler I'ersiseler Baukunst. Berlin, 1901.
Der Fürstenlof zu Wismar und die norddeutsche Terrakotta-Architektur. Berlin, I890.

BIBLIOGRAPHY

Sasso. Camillo Napoleone.
Storia tei Xonumenti di Napoli. Noples, 1856 15.58.

Saulcy. l. F. .l. Caignart de.
Voyage en Terre sainte. Paris, 1865.
Saussitye. Louts de la.
Jee C'lateau le Chanbord. J3lois and Paris, INtil.
Sauvacent, Claude.
Monurraphie de Notre-Dame de la Roche (n.d.).

Monographie de Cherreuse. I'aris. 1874.

* Pilais, Châteanx. Hótels et Maisons de France. Daris. 1 sisio.
Viollet-le-Duc et son (E゙uvre Dessinée. Paris, 15610.

Sauval, Henri.
Histoire et recherches des Antiquités de la Ville de Paris. P’aris, Ji24.
Scamozzi. Vincenzo.
L’Idea dell Architettura universale . . . publicata per Cura di Stefano Ticozzi (which see). Milan, 1838.
Scamozzi, 1). Bertotti (editor). (See Palladio, Andrea.)
Le Fabbriche e i Disegni, 17i6-1783. Vicenza, 1786.

Schadow. Johann Gottfried.
Wittenberg's Denkmäler der Bildnerei, Baukunst und Malerei, mit historischen und artistischen Erläuternngen. Wittenberg, 182.).

Schäfer, Carl.
Mustergiltigen Kirchenbauten des Mittelalters in Jeutschland. Berlin, 1886.
Schaubert. Eduard; Ross, Ludwig ; and IIansen, Christian.
Die Akropolis ron Athen nach den Neuesten Ausgrabungen. Berlin, 1839.
Schliemann, Heimrich.
Troy, 18G9. Trojan Antiquities, 18i4. Ilios, 1880. Orchoulenos, 1582. Troja, 1884. Ilios, ville et pays des Troyens [a combination of the original llios and the Troja] 1885. Tiryns, 1885. Nycenæ, 187.

Most of these works were published simultaneously in German and French, or German and English. or in all.
Schmarsow, August.
Meister Andrea. In Iahrbuch der Königliclı preussischen Kunstsammlungen, 1883.
Nuovi Studi inturno a Michelozzo, in Archivio Storico dell' Arte, 1893 (Vol. V'l.). Donatello. Breslau, $18 \% \%$.
Sclımidt, Christian Wilhelm.
Baudenkmale der romischen Periode und des Mittelalters in Trier und seiner Cmgebung. Treves, 1836-1845.
Sclımidt. J. P.
Monuments Religieux, etc. Paris, $\mathbf{J 8} 9$.
Schmidt, Karl, and Schildbach. Moritz.
Der Königliche Zwinger in Dresden. Hambnrg. 1892.
Schnaase. Carl ; Eisenmanm. O. ; Lïbke, W.
Geschichte der bildenden Künste im 15, Jahrhundert. Forms Vol. V'III. of Schnaase's Geschichte der bildenden Künste. Düsseldorf. 1866 to 1876.
Schoefer, C., and Rossteucher, A.
L'ornement dans les vitranx du Moyen Âge et de la Renaissance. Reproduction en chromolithographie de vitraux allemands provenant de Marburg (1266). Alterberg, Immenhausen, Nordelhansen, Lingen, Llm (arbre de Jessé), Augsbonrg, strasbourg, etc.

BIBLIOGRAPHY

Schönfeld, Paul.
Andrea Sansovino und seine Schule . . . stuttgart, 1881.
Schuchardt, Dr. Carl.
Schliemam's Excarations : translated from the German by Eugenie Sellers. London and New lork, 1841.
Schultz, Christoph Lntwig Friedrich, and Goethe. Briefwechsel zwischen Goethe und Staatsrath schultz. Leipzig, 1853.
Schultz, Johann Karl.
Danzig und seine Bauwerke. Berlin, $18 \mathrm{I}_{2}$.
Schultz, Robert Weir, and Barnsley, S. H.
The Monastery of Saint Luke of Stiris, in Plocis: and the dependent monastery of Saint Nicolas in the Fields, near Skripou, iu Beotia. London, 1901.
Schultze, Rudolplı.
Bau and Betrieb ron Volks-Badeanstalten. Bonn. 1893
Schultze, Victor.
Die Katakomben. Die Altchristlichen Grabstätten. Leipzig, 188:.
Schumann, 1'. T.
Barock mind Rococo; Studien sur Baugeschichte. Leipzig, 1885.
Schïtz, Alexander.
Jie Renaissance in Italien ; eine Sammlung der werthrollsten erbaltenen Moummente. Hamburg, 1886.
Schuyler, Eugene.
Turkistan: notes of a Journey in Ihussian Turkistan. Khokand, Bukhara, and Kuldja. London, 1877.
Schuyler, Montgomery.
American Architecture. New York, 1802.
Schwartz, Oscar, M.D.
Bau, Einrichtung und Betrieb öffentlicher Schlachthäuser und Viehlıöfe. 2d ed. Berlin, 1898.
Scott, George Gilbert.
Remarks on Secular and Domestic Architecture. Present and Future. London, 1858.
Lectures on the Development of Mediæral Architecture. 2 vols. London, 1879.
Personal and Professional Recollections. London, 187.9.
Gleanings from Westminster Abbey, with appendices . . . completing the history of the Abber Buildings, by W. Burges, J. Burtt, G. Corner . . . [and others]. Oxford, 1864.
Seidel, G. F.
Die Königliche Residenz in München. Leipzig, 18:0-188\%.
Seidlitz, W. V.
Bramante in Mailand; in Jahrbuch der Königlich preussischen Kunstsammlungen. Vol. 111.

Selvatico, Pietro Estense, marchese.
Sulla Architettura e sulla Scultura in Venezia dal medio evo sino ai nostri giorui . . . Venice, 18ti.
Sulla capellina degli Scrovegni. Padua, 1836. Semper, Mans.

Hervoragende Bildhauer-Architekten der Renaissance. Dresden [pref. 1880].
Donatello, seine Zeit und Schule. V'jenna, 1875.
Semper, II.; Sclulze, F. O. ; Barth, W.
Carpi. Fin Fursteusitz der Renaissance. Dresden. 188 ?
Semper, lie sölnne Sempers.
Die K. K. Hofmusen in Wien and Gottfried Semper. Drei Denkschriften Gottfried Semper's heransgegeben ron seinen Söhnen. Inasbruck, 1892.

BIBLIOGRAPHY

Seubert, Adolf Friedrich.
Allg'meines Künstler-lexicon. 3 vols. Frankfurt a. M., 188:.
S. G., Chronological IIistory of Canterbury Cathedral. Canterbury, 1883.
Slarpe, Edmund.
The Ormamentation of the Transitional Period in Central Germany. London, 1874-1876.
On Lincoln Cathedral, in Associated Architectural Societies, Reports and Papers, Vol. 9.

* Architectural Parallels; or the Progress of Eeclesiastical Architecture in England through the Twelfth and Thirteenth Centuries exhibited in a series of parallel examples. London, 1848.
Domed Chmrches of the Charente. (See A Visit to the Domed Churches of Charente, etc.)
Shaw, IIenry.
Details of Elizabethan Architecture. Londou, 1839.

Shaw, lichard Norman.

* Arehitectural Studies from the Continent. London, 1858.
Sberaton, "Thomas.
Cabinet-maker and Upholsterer's Drawing Iook. London, 1791.
Sighart, Joachim.
Die mittelalterliche Kunst in der Erzdiöcese Miunchen-Freising, dargestelt in ihren Denkmälern. Freising, 18 ē.
Simakuff, N.
L'Art de l'Asie Centrale. © S. Petersburg, 1883.
(Title-page in Russian and French.)
Simpson, William.
Architecture in the IImalayas. In R. I. B. A. Transactions, 1882-188:).
Budthist Arehitecture in the Jellalabad Valley. In R. 1. B. A. Transactions, 1879-I880.
Skene, William Forbes.
Celtic Solland: a IIstory of Ancient Alban. 1876-1880.

Smiles, samuel.

Lives of the Engineers. 5 vols. London, 1861.
Smith, John Thomas.
Antifuarian Ramble in the streets of London. London, 18415 .
Smith, William.
Dictionary of Greek and Roman Biography and Mythology. 3 vols. London, 1841-184!.
Dictionary of Greek and Roman Geography. 2 vols. London, 1854-1887.
Dietionary of Greek and Roman Antiquities. \geq vols., 31 ed., $1890-1891$.
Smithsonian Institution, Annual Reports. Washington, D.C.
Suell, Ilenry Saxon.
Charitable and Parochial Establishments. London, 1881.
Société Académique d'Arehitecture de Lyom, Annales [l'eriorical]. Lyons, 1890-1887.
Société Archênlogique de Bordeanx. Comptes rendus ret mémoires [l'eriodical]. Bordeaux, 187! —.
Société Nationale [royale] des Antiquaires de France, Nemoires et dissertations sur les antiquités nationales et étrangères [l'eriodical]. l'aris, 1817-1834.
Atlas de tome 9. Paris, 1831.
Nouvelle série. Paris, 1835.
Troisième série. Paris, 1852-1803.
Quatriène série. Paris, 1869-1879.
Cinquième série. Paris, 1880, etc., in progress.
Ammaire de la Société. Paris, 1848-1855.

BIBLIOGRAPHY

Bulletin, etc. I'aris, 1857-1 8t 0.
Society of Anticpuaries of London.
(her Archreologia.)
Vetusta Monumenta [Periodical]. London, 1747 -.
Sopwith, 'Thomas.
Treatise oll Isometrical Drawing. London, 18:3.
Souhaut, L'ablué.
Les lifhiers et leurs (Euvres. 188:.
Sousia, Fr. lais de.
Plans, Elevations, Sections, and Views of the Church of Batalha. $15: 36$.
Souslow, IV.
Monuments de l'ancieme Architecture Russe. Edition de l'Aealémie impériale des beanxarts. Title-page in Russian and French, text in liussian. S. Petersburg, 18901898.

Sonth Keusington Museum.
Catalogue of the Special Exhibition of Works of Art. Londun, 1863 .
A Descriptive Catalogue of the Maiolica . . . with Historical Notices, Marks, and Monograms. London, 187:\%.
Ancient and Molern Fumiture and Woodwork . . . with an Introluction by John Ilungerford Pollen. London, 1874.
A bescriptive Catalogue of the Bronzes of Enropean Origin . . with an Introductory Notice by C. 1 rury E. Fortnmm. London, 1876.

Spratt, Thomas 1 luel Bremage, and Forbes, Edward.
Travels in Lyeia, Milyas, and the Cibyratis, in company with the late Rev. E. T.' Daniell. London, $184{ }^{-}$.
Springer, Anton Heinrich.
Raffael und Michel Angelo. Leipzig, 1878.
Squier, Ephraim George.
Nicaragua; its People, Scenery, Monuments, and the proposed interoccanic Canal, with mumerous original maps and illustrations. New York, 1852.
Peru; incidents of Travel and Exploration in the Land of the Incas. Lonton, $1876-$ 1877.

Notes on Central America - particularly the Notes of IIonduras and san Salvalor, their gengraply, topegraphy, climate, population, etc. New York, 1855.
Stabenrath, le Baron Charles de.
Le palais de justice de Romen. Rouen, 1843.
Stalır, Adolf Wilhelm 'Theotor.
Torso ; ľunst, Kimstler, und Kunstwerke des griechischen und römischen Alterthums. Brunswick, 1878.
Stannus, IJugh.
Alfred Stevens and his Work: being a Collection of fifty-seven Autotypes, with a brief Memoir and Account of his principal Productions, so far as they are known. London, 18:1.
Stappaerts, Félix, and Moke, II. G.
La Belgigue Monmmentale . . . 1840.
Statham, II. Heathcote.
Modern Architecture, a Book for Architects and the Public. London and New York, 1898.

Architecture for General liealers: a short Treatise on the principles and Motives of Arehitectural Design, with a historical sketch. New York, 1895.
Steam Laundries and l'ublic Ilealth, issued by the London Sanitary Publishing Co. London, 189.

BIBLIOGRAPHY

Stegmann, Carl ron.
Die Arehitektur der Remaissance in Toscana. (See Geymüller-Stegmauu.)
Stegmann, Dr. Haus.
Die Bildhauerfamitie della Robbia, in Gey-miiller-Stegmann, Die Architektur der Renaissance in Toscana.
stephen-1,ee.
(See Jictionary of National Biography.)
Stepinen, Lestie, and Lee, Sidney.
(See Dictionary of National Biography.)
Stephens, John L.
Incidents of Travel in Central America, Chiapas, and lucatan . . . London, 1841.
Stephens, Rev. W. R. W.
Life and Letters of E. A. Freeman. London, 1895.

Stevenson, Thomas, and Murphy, Shirley F.
Treatise on Hygiene and Public Health. 3 vols. l'hiladelphia, 1892.
Stirling-Maxwell, William.
Anluals of the Artists of Spain. 2d ed. London, 1891.
Stockbauer, Jacob.
Derchristliche Kirchenbau in den ersten sechs Jahrhunderten. Ratisbon, 1874.
Stokes, Miss Margaret MacNair.

* Early Christian Architecture in Ireland. London, 1878.
Stolze, F.
P'ersepolis; Denkmater und inschriften von Persepolis Istakhr, I'asargadae-Shâhpûr. Berlin, 1882.
Storelli, André.
Notice llistorique et Chronologique sur les Châteaux du Blaisois. I'aris, 1884.
Storer. James Sargant.
Graphic and Historical Description of the Cathedrals of Great Britain. 4 vols. London, 1814-1819. A separate monograph is devoted to each cathedral.
Storico dell' Arte.
(See Archivio Storico dell Arte.)
Story, W. W.
Phidias and the Elgin Marbles, in the author's Excursions in Art and Letters. Boston, 1691.
Stothard. C. A.
The Monumental Effigies of Great Britain. London, 1817.
Stout, l'eter F .
Nicaragua, Past, Present, and Future. Philadetphia, 1859.
Stow, John.
Survey of London, written in . . . 1598. London, 184?.
Strack, 11 einricis.
Ziegelbauwerke des Mittetalters und der Renaissance in 1talien. Berdin, 1889.
Baudenkmäler Roms des 15-19 Jahrtunderts. Berlin, leyl.
Stratton, Arthnr.
The Life, Work, and Influence of Sir Christopher IV ren; an Essay. Liverpool, 1897.
Street, Arthur Edmund.
Memoir of George Edmund Street. London, 1858.

Street, George Edmund.

* Some Account of Gothic Architecture in Spain. London, 186.5.
* Brick and Marble in the Middle Ages. Notes of Tours in the North of Italy. 2nd ed. London, 1874.
Struve, Emil.
Die Entwickelung des Bayerischen Braugewerbes im neunzehnten Jahrhundert. Leipzig, 1893.

BIBLIOGRAPHY

Stuart, James, and Revett, Nicholas.
*Antiquities of Athens, weasured and defineated. 4 vols. London, 1762-1816.
Antiquities of Athens and other Places in Greece, Sicily, etc.; supplementary to the Antiquities of Athens by . . . Stuart and Revett, delineated and illustrated by C. R. Cockerell . . . and others. London, 1830. (See also Dilettanti Society.)

Stubel, Alphons, and Uhte, Max.
Die ruinenstätte von Tiahuanaco im Hochlande des alten I'erú. Brestau, 1892.
Sturgis, Russetl.
Bibliography of Fine Art. Boston: The Library Bureau, 1897. Part III.

* European Architecture ; a Historical Study. New York and London, 1896.
Decorative Windows in England and America; in Architectural Record, Vol. VI, 1896, 1897.

Ruskin on Architecture, an introduction to the Ruskin volume of The World's Great Books, a series; New York, 1898.
Michelangelo; in Johnson's Universal Cyclopedia, 2 d ed.
Sturgis, Russell, and others.
Homes in City and Country. New York, 1893.
Supervising Architect to the Secretary of the
Treasury. Ammual Report for the year ending September 30, 1896. Washingion, D. C., 1897. The same for all the years since the creation of the office.
Sutter, Conrad, and Schneider, Fr.

* Thurmbuch, Thurmformen aller style und Laender. Berlin, 1885.
Suys, Titman Frans, and Ilaudebourt, L. P.
Patais Massimi à Rome. Paris, 1818.
Sybel, Ludwig ron.
Katalog der Sculpturen zu Athen. Marburg, 1881.

Sykes, W. J. M.D.
Principles and Practice of Brewing; Short Account of Allsopp's Breweries. Burton-onTrent (u.d.).
Symonds, John Addington.
Life of Michaelangelo Buonarroti. London, 1892.

Renaissance in Italy. London, 1875 , and following years.

Tarbé, Louis Hardouin Prosper.
Notre-1)ame de Reims. Reims, 1852.
Tarbell. F. B.
A History of Greek Art. Meadville, Pa., 1896.
Tarn, Edward Wyndham.
Mechanics of Architecture; a Treatise on Applied Mechanics, especially adapted to the Use of Architects. London, 1892.
Taylor, Andrew Thomas.
Towers and Steeples designed by Sir Christopher Wren ; a Descriptive, Historical, and Critical Essay. London, 1881.
Taylor, George Ledwell.
Autobiography of an Octogenarian Architect; being a record of his studies at home and abroad during sixty-five years . . . London, 1870-1872.
Taylor, George Ledwell, and Cresy, Edward.
Architectural Antiquities of Rome. London, 1821-1822.
Taylor, Isidore Justin Sérérin (baron).
Voyage pittoresque en Espagne, en Portugal, et sur la côte d'Afrique de Tauger à 'I'stouan. Paris, 1832.
Telford, Thomas.
Life of Thomas Telford, Civil Engineer, writ-

BIBLIOGRAPHY

ten by himself, containing a Descriptive Narrative of his Prolessional Labours, with a Folio Atlas and Copper l'lates, edited by John Rickman, one of his Executors, with a l'reface, Supplement, Annotations, and Index, London, 18:38.
Temanza, Tommaso.
Vite dei piucelebri Architetti e Scultori Vencziani. Venice, 1762, 1768.
Vita di Jacopo Sansovino. Venice, 1752.
Vita di Andrea P’alladio Vincentino, egregio architetto. Venice, 1872.
Temanza, Tommaso, and Moschini, Giovanni Antonio.
Vita di A. Vittoria, scritta e publicata da Tommaso Temanza, ora reprodotta con note ed emende, dell Abate Gio. Antonio Moschini. Venice, 1827.
Testolini, Marco.
Ricerche intorno ad Alessandro Leopardi ; in Archivio Veneto, Vol. III. 1872.
Texier, Charles Félix Marie.
Description de l'Arménie, la l'erse, et la Mésopotamie. Paris, 1842-1852.
Monuments Arabes du Caire.
Asie Mineure. Description Géographique, Ilistorique et Archéologique des Provinces et des Villes de la Chersonnèse d'Asie. J'aris, 1882.

Texier, Charles, et Pullan, R. Popplewell.
Architecture Byzantine ou Recueil de Momaments des Premiers temps du Christianisme en Orient. London. 1864.
Texier, L'Abbé, Jacques Rémy Antoine.
Histoire de la I'einture sur Verre en Limousin. Paris, 1847.
Histoire de la Peinture sur Verre. 1850.
Theophilus (Rugerus).
Diversarum artium schedula: translated into French by the comte de Lescalopier. Toulouse, 1843. Translated into English as An Essay upon Varions Arts, in 3 books, by Theophilus . . . with notes by Robert Hendrie. London, 1817.
Thibaud, Emile.
Considerations historiques et critiques sur les Vitraux auciens et modernes et sur la Peinture sur Verre. 1842.
Thierry, Jules D.
Arc de Triomphe de l'Etoile. Paris, 1845.
Thiers, Jcan Baptiste.
Dissertation sur les principaux autels, etc. l'aris, 1688.
Thirion, H .
Les Adam et Clodion. Paris, 1885.
Thomas, Cyrus.
Mlound Explorations. (See Bureau of Ethmology.)
Burial Mounds of the Northern Sections of the United states.
Prehistoric Works east of the Rocky Mountains.
Introduction to American Archrology.
Thomson, Richard.
Chronicles of London Bridge by an Antiquary. Lundon, 1827.
Ticozzi, Stefano.
Raccolta di lettere sulla Pittura, Scultura ed Architettura, scritte da pin celebri personali dei secoli XV, XVI, e XVII, publicata da G. Bottari e continuata fino ai nostri giorni da S. Ticozzi. 1833. (Nee Bottari, Giovanni Gaetano, for earlier ellition.)
Ticozzi, Ste「ano, ed.
Vita di Scamozzi, introduction to: Scamozzi, l'Idea dell' Architettura universale (which see).

BIBLIOGRAPHY

Tiffany, L. C.
Aus rican Art supreme in Coloured Glass. (ln the Forum, New York, XV, 621.) July, 184:3.
Tigri, Giuseppi.
Nuova guida di Pistoia. 1881.
Tipaldo,
Elogio di Fra Giovanni Giocondo. Venice, 1840.

Tonini, Luigi.
Guida illustrata di Rimini. Rimini, 1803.
Tosi, Francesco Maria, and Becelio, Alessandro. Altars, Tabernactes, and Sepulchral Monuments of the 14th and foth centuries: descriptions in Italian, English, and French by Mrs. S. Bartlet. Lagny, I8ti.
Tourneur, Victor (abbé).
Histoire et description des vitranx et des statues de l'intérienr de la Cathédrale de Reims. Reims, 1857.
Tower, F. W.
Plumber's Text-book. Published by the Springfield (Mass.) Industrial Institute. 1897.

Tozer, Ilenry Fanshawe.
Researches in the Highlands of Turkey. London, 1800.
Lectures on the Geography of Greece. London, I873.
The Islands of the Jigean. London, 1890.
Tremblaye, R. P' dom, de la.
Solesmes. Les Sculptures de l'Église Abbatiale 1406-1553. Solesmes (Sarthe), France, 1892.

Troche, N. M.
L'Architecte Lassus (pamphlet). 1857.
Trotter, Alys Fane.
Old Colonial llouses of the Cape of Good Hope. Londun and New York, 1900.
Trou, Denis.
liecherehes historiques sur la ville de Pontoise. Pontoise, 1811.
Tsehudi, Hugo von.
Donatello e la Critica moderna. Turin, I877.
Tsountas, Chreston, and Manatt. James Irving.
The Mycenæan Age: a Study or the Nonuments and Culture of pre-Ilomeric Greece. London and Cambridge, Mass., 1897.
Tuckerman, ILemy T.
Book of the Artists, American Artist's Life. Comprising biographical and critical sketches of American artists. New York, 1867.

Tuker, M. A. R., and Malleson, Hope.
llandbook to Christian and Ecclesiastical Rome. New York and London, I900.

Ulide, Constantin.

* Bandenkmaeler in Spanien und Portugal. Berlin, 1880.
Ungewitter, G.
Lehrbuch der Gotischen Konstruktionen. 3d ed. Leipzig, 1812.
United States Bureau of American Ethnology, Annual Reports. Washington, 1). C.
United States Bureau of Education, Circulars of Information.
Upmark, Gustav.
* Die Architektur der Renaissance in Schweden (1530-I760). Dresden, 1899-.
Urbani de Gheltof, G. 11.
* Les Arts industriels a Venise. Venice, 1885.
* Venezia dal' Alto: I Canini. Venice, 1892.

Tiepolo e la sua Famiglia. Venice, 1879.
Urlichs, Karl Ludwig von.
Skopas, leben und werke. Greifwald, I863.

BIBLIOGRAPHY

Ussing, J. L.
Observations on Vitruvius di Architettura Libri Hecem; with special regard to the time at which this work was written. London, $18: 5$

Vachon, Marins.
L'Ancien llôtel de Ville de l’aris. Paris, 1882.
Philibert de toorme. Paris, $18 \mathrm{~m}^{7}$.
P'uvis de Chavames. l'aris, 180.
Vacquet, 'l'h.
Le Bois de Bouloune architectural. Paris, 1860. 2d ed. 1875.

Valabrègue, Antony.
See dean Bérain in Revue des Arts décoratifs. 1871-1880.
Abraham Bosse. Paris, 1 S22.
Valle. Guglielmo della.
Storia del huomo di Orvieto. Rome. 1791.
Vambéry, Arminius.
'lirarels and Adrentures in Central Asia. London, 1864.
History of Bokhara from the earliest l'eriod down to the leresent, 1878.
Van Campen, Jacob.
Afbeelding ran't Stadt Huys van Amsterdam. Amsterdam (n.d.).
Van Mander, Carel.
Het Leven der doortuchtige Nederlandsche en eenige llongduitsche Schilders. Amsterdam. 1764.
Van Nostrand. Science Series. New York, 187.3-1891.
Van Rensselaer, Mrs. Mariana Griswold.
Henry Hobson Richardson and bis Works. Boston, 1888.
Van I'sendyck, Jules Jacques.
Documents classés de l'art dans les l’ays bas. Antwerp, 18s?.
Vapereau, Louis Gustave.
Dictionnaire universel des Contemporains. P'aris, different eds., the latest in 1893.
Dictionnaire universel des Littérateurs. Paris, 18.6.

Varin, Eugène, et Varin. A.
Architecture pittorescue en Suisse. 1861.
Vasari.
Delle Vite dei più excellenti Pittori, Scultori, et Architetti; ed. by Milanesí. 18:8-1885.
Lives of the Most Eminent Painters and Sculptors and Architects; translated from the ltalian of Giorgio Vasari by Mrs. Jonatban Forster. London. 1858.
Lives of Seventy of the Most Eminent Painters and Sculptors and Architects. by Giorgio Tasari ; editerl and annotated by E. H. and E. W. Blashfield and A. A. IIopkins. New York. 1846.
Vasselot, Jean-Joseph M1. A. Marquet de.
Histoire des sculpteurs Français de Clarles V111 à Henri 111. Paris, 1886.
Velt'man, Aleksandr Theodorovich.
Description du Nouveau Palais iupérial du Kreml de Moscou traduit du Russe par le Baron 1. de Bode. \$loscow, 1851.
Venetian Painting.
Della Pittura Yeneziana e delle Opere pubblicha dei Veneziani Maestri; libri; v. Venice, 17il. Edizone seconda. 2 pt. Venice, 1792. (See Zanetti, A. M.)
Venturi, Adolfo.
The Farnesina ; Italian and English Editions. 1891.

Verneilh, Felix de.
L'Architecture Byzantine en France: S. Front

BIBLIOGRAPHY

de P'érigueux et les églises à coupoles de l'Aquitaine. 1'aris, 18 ā1.
Verrall, Margaret de G., and Harrison, Jane E.
Mythology and Mouruments of Ancient Athens. London and New York, 1890.
Verschelde, Charles.

* The Ancient Domestic Edifices of Bruges. Bruges, 1875.
Yetter, Leo,
Das stuttgarter Schwimmbad. Stuttgart, 1880.
Vetusta Monumenta. (See Society of Antiquaries of Londun.)
Vigo, lietro.
L'Architetto Giovanni di Lapo ed il duomo di Firenze, studio. Leghorn, 1887.
Villa-amil, Genaro Perez de, and Escosura, Patricio de la.
España Artistica y Monumental. Paris. 184218.50.

Villa-amil and Castro.
Antiguiedades prehistoricas de Galicia. Madrid. 1868.
Villani, Filippo.
Cronica, 1846 . Collezione di storici e cronisti 1taliani, etc. Florence, 1844-1849.
Villard de llonnecourt, Architecte du $\mathbb{C l 1 1}$ e siècle.
Album ; Manuscrit publié en fac-simile annoté . . . par J. B. A. Lassus . . . ourrage mis au jour . . . après la mort de Lassus . . . par Alfred Darcel. Paris, 1858. (See Wilars de Ifonecourt.)
Viñaza, El conte de la.
Addiciones al Diccionairio histórico de los más ilnstres profesores de las bellas artes en España de Juan Agustin Cean Bermúdez. Madrid, 1889-1894.
Viollet-le-1)uc.

* Dictionnaire Raisonné de l'Architecture Française du XIe au XV^{e} Siècle. 10 Vols. I'aris, 185s-186s. (See also Huss.)
Église abbatiale de Vézelay (reprint from archives de la commission).
Compositions et dessins, publiés sous le patronage du Comité de l'ceusre du maitre. Paris, 1884.

Histoire de l'Ilabitation humaine depuis les temps prêhistoriques jusqu'à nos jours. 1’aris (n.d.).
L'Art Russe. Paris, 1887.

* Entretiens sur l'Architecture. Paris, 18631872.

Visit, A, to the Domed Churches of the Charente. France; by the Architectural Association of London, in the year 1875 . London.
Vitet. Ludovic.
Le Lourre. Paris, 1853.
Vitruvius.
M. Vitruvii Pollionis de Architectura Libri Decen. Many editions; that by Mariui, liome. 1836. is cited in text.
Englisb translation : The Architecture of Marcus Vitruvius Pollio, in ten books. Translated from the Latin by Joseph Gwilt. London, 1826.
Vogué, Charles Jean Melchior, comte de.
Les Erglises de la Terre Sainte. Paris. 1860 .
Le Temple de Jérısalem: monographie du Haram-Ech-Cherif. 1’aris, 186t.

* Syrie Centrale: Architecture civile et religieuse du l^{e} au V11e Siècle. J'aris, 1865187.

Volpini. s.
Appartimento Borgia nel Vaticano. Rome, 188%.
Von Hammer, I.
Constantinopolis und der Bosporus, örtlich und geschichtlicb besclurieben. Budapest, 1822.

BIBLIOGRAPHY

Waagen, Gustav Friedrich.
Treasures of Art in Great Britain, . . . the chief collections of Paintings, Drawings, seulptures, etc. London, 18.54.
Wade, W. II
Wialks in Oxford ; an . . . Account of the Colleges, llalls, and fublic Buidtings of the University . . [and] a . . . History and Description of the City. . . . Uxford, 1817.
Waldstein, Charles
Excavations of the American School of Athens at the Heraion of Argos, 1892 . London and New York, 1892.
Essays on the Art of Pheilias. Cambridge and New loork, 1885.
Wallis, Frank.
Old Colonial Architecture and Furniture. Boston, Mass., 1587.
Walpole, Horace.
Aneclotes of lainting in England (from Vertue's MLS. . . \& vols. 1762-1761 [1780].
Wanderer, Fr.
Adan Krafft und seine Schule, 1490-1507. Nuremberg [pref. 1869].
Waring, George E
Drainine for Prolit and Draining for Health. New York, 1817.
The Elements of Agriculture. Montpelier, U. S., 1855.

Sewerage aud Land 1)rainage. Illustrated with woodcuts in the text, and full page and folding plates. (Juarto. 3 d ed. New York, 1898.
Modern Methods of Sewage; disposal for towns, public institutions, and isolated honses. $2 d$ ed., revised and enlarged. 260 pages. Illustrated. New York, 1896.
Low to Drain a House. Practical information for householders. $2 d$ ed. Illustrated. 12mo. New York, 1805.
Waring, J. B.

* The Arts connected with Architecture ; illustrated by examples in Central Italy, of Stained Glass, Fresco, Ornaments, Marble and Enamel Inlay, Wood Inlay, etc. London, 1858.
* Stone Monuments, Tumuli and Ornaments of Hemote Ages. London, 1870.
Record of my Artistic Life. London, $18 \% 0$.
Waring and Macguoid.
* Examples of Architectural Art in Italy and Spain, chiefly of the 13 th and 16 th centuries. London, 1850.
Warner, Charles Dudley.
(our Italy. New lork. 1891.
Wasmuth, (publisher).
Architektur ter Gegenwart. Berlin (publication still proceeding).
Watkins. Charles \mathbf{F}.
The Basilica or l’alatial Hall of Justice and Sacred Temple, and a description of the dasilican Church of Brixworth. 1867.
Watson, William
Course in Descriptive Geometry for the use of Colleges and Scientific Schools. London, 1880.

Weale, Jolm.
Divers Works of Early Masters in Christian becoration. London, 1846.
Rudimentary Series. London, 1850-1803.
Weichardt, C.
l'ompeji vor der Zerstoerung. Leipzig (n.l.). Notive zu Garten-Architektur. Weimar, 1879.

Weilbach, Philip. Nyt Dansk Kunstnerlexikon (Dictionary of

BIBLIOGRAPHY

Danish Artists). 2 vols. Copenhagen, 18961897.

Weltmann, A. (See V'elt'mann, Aleksandr Theodorovich.)
Wessely, Jusel liduard.
Giovimui lattista Tiepolo (in Kınst und kunstler series).
Westlake, N. II. F.
History of Design in Painted Glass. London, 1881-18815.
Weycrmann, Jacob Campo.
De Levens-Beschryvingen der Nederlandsche. Dordregt, 1729-1569.
Weyl, Dr. Themer.
Handbuch der Hygiène, Vol. V'I., Markthallen.
Wharton, llemry.
Anglia Sacra. London, 1691.
Wheatley, Hemry benjamin.
The Alelphi and its Site. London, 1885.
Whewell, Rev. William.
Architectural Notes on German Churches. Cambridge, 1835.
Wickhoff, Franz.
Roman Art. New York, 1000.
Wiener lauzeitung. (See Allgemeine Banzeitung.)
Wilars de Honecourt.
Facsimile of the Sketch-Book of - , illustrated by commentaries and descriptions, anl published by Alfred Darcel from the MSS. of J. B. A. Lassus ; translated by Rev. Robert Willis, with an essay by I. (Quicherat. London, 185\%. (see Villard de llonnecourt.)
Wild, Charles.
The History and Antiqnities of the Cathedral Cliurch of Lincoln, ed edition revised by dohn Brition. London, 1837.
Wilkinson, George.
Practical Geology and Ancient Architecture of Ireland. London, 1845.
Wilkinson, Robert.
Londina Illustrata; Graphic and 1listoric Memorials of Monasteries, Churches, Chapels, schools.
Williams, Rev. George.
The Holy City ; Historical, Topographical and Antiquarian Notices of Jerusalem. 2d edition enlarged. including An Architectural History of the Church of the IIoly sepulchre by Rev. R. Willis. London, 1849.
Willians, J. Haynes.
Fontainebleal. Fifteen photogravures, with an introluction by Frederick Wedmore. London, 1890.
Willianson. Elouard.
Les Meubles U'irt du Mobilier National. Paris, 188:3-1885.
Willis, Robert.
The Architectural History of Canterbury Catheiral. London, 1845.
Architectural llistory of Glastonbury Abbey. Cambridge, 1866.

* On the Construction of the Vaults of the Middle Ages (Trans. li. 1. B. A.). Vol. l., Part 11. 1842.
Architectural llistory of the Church of the Holy Sepulchre. (See Williams, Rev. G., Holy City.) London, 1849.
Architectural Ilistory of Winchester Cathedral. London. 1846.
Wilson, Charles Heath.
Lite and Works of Michclangelo. London and Florence, 1876.
Wilson, Air Danie].
Archeology and Prehistoric Annals of Scotland. Eelinburgh, 1851.

BIBLIOGRAPHY

Winkles, Benjamin.
Historical and Descriptive Account of the Cathedral Church of Gloucester. Gloucester (n.d.).
Winkles, Ifenry, and Winkles, Benjamin.
Winkles's Arehitectural and licturesque Jllustrations of the Cathechal Churches of England and Wales . . . London, 1836-1838.
Winsor, Justin.
Memorial Itistory of Boston, including Suffolk County, Mass., 1630-1880. Boston, 18801881.

Narrative and Critical History of the United States. Buston, 1884-1889.
Winston, Charles.
An inquiry into the difference of Style observable in Ancient Glass P'untings, especially in England; with hints on Glass l'ainting, by an Amateur. Oxford, 18t7.
Winter, M.
Die Dach Constructionen verschiedenartigsten Formen und Bedingungen. Berlin, 1862.
Wochenschrift des österreichischen Ingenieur-und Architekten-Vereines. Vienna, 1876-1891.
Wrolff, Carl, Dr.
Ställtische das Schwimmbad in Frankfurt a. M. [an extra number (Fortschritte, No. 11), of the Ilandbuch der Architektur]. Stuttgart, 1897.

Wolff, I. G., and Mayer, Dr. Friedrich.
Nürnbern's Gedenkbuch. 1843-1850.
Wolsogen, Alfred Freiherr von.
Schinkel als Architect, Maler und Kunstphilosoph, ein Vortrag gehalten im Verein für Geschichte der Bildende Kínste zu breslau. Berlin, 1804.
Woltmann, Dr. Alfred.
Geschichte der Deutschen Kunst im Elsass. Leipzig, 1576.
Woltmann, Alfred Friedrich, and Woermann, K. Geschichte der Materei. Leipzig, 1878.
Wood, Anthony A .
The History and Antiquities of the Colleges and Halls in the University of Oxford. Uxford, 1786-1790.
Wood, J. T.
Reply to Mr. Fergusson, etc. (See Trans. R. 1. B. A., 1883-1884.)

Discoveries at Ephesos [by J. Wood]. London, 1877.
Woorl, Robert.
The liuins of Palmyra and Balbec. London, 1827.

Ruins of Palmyra, otherwise Tedmor, in the Desart. London, 1753.
Ruins of Balbec, otherwise Heliopolis, in Cælosyria. London, 1757.
Woodhouse, William J.
Etolia, its Geography, Topography, and Antiquities. Oxford, 1897.
Woodward, Rev. John, and Burnett, George.
A Treatise on Heraldry, British and Foreign, published by W. and A. K. Johnson. 2 vols. Edinburgh and London, 1892.
Wren, Christopher.

BIBLIOGRAPHY

Parentalia, or Memoirs of the Family of . . . Wrens. London, 1750.
Wurzbach, Dr. Constant von.
Biographisches Lexikon des Kaiserthums Desterreich, etc. Vienna, 1856.
Wyatt, Sir Matthew Digly.
Architect's Note-book in Spain. London, 1872.
Specimens of Ornamental Art, Workmanship in Gold, silyer, lron, Brass and Bronze from the 12 th to the $19 t h$ centuries. London, 1852.
Specimens of the Geometrical Mosaic of the Middle Agres. London, 1848.
Wyttenbach, J. H.
Translated by 1)awson Turner, The Stranger's Guide to the Roman Antiquities of the City of Treves.

Yriarte, Charles Emile.
Un Condottière au XVe siécle, Rimini. Paris, 1882.

La Vie d'un Patricien de Yenise. 1874, 1885.
Paul Véronèse. l’aris, 1888. [Forms part of series Les Artistes Célébres.]
Florence; l'histoire des Médicis. Venice, 1877.

Matteo Civitale. Paris, 1886.
Yule, Captain Henry.
A Narrative of the Mission sent by the Governor-General of India to the Court of Ava in 1855, with notices of the country, government, and people. Loudon, 1858.

Zamboni, Baldassare.
Memorie intorne alle pubbliche Fabbriche della città di Brescia. Brescia, 1778.
Zanella, Giacomo.
Vita di Andrea Palladio. Milan, 1880.
Zanetti, Antonio Maria, the Younger. (See Venetian lainting.)
Della Pittura Veneziana, etc. [By A. M. Z.] 1771, 1797.
Zanetti, Antonio Maria Erasmus, conte ; Zanetti, G. F.; and Zanetti, Alessandro.

Delle antiche Statue greche e romane che nell' antisala della Libreria di San Marco, e in altri lunghi pubblici di V'enezia ei trosano. Venice, $1740-1743$.
Zanotto, François.
Edifices et monuments remarquables de Venise. Venice, 1858.
II Pałazzo Ducale di Venezia. V'enice, 1841~ 1861.

Text to Sanmichele. (See Sanmichele.)
Zanth, Ludwig von.
(See Hittorff.)
Zeitschrift des Österreichischen Ingenieur und Architekten-Vereines [Periodical].
Zeitschrift für Banwesen. Berlin, 1851-1894.
Zeitschrift für bikdende Kunst, mit dem Beiblatt Kunstchronik, (which see). Leipzig, 18661893.

Zestermann, Angust and Christian Adolf.
Die antiken und die christlichen Basiliken nach ihrer Entstehung. Leipzig, 1847.

EUROPEAN ARCHITECTURE

A Historical Study

By RUSSELL STURGIS, A.M., Ph.D., F.A.I.A.

President of the Fine Arts Federation of .Vew Sork: Post-Prestent of the Architectural League of New Iork; lice-Prestacnt of the National Sowlpture Soctety, etc.

Cloth. 8vo. Illustrated. \$4.0o

"To the literature of architecture no American is better qualified to make a contribution of lasting value than Mr. Russell Sturgis. . . ." - The Outlook.
"In Mr. Sturgis's 'European Architecture' rare good taste, simple truth, and great knowledge combine to satisfy eye and mind. . . ."-The Independent.

DEVELOPMENT AND CHARACTER OF GOTHIC ARCHITECTURE
 By CHARLES HERBERT MOORE

Second Edition, Rewritten and Enlarged. With Ten Plates in Photogravure and mure than 200 Illustrations in the Text

8vo. Cloth. \$4.50, net

Abstract

The new edition embodies a large amount of fresh material gathered at first hand from the monuments. A considerable number of early Gothic buildings of great importance, bitherto little known, have been examined; and much new light has thus been thrown upon the interesting subject of the early Gothic Development. A new chapter on the sources of Gothic art has been inserted; the other chapters have been rewritten and muct new matter incorporated. The work is thus much improved buth as an exposition of the nature and character of Gothic art, and a comparative illustration of the various pointed systems of the Middle Ages.

Many new illustrations in the text, and a considerahle number of full-page plates, executed in the best manner of photugraphic reproduction, will be included. The Nation says of the new edition: "The treatise has evidently been remade from beginning to end, the old material being retained only so far as it was found to meet entirely the new demands. As to the illustrations, they also have heen minutely recoasidered, and the improvement in this respect is even more striking than in the text. . . . Those who have found the first edition of Mr. Moore's work valuable will find it still more important to possess the second."

BUILDING SUPERINTENDENCE

A Manual for Architects, Students, and Others interested in Building

Operations as carried on at the Present Time
By T. M. CLARK
Fellow of the American Institute of Architects
Cloth. 8vo. lllustrated. $\$ 3.00$
There is hardly any practical problem in construction, from the building of a stone town hall or church to that of a wooden cottage, that is not carefully considered and discussed here, and the book is consequently of the greatest value to all who are interested in building.

ARCHITECT, OWNER, AND BUILDER BEFORE THE LAW

By T. M. CLARK
Aurhor of "Buildong Superintendence"
Cloth. 8vo. \$3.00

SAFE BUILDING

By LOUIS DE COPPET BERG
In two volumes. Square 8vo. Illustrated
$\$ 5.00$ each volume

Volume 1.
cuapter
I. Strength of Materials.
II. Foundations.
III. Cellar and Retaining Walls.
IV. Walls and Piers.
V. Arches.
VI. Floor-beams and Girders.
VII. Graphical Analysis of Transverse Strains.

CONTENTS
chapter
VIII. The Nature and Uses of Iron and Steel.
IX. Rivets, Riveting, and Pins.
X. Plate and Box Girders.
XI. Graphical Analysis ol Strains in Trusses.
XII. Wooden and Iron Trusses.
XIII. Columns.

Tables. Index.

MODERN PERSPECTIVE

A Treatise upon the Principles and Practice of Plane and Cylindrical Perspective
By WILLIAM R. WARE
Professor of Architecture in the School of Mines, Columbsa Ciniversity
Cloth. Square 8vo. With 27 Plates in a Portfolio. \$4.00, net
This is by far the most exhaustive of modern works on the subjects relating to perspective, plane and panoramic, and of great value to all architects and artists, and others interested in the problems of art. The scientific and pictorial aspects of these investigations are carefully and thoroughly considered, both independently and in their connection with drawing; and the propositions of the author are illustrated by plates of architectural objects and perspective plans. An invaluable book for artists, archilects, draughtsmen, and civil engineers.

SCOTLAND'S RUINED ABBEYS

By HOWARD CROSBY BUTLER, A.M.
Sometime Lecturer on Architecture in Pronceton l'niversts', and Fellow of the American School of Classical itudies in Rome

New Edition. Cloth. Square 8vo. lllustrated. \$2.50

RATIONAL BUILDING

By E. E. VIOLLET-LE-DUC

The Article "Construction" of the Dictionnaire Raisonné de l'Architecture Française Translated by G. M. Ht'ss

Cloth. 8vo. Hustrated. \$3.00

THE CASTLES OF ENGLAND

Their Story and Structure

By SIR JAMES D. MACKENZIE

Baronet of Scatwell and Tarbat
In two volumes. With 40 Plates, 158 Text lllustrations, and 70 Plans Cloth. 4 to. $\$ 25.00$

FACULTY ORAR~…T CTURE

 LANDCAPEANEDESN LTETR ATYUNIVERSITY ORIGRONTO 230 COLLEGE STAEET
TORONTO, ONTARIO M5T 1R2

Canada

```
NA Sturgis, Russell, 1830-1909.
3 1 ~ A ~ d i c t i o n a r y ~ o f ~ a r c h i t e c t u r e ~
S89 and building; biographical,
1905 historical and descriptive.
v. }
c. }
```

School of Architecture \&
Landscape Architecture University of Toronto 230 College Street Toronto, Ontario M5T 1R2 Canada

[^0]: 1 In his report on the investigations at A ssos 1881, Mr. T. 'Thacher Clarke observes. p. 120. " The proceeding of the Phonician artisan was to

[^1]: 1 One column of the north group, four of the eastern group, five of the western, and three of the central sroup remain in situ, and four bases or foundations of walls between the north and the centre group of columns.

[^2]:

[^3]: 4. Waiting romm
 5. B. Guard rovenin for fifte men
 6. 14. :tair, going down to the prison of those condemned to 11. Search ruo
 1. Searel hom for the mint.
 2. Bown tur judge
 3. Otice of seeretary and veristrar (Greflier)
 4. Othe of the sumprintendent
 5. 15. lionums for :wrinsed and condemed persons arriving at
 1. 23. Kitchen and dependencies.

 2i. Poom fur bndies of the dead.
 2-. Room for punishment.
 30. Entrance th pricion of the arcused.
 31. Room for distribution of the meals.

[^4]: ${ }^{1}$ The term is capable of other interpretations ; but the peculiar importance of the recently observed and surprising deviations mamed in the definition above require special examination.

[^5]: Colligunn. Histoire de la Šulpture Crempue, 2 vols.. l'aris. 1892; Furtwängler. Masterpieres of freak Sizhloture. New York. 181. G: Galner. sonlphemel Tombs of Hellus. 1 seri: Ronze. La
 1-!1: : It. S. Jones. Soleat Possorups from Amriont Hratmes, illustrative of the Ihistory of fireek Semptuere, 189.) : Mitchall. A Misfory of duriont s-ulpture: (Norlhenk. Fipsebirhte deo ariphiselen Plostik. Leinzig. 1*81: Wr. C. Derry. fireok and Romon Srulpture, 1882; Wiekhoff, Romuen Irt, 1900.

[^6]: ${ }^{1}$ See Rocks, Rock-Weuthering and Soils, The Macmillan Company, New York: and stones for Building and Decoration, Wiley and Suns, New Vork.

[^7]: ${ }^{1}$ For details of these processes, see Reports of the "Tests of Metals and Other Materials," made at Watertown Arsenal, $15!4$, $15!4$, and 189$)^{2}$, Washington Govermment Printing Ottice.

[^8]: ${ }^{1}$ See Stones for IBuilding ind Decorution, by George P. Merrill, 2d ed., pp. 120)-1is.

[^9]: 1 The term "circumferentor" is applied sometimes to the "perambulator" or wheel measurer, in which a wheel is simply ron along a road, recording its revo-

[^10]: TYPES OF HOUSES IN THE CLTY OF DHCHEL RHAA

